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1. Introduction

It is well known that many problems arising in applications of mathematics can be
formed as the finding a point that belongs to the nonempty intersection of finitely many
closed convex sets, or in general, the fixed point sets of nonlinear operators in a Hilbert
space H, see for instance [1–4]. Namely, let a finite family of nonlinear operators Ti : H →
H with, the set of all fixed points of the operator Ti, Fix Ti := {x ∈ H | Tix = x} 6= ∅,
i = 1, 2, ...,m, be given, the common fixed point problem is to find a point x∗ ∈ H such
that

x∗ ∈
m⋂
i=1

Fix Ti, (1.1)

provided that the intersection is nonempty.
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According to its fruitful applications, there is a vast literature on solving the com-
mon fixed point problem (1.1). Notable methods and applications are proposed in [5–9]
when dealing with the certain nonexpansivity of operators Ti, i = 1, 2, ...,m. For more
approaches on wilder class of operators and many extrapolation variants, the reader can
be found, for example, in [10–18] and many references therein.

Since the fixed point set of a nonexpansive operator is convex, it is clear that the
intersection of such fixed point sets is also convex. This means that the problem (1.1)
might have infinitely many solutions, otherwise it has a unique common fixed point. In
this case it is customary to inquire that, under some prior criterion, which common fixed
point is the best or at least a better common fixed point. A classical strategy is the
minimal norm solution problem of finding a common fixed point in which it solves the
minimization problem

minimize 1
2‖x‖

2

subject to x ∈
⋂m
i=1 Fix Ti,

provided that the problem has a solution. A number of iterative schemes for finding this
minimal norm solution have been proposed, see for example, in [19–24] and references
therein.

Along the line of selecting a specific solution among the common fixed points, and
it is well known that the smooth convex optimization problem can be written as the
so-called variational inequality problem. These observations motivated the solving a vari-
ational inequality problem over the common fixed point sets formulated as follows: given

a monotone continuous operator F : H → H, find x∗ ∈
m⋂
i=1

Fix Ti such that

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈
m⋂
i=1

Fix Ti. (1.2)

Clearly, the minimal norm solution problem is an example of the problem (1.2) when
F (x) is the gradient of 1

2‖x‖
2.

Among popular methods for dealing with this variational inequality problem (1.2), we
underline, for instance, the classical work of Lions [25], where Ti, i = 1, . . . ,m are supposed
to be firmly nonexpansive and F := Id − a, for some a ∈ H. After that, the case when
Ti, i = 1, . . . ,m are nonexpansive has been studied by Bauschke [26]. And, the most
remarkable method is the so-called hybrid steepest descent method proposed by Yamada
[27], where Ti, i = 1, . . . ,m are supposed to be nonexpansive and the operator F is
generally supposed to be strongly monotone and Lipschitz continuous. This starting point
inspired many researchers to study in both generalizations of the problem setting and
accelerations of this introduced iterative scheme, see [28–38] for more insight developments
and applications.

In this paper, we deal with the variational inequality problem over the intersection of
fixed point sets of firmly nonexpansive operators. We present an iterative scheme for solv-
ing the investigated problem. The proposed algorithm can be viewed as a generalization
of the well-known hybrid steepest descent method in the allowance of adding appropri-
ated information when computing of operators values. We subsequently give sufficient
conditions for the convergence of the proposed method.

This paper is organized in the following way. We collect some technical definitions
and useful facts needed in the paper in Sect. 2. In Sect. 3, we state the problem of
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consideration, namely the variational inequality over the intersection of fixed point sets,
and discuss some remarkable examples. Whereas in Sect. 4, the proposed algorithm is
introduced and analyzed. Actually, to get on with the proving our main theorem, in
Subsect. 4.1 we prove several key tool lemmas, and subsequently establish the strong
convergence of the sequence generated by proposed algorithm in Subsect. 4.2.

2. Preliminaries

Throughout the paper, H is always a real Hilbert space with an inner product 〈·, ·〉
and with the norm ‖ · ‖. The strong convergence and weak convergence of a sequence
{xn}∞n=1 to x ∈ H are indicated as xn → x and xn ⇀ x, respectively. Id denotes the
identity operator on H.

An operator F : H → H is said to be κ-Lipschitz continuous if there is a real number
κ > 0 such that

‖F (x)− F (y)‖ ≤ κ‖x− y‖,
for all x, y ∈ H, and η-strongly monotone if there is a real number η > 0 such that

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2,
for all x, y ∈ H.

Firstly, in order to prove our convergence result, we need the following proposition.
The proof of this result can be found in [27, Theorem 3.1].

Proposition 2.1. Suppose that F : H → H is κ-Lipschitz continuous and η-strongly
monotone. If µ ∈ (0, 2η/κ2), then for each β ∈ (0, 1], the mapping Uβ := Id − µβF
satisfies

‖Uβx− Uβy‖ ≤ (1− βτ)‖x− y‖,

for all x, y ∈ H, where τ := 1−
√

1 + µ2κ2 − 2µη ∈ (0, 1].

