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1. Introduction

We focus on the split feasibility problem (SFP), introduced by Censor and Elfving [1],
which is to find a point

u ∈ C such that Au ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of RM and RN , and A is an M ×N
matrix.

The CQ algorithm introduced by Byrne [2, 3] is a very successful method for solving the
SFP which generates a sequence {un} as follows:

un+1 = PC(un − λnA∗(I − PQ)Aun), (1.2)
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where PC is the metric projections onto C. If the stepsize λn is chosen so that λn ≡ λ ∈
(0, 2‖A‖−2), then the CQ algorithm is weakly convergent to a solution of the SFP.

More specifically, C and Q are respectively given by

C = {u ∈ H1 : c(u) ≤ 0},

and

Q = {v ∈ H2 : q(v) ≤ 0},

where c : H1 → (−∞,+∞] and q : H2 → (−∞,+∞] are two proper convex functions.

However, to implement the CQ algorithm, one has to compute or estimate the norm ‖A‖,
which is in general not an easy task in practice.

Yang [4] introduced the relaxed CQ algorithm, by replacing PC and PQ by PCn
and PQn

,
respectively, presented the relaxed CQ algorithm:

un+1 = PCn
(un − λn∇hn(un)), (1.3)

where

Cn = {u ∈ H1 | c(un) + 〈ζn, u− un〉 ≤ 0}, (1.4)

with ζn ∈ ∂c(un), and

Qn = {v ∈ H2 | q(Aun) + 〈ηn, v −Aun〉 ≤ 0}, (1.5)

with ηn ∈ ∂q(Aun),

hn(un) =
1

2
‖(I − PQn

)Aun‖2, and ∇hn(un) = A∗(I − PQn
)Aun. (1.6)

Fenghui Wang and Hai Yu [5] approximated the original convex subset by a sequence of

closed balls instead of half spaces and constructed C̃n as

C̃n = {u ∈ H1 | c(wn) + 〈ζn, u− wn〉+
α

2
‖u− wn‖2 ≤ 0}, (1.7)

where ζn ∈ ∂c(wn). If α = 0, then C̃ above is reduced to the half space (1.4).

The set Q̃n is defined as

Q̃n = {v ∈ H2 | q(Awn) + 〈ηn, v −Awn〉+
β

2
‖v − wn‖2 ≤ 0}, (1.8)

where ηn ∈ ∂q(Awn). If β = 0, then Q̃ above is reduced to the half space (1.5).

Here, for each n ≥ 0, we define

hn(u) =
1

2
‖(I − PQ̃n

)Au‖2, and ∇hn(u) = A∗(I − PQ̃n
)Au. (1.9)

López et al. [6] , to overcome this difficulty, introduced a new way to select the stepsize and
also practiced this way of selecting stepsizes for variants of the CQ algorithm, including
a relaxed CQ algorithm. They introduced the stepsize λn which is defined as follows:

λn =
τnhn(un)

‖∇hn(un)‖2
, (1.10)
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where {τn} is a sequence in (0, 4) such that infn∈N τn(4− τn) > 0. It was proved that the
sequence {un} generated by (1.3) with the stepsize defined by (1.10) converges weakly to
a solution of SFP. Many researchers extended to study SFP, i.e., [5–20].

Inspired by mentioned above, we propose a new relaxed CQ algorithm for SFP which is a
new method for choosing stepsizes and for creating relaxation the convex subsection was
developed.

2. Preliminaries

Let H be a Hilbert space and C is a nonempty closed convex subset in H. Recall that
a mapping S : C → H is said to be nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖, ∀ u, v ∈ C.
A mapping S : C → H is said to be firmly nonexpansive if

‖Su− Sv‖2 ≤ 〈u− v, Su− Sv〉, ∀ u, v ∈ C.
A mapping S : C → H is said to be ν-inverse strongly monotone (ν-ism) if there is ν > 0
such that

〈Su− Sv, u− v〉 ≥ ν‖Su− Sv‖2 ∀ u, v ∈ C.

The projection of a nonempty closed convex set C onto H is defined as

PCu = arg min
v∈C
‖u− v‖2, u ∈ H.

Lemma 2.1. [21] For all u, v ∈ H and w ∈ C, we have

(i) 〈u− PCu,w − PCu〉 ≤ 0;

(ii) PC and I − PC are both 1-ism;

(iii) PC and I − PC are both firmly nonexpansive.

Lemma 2.2. [22] Let t > 0 and x ∈ H. Then u∗ solves SFP (1.1) if and only if u∗ solves
the fixed point equation:

u∗ = PC(u∗ − tA∗(I − PQ)Au∗).

