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1. Introduction

Copulas play a central role in modeling multivariate dependence. This is due to the
elegant Sklar’s theorem (see [1, Theorem 2.3.3] or Theorem 2.3 below), which states that
copulas link univariate marginal distributions together to form a multivariate distribu-
tion. Copulas are used in portfolio analysis and risk management to determine the non-
parametric measure of the dependence between random variables. Therefore, they have
vast applications in financial markets, banking, insurance, climate change, biometrics,
aging population, and other fields (see a recent survey by Bhatti and Do [2]).

Fitting a suitable copula to given experimental data requires a large number of copu-
las. Therefore, any new construction method of copulas extends the possibility of their
applications in empirical research.

Several different methods have been proposed to construct copulas. For example,
Archimedian copulas via additive generators, elliptical copulas via inversion method, and
Marshall-Olkin copulas via survival functions. One may consult the books by Nelsen [1]
and Durante and Sempi [3] for these methods.
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A notable construction method is via transformations of known copulas to create the
new ones. For example, the convex sums and the gluing method such as the ordinal
sums and patchwork copulas. In 2015, Kolesárová et al. [4] searched for all quadratic
polynomials P such that

(x, y) 7→ P (x, y, C(x, y))

is a copula for all copulas C. Later, Wisadwongsa and Tasena [5] extended this result by
characterizing all quadratic polynomials P such that

(x, y) 7→ P (x, y, C1(x, y), C2(x, y))

is a copula whenever C1, C2 are copulas. As a consequence of the main result in [5], we
have

Proposition 1.1 (Wisadwongsa and Tasena [5]). Let P be a bivariate quadratic polyno-
mial. The function

(x, y) 7→ P (C1(x, y), C2(x, y))

is a copula for any copulas C1 and C2 if and only if P assumes the form

P (x, y) = a(x− y)2 + dx+ (1− d)y,

where 0 ≤ d ≤ 1 and |2d−1|−12 ≤ a ≤ |2d−1|+1
2 .

Recently, Tasena [6] took a further step of characterizing all polynomial P such that

(x, y) 7→ P (x, y, C1(x, y), . . . , Cn(x, y))

is a copula when C1, C2, . . . , Cn are arbitrary copulas (n ≥ 2). He also described all such
transformations in the class of quadratic polynomials.

In another direction, a class of bivariate copula mappings was found by Manstavičius
and Bagdonas [7] and Girard [8]. More precisely, they gave necessary and sufficient
conditions on a function f : [0, 1]→ R+ so that

(x, y) 7→ C(x, y)f(1− x− y + C(x, y))

is a copula for any bivariate copula C. Later, Saminger-Platz et al. [9] extended this
result by searching for functions f : [0, 1]→ R+ and bivariate copulas D so that

(x, y) 7→ D(C(x, y), f(C∗(x, y)))

is a copula for any bivariate copula C, where C∗(x, y) = x+ y − C(x, y).
Motivated by the above works, we are interested in copula transformations of the form

(x, y) 7→ f(C1(x, y), C2(x, y))

where C1, C2 are limited to three well-known copulas: the independence copula, the
Fréchet-Hoeffding lower bound, and the Fréchet-Hoeffding upper bound. Examples of
such transformations are the convex sums and quadratic polynomials P described in
Proposition 1.1. Obviously, by restricting C1, C2 in those only three copulas, we lower
the criteria on functions f . This allows us to gain more controls on f and hence we can
obtain more flexible copulas. We also classify all such transformations in the case that f
belongs to the class of quadratic polynomials.

Throughout the paper, we will only consider bivariate copulas, which will be called
copulas for brevity. The rest of the paper is organized as follows. In Section 2, we
provide the basic definitions and properties of copulas that will be used later on. Section
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3 provides the statement and proof of our main results (Theorems 3.1, 3.3 and 3.4). In
Section 4, we classify the transformations in theclass of quadratic polynomials. Finally,
we close the paper with a conclusion in Section 5.

2. Preliminaries

In this section, we recall some basic facts from copula theory which will be used later
on. Although one can also consider n-variate copulas for any n ≥ 2 (see [1, 3]), we only
give the definition for bivariate copulas, which are the objects we are concerned with in
this paper.