Next, we recall some noticeable operators. An operator T : H → H is said to be
ρ-strongly quasi-nonexpansive (SQNE), where ρ ≥ 0, if Fix T 6= ∅ and

‖Tx− z‖2 ≤ ‖x− z‖2 − ρ‖Tx− x‖2,
for all x ∈ H and z ∈ Fix T . If ρ > 0, we say that T is strongly quasi-nonexpansive. If
ρ = 0, then T is said to be quasi-nonexpansive (QNE), that is

‖Tx− z‖ ≤ ‖x− z‖,
for all x ∈ H and z ∈ Fix T . An operator T : H → H is said to be nonexpansive (NE), if
T is 1-Lipschitz continuous, that is

‖Tx− Ty‖ ≤ ‖x− y‖,
for all x, y ∈ H. It is clear that a nonexpansive operator with nonempty fixed point set
is quasi-nonexpansive. An operator T : H → H is said to be a cutter if Fix T 6= ∅ and

〈x− Tx, z − Tx〉 ≤ 0,

for all x ∈ H and all z ∈ Fix T . Furthermore, an operator T : H → H is said to be firmly
nonexpansive (FNE), if

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2,
for all x, y ∈ H.
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Some important properties applied in the further part of this paper are stated as the
following facts which can be found in [3, Chapter 2].

Fact 2.2. Let T : H → H be a firmly nonexpansive operator. Then T is nonexpansive
and it is a cutter, and hence quasi-nonexpansive.

Fact 2.3. If T : H → H is quasi-nonexpansive, then Fix T is closed and convex.

Fact 2.4. Let T : H → H be an operator. The following properties are equivalent:

(i) T is a cutter.
(ii) 〈Tx− x, z − x〉 ≥ ‖Tx− x‖2 for every x ∈ H and z ∈ Fix T .
(iii) T is 1-strongly quasi-nonexpansive.

Below, we present further properties of a composition of strongly quasi-nonexpansive
operators.

Fact 2.5. Let Ti : H → H, i = 1, 2, ...,m, be strongly quasi-nonexpansive with
m⋂
i=1

Fix Ti 6=

∅. Then a composition T := TmTm−1 · · ·T1 is also strongly quasi-nonexpansive and has
the property:

Fix (T ) = Fix (TmTm−1 · · ·T1) =

m⋂
i=1

Fix Ti.

An operator T : H → H is said to satisfy the demi-closedness (DC) principle if T−Id is
demi-closed at 0, i.e., for any weakly converging sequence {xn}∞n=1 such that xn ⇀ y ∈ H
as n→∞ with ‖Txn − xn‖ → 0 as n→∞, we have y ∈ Fix T.

The following fact is well known and can be found in [2, Corollary 4.28].

Fact 2.6. If T : H → H is a nonexpansive operator with Fix T 6= ∅, then the operator
T − Id is demi-closed at 0.

In order to prove the convergence result, we need the following proposition which can
be found in [2, Corollary 2.15].

Proposition 2.7. The following equality holds for all x, y ∈ H and λ ∈ R:

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

We close this section by presenting a special case of [39, Proposition 4.6] which plays
an important role in proving our convergence result.

Proposition 2.8. Let Ti : H → H, i = 1, 2, ...,m, be cutter operators with
m⋂
i=1

Fix Ti 6= ∅.

Denote the compositions T := TmTm−1 · · ·T1, and Si := TiTi−1 · · ·T1, where S0 := Id.

Then, for any x ∈ H and z ∈
m⋂
i=1

Fix Ti, it holds that

1

2L

m∑
i=1

‖Six− Si−1x‖2 ≤ ‖Tx− x‖, (2.1)

for any L ≥ ‖x− z‖.
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3. Problem Statement

In this section, we state our main problem as follows:

Problem 3.1 (VIP). Assume that

(i) Ti : H → H, i = 1, 2, ...,m, are firmly nonexpansive with
m⋂
i=1

Fix Ti 6= ∅.

(ii) F : H → H is η-strongly monotone and κ-Lipschitz continuous with κ ≥ η > 0.

The problem is to find a point x∗ ∈
m⋂
i=1

Fix Ti such that

〈F (x∗), x− x∗〉 ≥ 0 for all x ∈
m⋂
i=1

Fix Ti.

Remark 3.2. By the assumptions (i) and (ii), we know from [40, Theorem 2.3.3] that
Problem (VIP) has the unique solution.

Problem (VIP) also lies in the models of the suitably selected choice among common
fixed point problems as the following few examples.

Now, let B : H ⇒ H be a set-valued operator. The monotone inclusion problem is to
find a point x∗ ∈ H such that

0 ∈ B(x∗),

provided it exists. Actually, we denote by Gr(B) := {(x, u) ∈ H×H : u ∈ Bx} its graph,
and zer(B) := {z ∈ H : 0 ∈ B(z)} the set of all zero points of the operator B. The set-
valued operator B is said to be monotone if 〈x−y, u−v〉 ≥ 0, for all (x, u), (y, v) ∈ Gr(B),
and it is called maximally monotone if its graph is not properly contained in the graph
of any other monotone operators. For a set-valued operator B : H ⇒ H, we define the
resolvent of B, JB : H⇒ H, by

JB := (Id+B)−1.