A function h : H → (−∞,+∞] is is proper if

{u ∈ H |h(u) <∞} 6= ∅.
A proper function h is convex if for each t ∈ (0, 1),

h(tu+ (1− t)v) ≤ th(u) + (1− t)h(v), ∀ u, v ∈ H.
A differentiable function h is convex if and only if there holds the inequality:

h(w) ≥ h(u) + 〈∇h(u), w − u〉 ∀ w ∈ H.
A function h : H → (−∞,+∞] is said to be weakly lower semi-continuous at u if un ⇀ u∗

implies

h(u∗) ≤ lim inf
n→∞

h(un).

Lemma 2.3. [21] Let h : H → (−∞,+∞] be a proper convex function. Then h is lower
semi-continuous if and only if it is weakly lower semi-continuous.
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Lemma 2.4. [21] Assume that {un} is a sequence in H such that

(i) for each w ∈ C, the limit of sequence {‖un − w‖} exists;

(ii) any weak cluster point of sequence {un} belongs to C.

Then the sequence {un} is weakly convergent to w ∈ C.

Lemma 2.5. [21] Let u, v ∈ H. It then follows that

(i) ‖au+ bv‖2 = a(a+ b)‖u‖2 + b(a+ b)‖v‖2 − ab‖u− v‖2, a, b ∈ R;

(ii) 〈u, v〉 =
1

2
‖u‖2 +

1

2
‖v‖2 − 1

2
‖u− v‖2;

(iii) ‖u+ v‖2 ≤ ‖u‖2 + 2〈v, u+ v〉.

Lemma 2.6. [23] Let {ϕn} and {ϑn} be two nonnegative real sequences such that

ϕn+1 − ϕn ≤ θn(ϕn − ϕn−1) + ϑn,

∞∑
n=0

ϑn < +∞,

where {θn} ⊂ [0, θ] with 0 < θ < 1. Then the sequence {ϕn} is convergent.

3. Main Results

We next introduce a new CQ algorithm and derive the weakly convergence of the
proposed method.

Algorithm 1 : The proposed algorithm for a weak convergence.

Initial: Given {θn} ⊂ [0, θ) for some θ > 0 and u0, u1 ∈ H arbitrarily and n = 1.
Step 1. Compute

wn = un + θn(un − un−1),
sn = wn − λn∇hn(wn),
un+1 = PC̃n

(sn − δn∇hn(sn)),

where C̃n is given as (1.7),

λn =
τnhn(wn)

‖∇hn(wn)‖2
, and δn =

τnhn(sn)

‖∇hn(sn)‖2
, 0 < τn < 4.

Set n =: n+ 1 and go back to Step 1.

In this paper, we denote S by the solution set of SFP and assume that S is nonempty.

Lemma 3.1. Suppose that the sequence {wn} is generated by Algorithm 1. Then, hn(wn) =
0 if and only if ‖∇hn(wn)‖ = 0.

Proof. If hn(wn) = 0, then we obtain

‖∇hn(wn)‖2 = ‖A∗(I − PQ̃n
)Awn‖2

≤ ‖A‖2‖(I − PQ̃n
)Awn‖2

= 2‖A‖2hn(wn).

(3.1)
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This yields ‖∇hn(wn)‖ = 0. To see the converse, let ‖∇hn(wn)‖ = 0 and u∗ ∈ S. Using
Lemma 2.1(ii), we have

hn(wn) =
1

2
‖(I − PQ̃n

)Awn‖2

≤ 〈(I − PQ̃n
)Awn, Awn −Au∗〉

=
1

2
〈A∗(I − PQ̃n

)Awn, wn − u∗〉

≤ 1

2
‖A∗(I − PQ̃n

)Awn‖‖wn − u∗‖

=
1

2
‖∇hn(wn)‖‖wn − u∗‖.

(3.2)

Hence, hn(wn) = 0.

Lemma 3.2. Suppose that the sequence {sn} is generated by Algorithm 1. Then, hn(sn) =
0 if and only if ‖∇hn(sn)‖ = 0.

Proof. If hn(sn) = 0, then we obtain

‖∇hn(sn)‖2 = ‖A∗(I − PQ̃n
)Asn‖2

≤ ‖A‖2‖(I − PQ̃n
)Asn‖2

= 2‖A‖2hn(sn).