Definition 2.1. A (bivariate) copula is a function C : [0, 1]2 → R such that

(i) C(x, 0) = C(0, x) = 0 for any x ∈ [0, 1],
(ii) C(x, 1) = C(1, x) = x for any x ∈ [0, 1],
(iii) (2-increasing) for all x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2,

VC([x1, x2]× [y1, y2]) := C(x2, y2)− C(x1, y2)− C(x2, y1) + C(x1, y1) ≥ 0.

Remark 2.2. One may deduce from Definition 2.1 that C : [0, 1]2 → [0, 1] and C is
non-decreasing in each variables. Indeed, for any x1, x2, y ∈ [0, 1] with x1 ≤ x2,

C(x2, y)− C(x1, y) = VC([x1, x2]× [0, y]) ≥ 0.

Hence C(x, y) is non-decreasing in x. Similarly, C(x, y) is non-decreasing in y. Now for
any x, y ∈ [0, 1], we have

C(x, y) ≥ C(0, x) = 0

and

C(x, y) ≤ C(1, x) = x ≤ 1.

That means that C : [0, 1]2 → [0, 1].

The importance of copulas is due to Sklar’s theorem. Here we only recall a special
version of this theorem for bivariate copulas, which are what we are concerned with.

Theorem 2.3 (Sklar’s theorem [1, 3]). For any joint distribution H(x, y) with marginals
F1(x), F2(y), there exists a copula C such that

H(x, y) = C(F1(x), F2(y))

for all x, y ∈ R ∪ {±∞}. If F1, F2 are continuous, then the copula C associated to H is
unique and may be obtained by

C(x, y) = H(F−11 (x), F−12 (y)).

The most well-known copula should be the independence copula, which is given by

Π(x, y) = xy for all x, y ∈ [0, 1].

This copula is used to model the independence of random variables. Other examples of
copula include the Fréchet-Hoeffding lower bound

W (x, y) := (x+ y − 1)+

and the Fréchet-Hoeffding upper bound

M(x, y) := x ∧ y,
where we denote x ∧ y = min{x, y} and x+ = max{x, 0}.
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The Fréchet-Hoeffding bounds play an important role in the (partial) concordance
order on the set of all copulas. This fact is stated in the following theorem.

Theorem 2.4 (see Theorem 2.2.3 in [1]). For any copula C and any x, y ∈ [0, 1],

W (x, y) ≤ C(x, y) ≤M(x, y).

3. Copula Transformations by Function Compositions

In this section, we state and prove the main results of this paper. Our aim is to establish
necessary and sufficient conditions on a bivariate function f such that its compositions
with each two of three well-known copulas M , W , and Π are new copulas. These criteria
will be used in Section 4 to classify f in form of a bivariate quadratic polynomial.

3.1. Composition of the Fréchet-Hoeffding Bounds

We begin with copula transformations of the Fréchet-Hoeffding upper bound M and
lower bound W .

Theorem 3.1. Let f : [0, 1]2 → R. The function

C(x, y) := f(M(x, y),W (x, y))

is a copula if and only if the following conditions hold

(i) f(x, x) = x for any x ∈ [0, 1],
(ii) f(x, (2x−1)+) + f(y, (2y−1)+) ≥ 2f(x, (x+ y−1)+) for any x, y ∈ [0, 1] with
x ≤ y,

(iii) for any x, y ∈ [0, 1] with x ≤ y, the function

t 7→ f(y, (y + t)+)− f(x, (x+ t)+)

is non-decreasing in [y − 1, 0].

Remark 3.2. Since M(x, y) ≥ W (x, y) for any x, y ∈ [0, 1], the values of f can be
arbitrarily defined on the set {(x, y) ∈ [0, 1]2 | x < y}. Therefore, assumptions (i)− (iii)
of Theorem 3.1 are only concerned with values of f in the set {(x, y) ∈ [0, 1]2 | x ≥ y}.

Proof of Theorem 3.1. Notice that

VC([x1, x2]× [y1, y2]) = f(x2 ∧ y2, (x2 + y2 − 1)+)− f(x1 ∧ y2, (x1 + y2 − 1)+)

− f(x2 ∧ y1, (x2 + y1 − 1)+) + f(x1 ∧ y1, (x1 + y1 − 1)+).