Note that if B is maximally monotone and r > 0, then the resolvent JrB of rB is (single-
valued) FNE with

Fix JrB = zer(B),

see [2, Proposition 23.8, Proposition 23.38].
Thus, for a given r > 0 and a finitely many maximally monotone operators Bi : H ⇒

H, i = 1, 2, ...,m, we put Ti := JrBi
, i = 1, 2, ...,m, Problem (VIP) is nothing else than,

in particular, the problem of finding a point x∗ ∈
m⋂
i=1

zer(Bi) such that

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈
m⋂
i=1

zer(Bi).

Some interesting iterative methods for solving this type of problem and its particular
situations are investigated in [41–43].

Moreover, recalling that for a given r > 0 and a proper convex lower semicontinuous
function f : H → (−∞,+∞], we denote by proxrf (x) the proximal point of parameter r
of f at x, which is the unique optimal solution of the optimization problem

min

{
f(u) +

1

2r
‖u− x‖2 : u ∈ H

}
.
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It is known that proxrf = Jr∂f (see [2, Example 23.3]) which is FNE and Fix proxrϕ =
arg min f := {x ∈ H : f(x) ≤ f(u),∀u ∈ H}. Thus, for a finitely many proper convex
lower semicontinuous functions fi : H → (−∞,+∞], i = 1, 2, ...,m and putting Ti :=

proxrfi , Problem (VIP) is reduced to the problem of finding a point x∗ ∈
m⋂
i=1

arg min fi

such that

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈
m⋂
i=1

arg min fi,

see [36, 44] for more details about this problem. In these cases, Algorithm 1 and Theorem
4.2 below are also applicable for these two problems.

4. Algorithm and Its Convergence Analysis

In this section, we will propose an algorithm for solving Problem (VIP) and subse-
quently analyze their convergence properties under some certain conditions.

Firstly, we now present an iterative method for solving Problem (VIP) as follows:

Algorithm 1 Sequential Constraint Method (in short, SCM)

Initialization: The positive real sequences {λn}∞n=1, {βn}∞n=1, and real number µ.
Take an arbitrary x1 ∈ H.

Iterative Step: For a given current iterate xn ∈ H (n ≥ 1), set

ϕn0 := xn − µβnF (xn).

Define

ϕni := Tiϕ
n
i−1 + eni , i = 1, . . . ,m,

where eni ∈ H is added information when computing Tiϕ
n
i−1’s value. Compute

xn+1 := (1− λn)ϕn0 + λnϕ
n
m.

Update n = n+ 1.

Remark 4.1. Some useful comments are in order:

(i) It is important to point out that the term eni , i = 1 . . . ,m, can be viewed
as added information when computing the operator T ’s values, for instance, a
feasible like direction. Actually, in constrained optimization problem, we call
a vector d a feasible direction at the current iterate xk if the estimate xk + d
belongs to the constrained set. Notice that, in our situation, we can not ensure
that each estimate Tiϕ

n
i−1 belongs to the fixed point set Fix Ti. Thus, adding an

appropriated term eni possibly helps the estimate ϕni get closer to Fix Ti so that
the convergence can be improved.

(ii) Apart from (i), the presence of added information eni , i = 1 . . . ,m, can be
viewed as the allowance of possible numerical errors on the computations of Ti’s
operator value. This situation may occur when the explicit form of Ti is not
known, or even when Ti’s operator value can be found approximately by solving
a subproblem, for instance a metric projection onto a nonempty closed convex
set, a proximity operator of a proper convex and lower semicontinuous function,
or even the resolvent operator of a maximally monotone operator.
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The main theorem of this section is as follows:

Theorem 4.2. Suppose that µ ∈ (0, 2η/κ2), {βn}∞n=1 ⊂ (0, 1] satisfies lim
n→∞

βn = 0 and
∞∑
n=1

βn = +∞, and {λn}∞n=1 ⊂ [ε, 1− ε] for some constant ε ∈ (0, 1/2]. If
∞∑
n=1
‖eni ‖ < +∞

for each i = 1, 2, ...,m, then the sequence {xn}∞n=1 generated by Algorithm 1 converges
strongly to the unique solution to Problem (VIP).

Remark 4.3. It is worth underlining that the assumptions on step sizes sequence {βn}∞n=1

hold true for several choices which include, for instance, βn := β/n, n ≥ 1, for any choice
of β ∈ (0, 1]. Moreover, the parameter µ, which is used in Theorem 4.2, need to be chosen
in the interval (0, 2η/κ2) so that the operator Id−µβnF is a contraction (see, Proposition
2.1) for any choice of the step sizes {βn}∞n=1.

In order to proceed the convergence analyses, we will consider the following into 2
parts. Actually, we start in the first part with a series of preliminary convergence results,
and subsequently, present the main convergence proof of Theorem 4.2.

4.1. Preliminary Convergence Results

Before we present some useful lemmas used in proving Theorem 4.2, we make use of
the following notations: the compositions

T := TmTm−1 · · ·T1,

S0 := Id, and Si := TiTi−1 · · ·T1, i = 1, 2, ...,m.

Moreover, the iterate xn+1 is the combination

xn+1 = wn + un, (4.1)

where

wn := ϕn0 + λn(Tϕn0 − ϕn0 ),

un := λn(ϕnm − Tϕn0 ),

for all n ≥ 1.

Now, we start the convergence proof with the following technical result.