(3.3)

This yields ‖∇hn(sn)‖ = 0. To see the converse, let ‖∇hn(sn)‖ = 0 and u∗ ∈ S. Using
Lemma 2.1(ii), we have

hn(sn) =
1

2
‖(I − PQ̃n

)Asn‖2

≤ 〈(I − PQ̃n
)Asn, Asn −Au∗〉

=
1

2
〈A∗(I − PQ̃n

)Asn, sn − u∗〉

≤ 1

2
‖A∗(I − PQ̃n

)Asn‖‖sn − u∗‖

=
1

2
‖∇hn(sn)‖‖sn − u∗‖.

(3.4)

Hence, hn(sn) = 0.

Lemma 3.3. Let {un} be a sequence generated by Algorithm 1. Then, for any δ ∈ (0, 1]
and u∗ ∈ S, it follows that

‖un+1 − u∗‖2 ≤ ‖wn − u∗‖2 − (1− δ)‖sn − un+1‖2 − τn(4− τn)
h2n(wn)

‖∇hn(wn)‖2

− τn(4− τn
δ

)
h2n(sn)

‖∇hn(sn)‖2
.

(3.5)
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Proof. Let u∗ ∈ S. From definition of sn, we have

‖sn − u∗‖2 = ‖wn − λn∇hn(wn)− u∗‖2

= ‖wn − u∗‖2 + λ2n‖∇hn(wn)‖2 − 2λn〈∇hn(wn), wn − u∗〉.
(3.6)

Using Lemma 2.1(ii), and ∇hn(u∗) = 0, we get

〈∇hn(wn), wn − u∗〉 = 〈∇hn(wn)−∇hn(z), sn − u∗〉
= 〈A∗(I − PQn

)Awn −A∗(I − PQn
)Au∗, wn − u∗〉

≥ ‖(I − PQn)Awn‖2

= 2hn(wn).

(3.7)

It also follows that

〈∇hn(sn), sn − u∗〉 ≥ 2hn(sn). (3.8)

From (3.8), we get

‖sn − u∗‖2 ≤ ‖wn − u∗‖2 + λ2n‖∇hn(wn)‖2 − 4λnhn(wn). (3.9)

From (3.8), we obtain

‖un+1 − u∗‖2 = ‖PC̃n
(sn − δn∇hn(sn))− u∗‖2

≤ ‖sn − δn∇hn(sn)− u∗‖2 − ‖sn − un+1 − δn∇hn(sn)‖2

= ‖sn − u∗‖2 + δ2n‖∇hn(sn)‖2 − 2δn〈∇hn(sn), sn − u∗〉
− ‖sn − un+1‖2 − δ2n∇hn(sn)‖2

+ 2δn‖〈∇hn(sn), sn − un+1〉
= ‖sn − u∗‖2 − ‖sn − un+1‖2 − 2δn〈∇hn(sn), sn − u∗〉

+ 2δn〈∇hn(sn), sn − un+1〉
≤ ‖sn − u∗‖2 − ‖sn − un+1‖2 − 4δnhn(sn)

+ 2δn〈∇hn(sn), sn − un+1〉.

(3.10)

By Young’s inequality, we get

2δn|〈∇hn(sn), sn − un+1〉| ≤ 2δn‖∇hn(sn)‖‖sn − un+1‖

≤ δ‖sn − un+1‖2 +
δ2n
δ
‖∇hn(sn)‖2.

(3.11)
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From (3.6)-(3.10), we have

‖un+1 − u∗‖2 ≤ ‖wn − u∗‖2 + λ2n‖∇hn(wn)‖2 − 4λnhn(wn)

− ‖sn − un+1‖2 − 4δnhn(sn)

+ δ‖sn − un+1‖2 +
δ2n
δ
‖∇hn(sn)‖2

= ‖wn − u∗‖2 − (1− δ)‖sn − un+1‖2

+
τ2nh

2
n(wn)

(‖∇hn(wn)‖2)2
‖∇hn(wn)‖2 − 4τnh

2
n(wn)

‖∇hn(wn)‖2

− 4τnh
2
n(sn)

‖∇hn(sn)‖2
+

τ2nh
2
n(sn)

δ(‖∇hn(sn)‖2)2
‖∇hn(sn)‖2

= ‖wn − u∗‖2 − (1− δ)‖sn − un+1‖2

+
τ2nh

2
n(wn)

‖∇hn(wn)‖2
− 4τnh

2
n(wn)

‖∇hn(wn)‖2

− 4τnh
2
n(sn)

‖∇hn(sn)‖2
+

τ2nh
2
n(sn)

δ‖∇hn(sn)‖2

= ‖wn − u∗‖2 − (1− δ)‖sn − un+1‖2

− τn(4− τn)
h2n(wn)

‖∇hn(wn)‖2

− τn(4− τn
δ

)
h2n(sn)

‖∇hn(sn)‖2
.