Lemma 4.4. The series
∞∑
n=1
‖un‖ converges.

Proof. Let z ∈
m⋂
i=1

Fix Ti and n ≥ 1 be fixed. By using the triangle inequality, we note

that

‖xn+1 − z‖ = ‖wn + un − z‖ ≤ ‖wn − z‖+ ‖un‖. (4.2)
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By using Proposition 2.7 and the quasi-nonexpansitivity of T , we obtain

‖wn − z‖2 = ‖ϕn0 + λn(Tϕn0 − ϕn0 )− z‖2

= ‖λn(Tϕn0 − z) + (1− λn)ϕn0 − (1− λn)z‖2

= ‖λn(Tϕn0 − z) + (1− λn)(ϕn0 − z)‖2

= λn‖Tϕn0 − z‖2+(1− λn)‖ϕn0 − z‖2− λn(1−λn)‖Tϕn0 − ϕn0‖2

≤ λn‖ϕn0 − z‖2+ (1− λn)‖ϕn0 − z‖2− λn(1−λn)‖Tϕn0−ϕn0‖2

= ‖ϕn0 − z‖2 − λn(1−λn)‖Tϕn0−ϕn0‖2. (4.3)

Since the relaxation parameter {λn}∞n=1 ⊂ (0, 1), we obtain that

‖wn − z‖ ≤ ‖ϕn0 − z‖, (4.4)

and, subsequently, the inequality (4.2) becomes

‖xn+1 − z‖ ≤ ‖ϕn0 − z‖+ ‖un‖. (4.5)

On the other hand, the nonexpansitivity of Ti, i = 1, . . . ,m, and the triangle inequality
yield

‖un‖ = ‖λn(ϕ
n
m − Tϕn

0 )‖
≤ ‖ϕn

m − Tϕn
0 ‖

= ‖Tm(Tm−1(· · ·T2(T1ϕ
n
0 +e

n
1 )+e

n
2 · · · )+enm−1)+e

n
m−TmTm−1 · · ·T1ϕ

n
0 ‖

≤ ‖enm‖+‖Tm(Tm−1(· · ·T2(T1ϕ
n
0 +e

n
1 )+e

n
2 · · · )+enm−1)−TmTm−1 · · ·T1ϕ

n
0 ‖

≤ ‖enm‖+ ‖Tm−1(· · ·T2(T1ϕ
n
0 + en1 ) + en2 · · · ) + enm−1 − Tm−1 · · ·T1ϕ

n
0 ‖

≤ ‖enm‖+ ‖enm−1‖+ ‖Tm−1(· · ·T2(T1ϕ
n
0 + en1 ) + en2 · · · )− Tm−1 · · ·T1ϕ

n
0 ‖

...

≤
m∑
i=1

‖eni ‖.

Since, for each i = 1, . . . ,m,
∞∑
n=1
‖eni ‖ < +∞, we get

∞∑
n=1

‖un‖ < +∞,

as required.

Before we proceed further convergence properties, we will show that the generated
sequences are bounded as the following lemma.

Lemma 4.5. The sequences {xn}∞n=1, {F (xn)}∞n=1 and {ϕn0}∞n=1 are bounded.

Proof. Let z ∈
m⋂
i=1

Fix Ti and n ≥ 1 be fixed. By using Proposition 2.1, we note that

‖ϕn0 − z‖ = ‖xn − µβnF (xn)− z‖
= ‖(xn − µβnF (xn))− (z − µβnF (z))− µβnF (z)‖
≤ ‖(xn − µβnF (xn))− (z − µβnF (z))‖+ µβn‖F (z)‖
= ‖(Id− µβnF )xn − (Id− µβnF )z‖+ µβn‖F (z)‖
≤ (1− βnτ)‖xn − z‖+ µβn‖F (z)‖, (4.6)
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where τ = 1−
√

1 + µ2κ2 − 2µη ∈ (0, 1].
Now, by using (4.5) together with the above inequality, we have

‖xn+1 − z‖ ≤ ‖ϕn0 − z‖+ ‖un‖
≤ (1− βnτ)‖xn − z‖+ µβn‖F (z)‖+ ‖un‖

≤ max
{
‖xn − z‖, µ

τ
‖F (z)‖

}
+ ‖un‖.

By the induction argument, we obtain that

‖xn+1 − z‖ ≤ max
{
‖x1 − z‖, µ

τ
‖F (z)‖

}
+

n∑
i=1

‖ui‖, ∀n ≥ 1.

By Lemma 4.4, we know that
∞∑
n=1
‖un‖ < +∞, we obtain that {xn}∞n=1 is bounded.

Moreover, the use of Lipschitz continuity of the operator F implies that {F (xn)}∞n=1 is
bounded, and consequently, {ϕn0}∞n=1 is also bounded.

For an element z ∈
m⋂
i=1

Fix Ti and all n ≥ 1, we denote from this point onward that

v := 2

(
sup
n≥1
‖xn − z‖+ µ‖F (z)‖

)
+ sup
n≥1
‖un‖ < +∞,

ξn := µ2β2
n+1‖F (xn)‖2 + 2µβn‖xn − z‖‖F (xn)‖+ v‖un‖,

δn :=
βn
τ

(
µ2‖F (z)‖2 + 2µ2〈F (xn)−F (z), F (z)〉

)
+

2µ

τ
〈xn − z,−F (z)〉,

and

αn := βnτ.

Lemma 4.6. The limit limn→∞ ξn = 0.

Proof. Invoking the boundedness of the sequences {xn}∞n=1 and {F (xn)}∞n=1, Lemma 4.4,
and the assumption that limn→∞ βn = 0, we obtain

0 ≤ ξn = µ2β2
n‖F (xn)‖2 + 2µβn‖xn − z‖‖F (xn)‖+ v‖un‖ → 0,

as desired.

The following lemma states a key tool inequality on the generated sequence which will
be formed the basis relation for our convergence results.

Lemma 4.7. The following statement holds:

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − λn(1− λn)

4L2

(
m∑
i=1

‖Siϕn0 − Si−1ϕn0‖2
)2

+ ξn,

for all z ∈
m⋂
i=1

Fix Ti and all n ≥ 1.
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Proof. Let z ∈
m⋂
i=1

Fix Ti and n ≥ 1 be fixed. From the inequality (4.6), we have

‖ϕn0 − z‖ ≤ ‖xn − z‖+ µβn‖F (z)‖.
By using (4.2) together with (4.4) and the above inequality, we obtain that

‖xn+1 − z‖2 ≤ (‖wn − z‖+ ‖un‖)2

= ‖wn − z‖2 + 2‖wn − z‖‖un‖+ ‖un‖2

≤ ‖wn − z‖2 + (2‖ϕn0 − z‖+ ‖un‖) ‖un‖
≤ ‖wn − z‖2 + [2 (‖xn − z‖+ µβn‖F (z)‖) + ‖un‖] ‖un‖

≤ ‖wn− z‖2+

[
2

(
sup
n≥1
‖xn−z‖+µ‖F (z)‖

)
+sup
n≥1
‖un‖

]
‖un‖

= ‖wn − z‖2+v‖un‖, (4.7)

where the fifth inequality holds from the assumption that {βn}∞n=1 ⊂ (0, 1] and the
boundedness of the sequences {xn}∞n=1 and {un}∞n=1.

Invoking the obtained inequality (4.7) in (4.3), we obtain

‖xn+1 − z‖2 ≤ ‖ϕn0 − z‖2 − λn(1− λn)‖Tϕn0 − ϕn0‖2 + v‖un‖
= ‖xn−µβnF (xn)−z‖2 −λn(1−λn)‖Tϕn0−ϕn0‖2+v‖un‖
= ‖xn − z‖2 + µ2β2

n‖F (xn)‖2 − 2µβn〈xn − z, F (xn)〉
−λn(1− λn)‖Tϕn0 − ϕn0‖2 + v‖un‖

≤ ‖xn − z‖2 + µ2β2
n‖F (xn)‖2 + 2µβn‖xn−z‖‖F (xn)‖

−λn(1− λn)‖Tϕn0 − ϕn0‖2 + v‖un‖
= ‖xn − z‖2 − λn(1− λn)‖Tϕn0 − ϕn0‖2 + ξn,

Putting L := supn≥1 ‖xn − z‖, using the above inequality, and Proposition 2.8, we
arrive that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − λn(1− λn)

4L2

(
m∑
i=1

‖Siϕn0 − Si−1ϕn0‖2
)2

+ ξn,

which completes the proof.

The following lemma shows that the weak cluster point of the generated sequences
belongs to the intersection of fixed point sets.

Lemma 4.8. If the sequence {ϕn0}∞n=1 satisfies ‖Siϕn0 −Si−1ϕn0‖ → 0 for all i = 1, . . . ,m,

then the weak cluster point z ∈ H of {ϕn0}∞n=1 belongs to
m⋂
i=1

Fix Ti.

Proof. Since {ϕn0}∞n=1 is bounded, we let z ∈ H be a weak cluster point of {ϕn0}∞n=1, and
let {ϕnk

0 }∞k=1 ⊂ {ϕn0}∞n=1 be a subsequence such that ϕnk
0 ⇀ z. Now, we note that

‖(T1 − Id)ϕnk
0 ‖ = ‖T1ϕnk

0 − ϕ
nk
0 ‖ = ‖S1ϕ

nk
0 − S0ϕ

nk
0 ‖ → 0.

Since T1 satisfies the DC principle, we obtain that

z ∈ Fix T1.

Note that

‖(T1ϕnk
0 − T1z)− (ϕnk

0 − z)‖ = ‖(T1 − Id)ϕnk
0 ‖ → 0,
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and ϕnk
0 ⇀ z together imply that

T1ϕ
nk
0 ⇀ T1z = z.

But we know that

‖(T2 − Id)T1ϕ
nk
0 ‖ = ‖T2T1ϕnk

0 − T1ϕ
nk
0 ‖ = ‖S2ϕ

nk
0 − S1ϕ

nk
0 ‖ → 0,

and, consequently, the DC principle of T2 yields that

z ∈ Fix T2.

By proceeding the above proving lines, we obtain that

z ∈ Fix Ti ∀i = 1, 2, ...,m,

which means that z ∈
⋂m
i=1 Fix Ti.

The following lemma presents the key relation for obtaining the strong convergence of
the generated sequence.