(3.12)

Lemma 3.4. Let {un} and {sn} be the sequences generated by Algorithm 1. Suppose
that {un} and {sn} are bounded such that

lim
n→∞

‖un+1 − sn‖ = lim
n→∞

‖sn − un‖ = lim
n→∞

hn(sn) = 0. (3.13)

Then each weak cluster point of {un} belongs to S.

Proof. Let u∗ ∈ S. Because ∂c and ∂q are bounded on bounded sets, we could suppose
that for all n ≥ 0, there is M > 0 such that

‖ζn‖+ ‖ηn‖2 + ‖A‖2‖un − u∗‖ ≤ M, ζn ∈ ∂c(sn), ηn ∈ ∂q(Asn).

Let z be any weak cluster point of {un}. Thus, there exists a subsequence {uni
} of {un}

such that {uni} ⇀ z. It follows from (3.13) that that {sni} ⇀ z. Because A is linear

and bounded, this yields that {Asni
} ⇀ Az. By the definition of C̃n and the fact that

un+1 ∈ C̃n, and follow prove of [5], we have c(sn) ≤M‖sn − un+1‖ → 0, and c is weakly

semi-continuous, so c(z) ≤ lim infi→∞ c(sni
) ≤ 0, this is z ∈ C. In fact, PQ̃n

(Asn) ∈ Q̃n,

it follows that q(Asn) ≤ M‖(I − PQ̃n
)Asn‖ → 0. Because q is clearly weakly lower

semi-continuous, q(Az) ≤ lim infi→∞ q(Asni
) ≤ 0. Hence, Az ∈ Q.

Theorem 3.5. Suppose that infn τn(4− τn) > 0 and
∑∞

n=1 θn‖un − un−1‖2 <∞. Then,
the sequence {un} generated by Algorithm 1 converges weakly to a solution in S.
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Proof. Let u∗ ∈ S. It follows from definition of wn, we obtain

‖wn − u∗‖2 = ‖un + θn(un − un−1)− u∗‖2

= ‖un − u∗‖2 + 2〈un − u∗, θn(un − un−1〉+ ‖θn(un − un−1)‖2

= ‖un − u∗‖2 + 2θn〈un − u∗, un − un−1〉+ θ2n‖un − un−1‖2.
(3.14)

Using Lemma 2.5(ii), we obtain

〈un − u∗, un − un−1〉 =
1

2
‖un − u∗‖2 +

1

2
‖un − un−1‖2 −

1

2
‖un−1 − u∗‖2.

(3.15)

Combining (3.14) and (3.15), we obtain

‖wn − u∗‖2 = ‖un − u∗‖2 + θn‖un − u∗‖2 + θn‖un − un−1‖2

− θn‖un−1 − u∗‖2 + θ2n‖un − un−1‖2

≤ ‖un − u∗‖2 + θn(‖un − u∗‖2 − ‖un−1 − u∗‖2)

+ 2θn‖un − un−1‖2.

(3.16)

From Lemma 3.3 with δ = 1, we have

‖un+1 − u∗‖2 ≤ ‖un − u∗‖2 + θn(‖un − u∗‖2 − ‖un−1 − u∗‖2)

+ 2θn‖un − un−1‖2 − τn(4− τn)
h2n(wn)

‖∇hn(wn)‖2

− τn(4− τn)
h2n(sn)

‖∇hn(sn)‖2
.

(3.17)

Using condition
∑∞

n=1 θn‖un − un−1‖2 < ∞ and Lemma 2.6 in (3.17), we obtain that
limn→∞ ‖un − u∗‖ exists and {un} is bounded.

Using Lemma 3.4 and {un} is bounded, and hence, the sequence {sn}. Therefore, we
could suppose that for all n ≥ 0, there is M > 0 such that

8‖un − u∗‖+ ‖A‖2‖sn − u∗‖ ≤ M.

From (3.17) and our hypothesis on τn, we obtain

lim
n→∞

h2n(wn)

‖∇hn(wn)‖2
= 0, (3.18)

and

lim
n→∞

h2n(sn)

‖∇hn(sn)‖2
= 0. (3.19)

From definition of λn, we have

hn(wn) =
√
λn‖∇hn(wn)‖

=
√
λn‖∇hn(wn)−∇hn(u∗)‖

≤
√
λn‖A‖2‖wn − u∗‖

≤ M
√
λn → 0 as n→∞.