Lemma 4.9. The following statement holds:

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + αnδn + v‖un‖,

for all z ∈
m⋂
i=1

Fix Ti and all n ≥ 1.

Proof. Let z ∈
m⋂
i=1

Fix Ti and n ≥ 1 be fixed. By utilizing the inequalities (4.4), (4.7),

and Proposition 2.1, we note that

‖xn+1 − z‖2 ≤ ‖wn − z‖2 + v‖un‖
≤ ‖ϕn

0 − z‖2 + v‖un‖
= ‖xn − µβnF (xn)− z + µβnF (z)− µβnF (z)‖2 + v‖un‖
= ‖[(xn − µβnF (xn))− (z − µβnF (z))]− µβnF (z)‖2 + v‖un‖
= ‖(xn − µβnF (xn))− (z − µβnF (z))‖2 + ‖µβnF (z)‖2

−2〈xn − µβnF (xn)− z + µβnF (z), µβnF (z)〉+ v‖un‖
= ‖(Id− µβnF )xn − (Id− µβnF )z‖2 + µ2β2

n‖F (z)‖2

−2〈(xn − z)− (µβnF (xn)− µβnF (z)), µβnF (z)〉+ v‖un‖
≤ (1− βnτ)2‖xn − z‖2 + µ2β2

n‖F (z)‖2 + v‖un‖
−2〈(xn − z)− µβn(F (xn)− F (z)), µβnF (z)〉

≤ (1− βnτ)‖xn − z‖2 + µ2β2
n‖F (z)‖2 + v‖un‖

−2µβn〈xn − z, F (z)〉+ 2µ2β
2

n〈F (xn)− F (z), F (z)〉
= (1− βnτ)‖xn − z‖2 + v‖un‖

+βn
[
µ2βn‖F (z)‖2 − 2µ〈xn − z, F (z)〉+ 2µ2βn〈F (xn)− F (z), F (z)〉

]
= (1− βnτ)‖xn − z‖2 + v‖un‖

+βnτ

[
βn
τ

(
µ2‖F (z)‖2+2µ2〈F (xn)−F (z), F (z)〉

)
+
2µ

τ
〈xn−z,−F (z)〉

]
= (1− αn)‖xn − z‖2 + αnδn + v‖un‖,

which completes the proof.
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4.2. Convergence Proof

In order to prove our main theorem, we need the following proposition which was
proven in [45].

Proposition 4.10. Let {an}∞n=1 be a sequence of nonnegative real numbers satisfying the
inequality

an+1 ≤ (1− αn)an + αnβn + γn,

where {αn}∞n=1 ⊆ [0, 1] with
∞∑
n=1

αn = +∞, {βn}∞n=1 is a sequence of real numbers such

that lim sup
n→0

βn ≤ 0 and {γn}∞n=1 is a sequence of real numbers such that
∞∑
n=1

γn < +∞.

Then lim
n→∞

an = 0.

We are now in a position to prove Theorem 4.2.

Proof. Let ū be the unique solution to Problem (VIP). Then, ū ∈
⋂m
i=1 Fix Ti and all

above results hold true with replacing z = ū. Now, for simplicity, we denote an :=
‖xn − ū‖2. Firstly, it should be remembered from Lemma 4.4 and Lemma 4.6 that
lim
n→∞

v‖un‖ = 0 and limn→∞ ξn = 0, respectively.

We will show that the generated sequence {xn}∞n=1 converges strongly to ū by consid-
ering the two following cases.

Case 1. Suppose that {an}∞n=1 is eventually decreasing, i.e., there exists n0 ≥ 1 such
that an+1 < an for all n ≥ n0. In this case, {an}∞n=1 must be convergent. Setting
lim
n→∞

an = r. In view of Lemma 4.7 with z = ū and using Lemma 4.6, we have

0 ≤ lim sup
n→∞

λn(1− λn)

4L2

(
m∑
i=1

‖Siϕn0 − Si−1ϕn0‖2
)2

≤ lim sup
n→∞

(an − an+1 + ξn) = lim
n→∞

an− lim
n→∞

an+1+ lim
n→∞

ξn = 0,

and hence

lim
n→∞

λn(1− λn)

4L2

(
m∑
i=1

‖Siϕn0 − Si−1ϕn0‖2
)2

= 0.

Since {λn}∞n=1 ⊂ [ε, 1− ε], we have λn(1− λn) ≥ ε2 for all n ≥ 1, and, consequently,

lim
n→∞

m∑
i=1

‖Siϕn0 − Si−1ϕn0‖2 = 0,

which implies that, for all i = 1, 2, ...,m,

lim
n→∞

‖Siϕn0 − Si−1ϕn0‖ = 0. (4.8)