(3.20)
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By condition
∑∞

n=1 θn‖un − un−1‖2 <∞, we have

‖wn − un‖2 = θ2n‖un − un−1‖2 ≤ θn‖un − un−1‖2 → 0 as n→∞. (3.21)

which implies

lim
n→∞

‖wn − u∗‖2 = lim
n→∞

‖un − u∗‖2 = 0. (3.22)

From definition of sn, and (3.20), we have

‖sn − wn‖2 = λ2n‖∇hn(wn)‖2 → 0 as n→∞. (3.23)

From (3.9) and (3.22), we get

‖sn − u∗‖2 → 0 as n→∞. (3.24)

Using (3.21) and (3.23), we get

‖un − sn‖ = ‖un − wn + wn − sn‖
≤ ‖un − wn‖+ ‖wn − sn‖ → 0 as n→∞.

(3.25)

From definition of δn, we have

hn(sn) =
√
δn‖∇hn(sn)‖

=
√
δn‖∇hn(sn)−∇hn(u∗)‖

≤
√
δn‖A‖2‖sn − u∗‖

≤ M
√
δn → 0 as n→∞.

(3.26)

Indeed, using Lemma 2.1, we get

〈sn − δn∇hn(sn)− un+1, un+1 − u∗〉 ≥ 0, (3.27)

which

〈un+1 − sn, un+1 − u∗〉 ≤ −δn〈∇hn(sn), un+1 − u∗〉. (3.28)

From (3.28), we obtain

‖un+1 − sn‖2 = (‖sn − u∗‖2 − ‖un+1 − u∗‖2) + 2〈un+1sn, un+1 − u∗〉
≤ (‖sn − u∗‖2 − ‖un+1 − u∗‖2)− 2δn〈∇hn(sn), un+1 − u∗〉
≤ (‖sn − u∗‖2 − ‖un+1 − u∗‖2) + 2δn‖〈∇hn(sn)‖‖un+1 − u∗‖

≤ (‖sn − u∗‖2 − ‖un+1 − u∗‖2) +M
√
δn.

(3.29)

Using (3.24) and (3.22), we obtain limn→∞ ‖un+1− sn‖ = 0. By Lemma 3.4, we conclude
that each weak cluster point of {un} belongs to S. Using Lemma 2.4 that the sequence
{un} converges weakly to a solution of SFP (1.1).
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4. Application

The compressed sensing can be modeled as the linear equation:

Ψ = Υu+ ϕ, (4.1)

where u ∈ RN is a recovered vector with m non-zero components, Ψ ∈ RM is the observed
data with noisy ϕ, and Υ : RN → RM (M < N). It is noted that (4.1) could be seen as
solving the LASSO problem:

min
u∈RN

1

2
‖Ψ− Υu‖2 subject to ‖u‖1 ≤ t, (4.2)

where t > 0. In particular, in case C = {u ∈ RN : ‖u‖1 ≤ t} and Q = {Ψ}, the LASSO
problem can be considered as the SFP(1.1). From this point of view, we could apply
the CQ algorithm to solve (4.2). In our experiment, let matrix Υ ∈ RM×N is generated
from a normal distribution with mean zero and invariance one. The observation Ψ is
generated by Gaussian noise distributed normally with mean 0 and variance 10−4. The
sparse vector u ∈ RN is generated from uniform distribution in the interval [−1, 1] with
m nonzero elements.

The stopping criterion is defined by the mean square error (MSE):

MSE =
1

N
‖u∗ − u‖2 < 10−5, (4.3)

where u∗ is an approximated signal of u.

We provide numerical experiments of the compressed sensing in signal recovery compare
our CQ algorithm with Wang and Yu [5] by θn = 0.9 and τn = 2.

In our experiment, we test two cases as follows:
Case 1 : N = 4096, M = 1024, and m = 10.
Case 2 : N = 4096, M = 1024, and m = 100. The numerical results show in Figure 1 and
Figure 2.

5. Conclusions

In this paper, we propose a new CQ algorithm with inertial extrapolation term and the
self-adaptive technique for solving the split feasibility problem in Hilbert space. Applying
our results in the compressed sensing problem comparing the proposed methods with
Wang and Yu’s algorithm. Our proposed algorithm has a better performance (MSE)
than algorithm above.
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Figure 1. Numerical results of Case 1.

Figure 2. Numerical results of Case 2.
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