On the other hand, since the sequence {ϕn0}∞n=1 is bounded, we have {〈ϕn0−ū,−F (ū)〉}∞n=1

is also bounded. Now, let {ϕnk
0 }∞k=1 be a subsequence of {ϕn0}∞n=1 such that

lim sup
n→∞

〈ϕn0 − ū,−F (ū)〉 = lim
k→∞

〈ϕnk
0 − ū,−F (ū)〉.
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Since {ϕnk
0 }∞k=1 is of course bounded, it indeed has a weakly cluster point z ∈ H and a

subsequence {ϕ
nkj

0 }∞j=1 such that ϕ
nkj

0 ⇀ z ∈ H. Thus, it follows from Lemma 4.8 and

(4.8) that z ∈
⋂m
i=1 Fix Ti. Since ū is the unique solution to Problem (VIP), we have

lim sup
n→∞

〈ϕn0 − ū,−F (ū)〉 = lim
k→∞

〈ϕnk
0 − ū,−F (ū)〉

= lim
j→∞
〈ϕ
nkj

0 − ū,−F (ū)〉 = 〈z − ū,−F (ū)〉 ≤ 0. (4.9)

Now, let us note that

〈ϕn0 − ū,−F (ū)〉 = 〈xn − µβnF (xn)− ū,−F (ū)〉
= 〈xn − ū,−F (ū)〉 − µβn〈F (xn),−F (ū)〉,

and by setting p := sup
n≥1
‖F (xn)‖ < +∞, we have

〈xn − ū,−F (ū)〉 = 〈ϕn0 − ū,−F (ū)〉+ µβn〈F (xn),−F (ū)〉
≤ 〈ϕn0 − ū,−F (ū)〉+ µβn‖F (xn)‖‖ − F (ū)〉‖
≤ 〈ϕn0 − ū,−F (ū)〉+ µβn‖F (ū)‖ sup

n≥1
‖F (xn)‖

= 〈ϕn0 − ū,−F (ū)〉+ µpβn‖F (ū)‖.

Invoking the assumption lim
n→∞

βn = 0 and (4.9), we obtain

lim sup
n→∞

〈xn − ū,−F (ū)〉 ≤ lim sup
n→∞

〈ϕn0 − ū,−F (ū)〉+ µp‖F (ū)‖ lim
n→∞

βn ≤ 0. (4.10)

In view of δn with replacing z = ū, we get

δn =
βn
τ

(
µ2‖F (ū)‖2+2µ2〈F (xn)− F (ū), F (ū)〉

)
+

2µ

τ
〈xn − ū,−F (ū)〉

≤ βn
τ

(
µ2‖F (ū)‖2+2µ2 sup

n≥1
〈F (xn)−F (ū), F (ū)〉

)
+

2µ

τ
〈xn−ū,−F (ū)〉

=
1

τ

(
µ2‖F (ū)‖2 + 2µ2q

)
βn +

2µ

τ
〈xn − ū,−F (ū)〉,

where q := sup
n≥1
〈F (xn) − F (ū), F (ū)〉 < +∞. Again, the assumption lim

n→∞
βn = 0 and

(4.10) yield that

lim sup
n→∞

δn =
1

τ

(
µ2‖F (ū)‖2+ 2µ2q

)
lim
n→∞

βn+
2µ

τ
lim sup
n→∞

〈xn−ū,−F (ū)〉

=
2µ

τ
lim sup
n→∞

〈xn−ū,−F (ū)〉 ≤ 0. (4.11)

Finally, in view of Lemma 4.9 with z = ū, we have

an+1 ≤ (1− αn)an + αnδn + v‖un‖.

Since αn = βnτ , and we know that τ ≤ 1, we have {αn}∞n=1 ⊂ (0, 1]. Moreover, since
∞∑
n=1

βn = +∞, we have
∞∑
n=1

αn = τ
∞∑
n=1

βn = +∞. Hence, by using (4.11), Lemma 4.4,

and applying Proposition 4.10, we conclude that lim
n→∞

‖xn − ū‖ = 0.
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Case 2. Suppose that {an}∞n=1 is not eventually decreasing. Thus, we can find an
integer n0 such that an0 ≤ an0+1. Now, for each n ≥ n0, we define

Jn := {k ∈ [n0, n] : ak ≤ ak+1} .

Observe that n0 ∈ Jn, i.e., Jn is nonempty and satisfies Jn ⊆ Jn+1. For each n ≥ n0, we
denote

ν(n) := maxJn.

Note that ν(n)→∞ as n→∞ and {ν(n)}n≥n0
is nondecreasing. Furthermore, we have

aν(n) ≤ aν(n)+1 ∀n ≥ n0. (4.12)

Next, we will show that

an ≤ aν(n)+1 ∀n ≥ n0. (4.13)

For all n ≥ n0, we have from the definition of Jn that it is either ν(n) = n or ν(n) < n.
Thus, in order to prove the above inequality, we consider these 2 cases:

For ν(n) = n, we immediately get an = aν(n) ≤ aν(n)+1.
For ν(n) < n, we notice that if ν(n) = n − 1, then the inequality (4.13) is trivial

as an = aν(n)+1. So, we suppose that ν(n) < n − 1. Note that aν(n)+1 > aν(n)+2 >
· · · > an−1 > an (otherwise, if aν(n)+1 ≤ aν(n)+2, then it means that ν(n) + 1 ∈ Jn, but
ν(n) = max Jn which brings a contradiction, and the other terms are likewise), which
implies that the inequality (4.13) holds true.

On the other hand, invoking Lemma 4.7 and the inequality (4.12), we have for all
n ≥ n0

0 ≤aν(n)+1−av(n) ≤−
λν(n)

(
1−λν(n)

)
4L2

(
m∑
i=1

‖Siϕν(n)0 −Si−1ϕν(n)0 ‖2
)2

+ξν(n),

and, consequently,

λν(n)
(
1− λν(n)

)
4L2

(
m∑
i=1

‖Siϕν(n)0 − Si−1ϕν(n)0 ‖2
)2

≤ ξν(n).

Since lim
n→∞

ξν(n) = lim
n→∞

ξn = 0, we get

lim
n→∞

λν(n)
(
1− λν(n)

)
4L2

(
m∑
i=1

‖Siϕν(n)0 − Si−1ϕν(n)0 ‖2
)2

≤ 0.

Since we know that λν(n)
(
1− λν(n)

)
≥ ε2, it follows

lim
n→∞

‖Siϕν(n)0 − Si−1ϕν(n)0 ‖ = 0 ∀i = 1, 2, ...,m. (4.14)

Now, let {ϕν(nk)
0 }∞k=1 ⊆ {ϕ

ν(n)
0 }∞n=1 be a subsequence such that

lim sup
n→∞

〈ϕν(n)0 − ū,−F (ū)〉 = lim
k→∞

〈ϕν(nk)
0 − ū,−F (ū)〉.
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Following the same arguments as in Case 1, for a subsequence {ϕ
ν(nkj

)

0 }∞j=1 of {ϕν(nk)
0 }∞k=1

such that ϕ
ν(nkj

)

0 ⇀ z ∈
⋂m
i=1 Fix Ti (by (4.14) and the DC principle of each Ti), we have

lim sup
n→∞

〈ϕν(n)0 − ū,−F (ū)〉 = lim
k→∞

〈ϕν(nk)
0 − ū,−F (ū)〉

= lim
j→∞
〈ϕ
ν(nkj

)

0 −ū,−F (ū)〉=〈z−ū,−F (ū)〉≤0,

and also obtain that

lim sup
n→∞

δν(n) ≤ 0. (4.15)

Again, by using Lemma 4.9, we have

0 ≤ aν(n)+1 ≤
(
1− αν(n)

)
aν(n) + αν(n)δν(n) + v‖uν(n)‖,

and then

0 ≤ aν(n)+1 − aν(n) ≤ αν(n)
(
δν(n) − aν(n)

)
+ v‖uν(n)‖

= τβν(n)
(
δν(n) − aν(n)

)
+ v‖uν(n)‖

≤ τ
(
δν(n) − aν(n)

)
+ v‖uν(n)‖.

The fact that the constant τ > 0 yields

0 ≤ aν(n) ≤ δν(n) +
v‖uν(n)‖

τ
.

Note that lim
n→∞

v‖uν(n)‖ = 0 and by utilizing this together with (4.15), we obtain

0 ≤ lim sup
n→∞

aν(n) ≤ lim sup
n→∞

δν(n) + lim
n→∞

v‖uν(n)‖
τ

≤ 0,

and, this implies that

lim
n→∞

aν(n) = 0 and lim
n→∞

(
aν(n)+1 − aν(n)

)
= 0.

As we have shown that an ≤ aν(n)+1, we note that

0 ≤ lim sup
n→∞

an ≤ lim sup
n→∞

aν(n)+1 = lim sup
n→∞

[(
aν(n)+1 − aν(n)

)
+ aν(n)

]
= 0,

and, consequently, lim
n→∞

an = 0. Therefore, we can conclude that lim
n→∞

‖xn − ū‖ = 0,

which completes the proof.

Remark 4.11. Some useful remarks are in order:

(i) Let us take a look at Algorithm 1 when the operator F is identically zero.
Notice that it is related to [6, Algorithm 1.2] and [7, Iterative scheme (3.17)] for
solving the common fixed point problem (1.1). According to the absence of F ,
the operator Ti, i = 1, . . . ,m, considered in [7, Theorem 3.5] can be relaxed to
be in the class of averaged nonexpansive operators, whereas in our work we need
the use of Proposition 2.8 so that the firm nonexpansivity of Ti must be assumed
here. To discuss Theorem 4.2 with these previous results, we derive in Theorem
4.2 the strong convergence of the generated sequence to the unique solution to
the variational inequality over the common fixed point sets, however the results
in [6] and [7] are weak convergences of the sequences provided that every weak
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cluster point of their generated sequences is in the intersection of fixed point sets.
To obtain strong convergence, the nonemptiness of interior of the common fixed
point set needs to be imposed in their works.

(ii) Algorithm 1 is related to the relaxed hybrid steepest descent method in [46] in
the sense that the added information terms eni , i = 1, . . . ,m, are absent. One can
see that Algorithm 1 reduces to

xn+1 = (1− λn)xn + λnT (xn − µβnF (xn))

where the nonexpansive operator T is defined by T := TmTm−1 · · ·T2T1, and the
convergence results can be followed the proving lines in [46, Theorem 3,1] with

the additional assumption limn→∞
βn

βn+1
= 1.

5. Conclusion

This paper discussed the variational inequality problem over the intersection of fixed
point sets of firmly nonexpansive operators. To solve the problem, we derived the so-
called sequential constraint method based on iterative technique of the celebrated hybrid
steepest descent method and presented its convergence analyses.
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