Step 1. Assume that C is a copula.
- For any x ∈ [0, 1] and y = 1, we have f(x, x) = C(x, 1) = x.
- For any x, y ∈ [0, 1] with x ≤ y, we have

f(x, (2x− 1)+) + f(y, (2y − 1)+)− 2f(x, (x+ y − 1)+) = VC([x, y]× [x, y])

≥ 0.

- For any x, y ∈ [0, 1] and t1, t2 ∈ [y − 1, 0] such that x ≤ y and t1 ≤ t2, we have

[f(y, (y + t2)+)− f(x, (x+ t2)+)]− [f(y, (y + t1)+)− f(x, (x+ t1)+)]

= VC([x, y]× [t1 + 1, t2 + 1])

≥ 0.

Therefore, f satisfies (i)− (iii).
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Step 2. Assume that f satisfies (i)− (iii). We show that C is a copula.
Clearly, C(x, 0) = C(0, x) = f(0, 0) = 0 for any x ∈ [0, 1].
Moreover, C(x, 1) = C(1, x) = f(x, x) = x for any x ∈ [0, 1].
It remains to prove that C is 2-increasing, i.e., VC([x1, x2] × [y1, y2]) ≥ 0 for any

x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2. Without loss of generality, we may
assume x1 ≤ y1.

There are three cases to be considered.
Case 1: x1 ≤ x2 ≤ y1 ≤ y2. In this case,

VC([x1, x2]× [y1, y2])

= [f(x2, (x2 + y2 − 1)+)− f(x1, (x1 + y2 − 1)+)]

− [f(x2, (x2 + y1 − 1)+)− f(x1, (x1 + y1 − 1)+)]

≥ 0.

Case 2: x1 ≤ y1 ≤ x2 ≤ y2. In this case,

VC([x1, x2]× [y1, y2])

= [f(x2, (x2 + y2 − 1)+)− f(x1, (x1 + y2 − 1)+)]

− [f(y1, (x2 + y1 − 1)+)− f(x1, (x1 + y1 − 1)+)]

≥ [f(x2, (2x2 − 1)+)− f(x1, (x1 + x2 − 1)+)]

− [f(y1, (x2 + y1 − 1)+)− f(x1, (x1 + y1 − 1)+)]

= [f(x1, (x1 + y1 − 1)+)− f(x1, (x1 + x2 − 1)+)]

− [f(y1, (x2 + y1 − 1)+)− f(x2, (2x2 − 1)+)]

≥ [f(y1, (2y1 − 1)+)− f(y1, (y1 + x2 − 1)+)]

− [f(y1, (x2 + y1 − 1)+)− f(x2, (2x2 − 1)+)]

= f(y1, (2y1 − 1)+) + f(x2, (2x2 − 1)+)− 2f(y1, (x2 + y1 − 1)+)

≥ 0.

Case 3: x1 ≤ y1 ≤ y2 ≤ x2. In this case,

VC([x1, x2]× [y1, y2])

= f(y2, (x2 + y2 − 1)+)− f(x1, (x1 + y2 − 1)+)

− f(y1, (x2 + y1 − 1)+) + f(x1, (x1 + y1 − 1)+)

= [f(y2, (x2 + y2 − 1)+)− f(y1, (x2 + y1 − 1)+)]

+ [f(x1, (x1 + y1 − 1)+)− f(x1, (x1 + y2 − 1)+)]

≥ [f(y2, (2y2 − 1)+)− f(y1, (y1 + y2 − 1)+)]

+ [f(y1, (2y1 − 1)+)− f(y1, (y1 + y2 − 1)+)]

= f(y2, (2y2 − 1)+) + f(y1, (2y1 − 1)+)− 2f(y1, (y1 + y2 − 1)+)

≥ 0.

Hence, C is 2-increasing. Consequently, C is a copula.
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3.2. Composition of the Independence Copula and the Fréchet-

Hoeffding Lower Bound

This subsection provides the criteria for copula transformations of the independence
copula Π and the Fréchet-Hoeffding lower bound W .

Theorem 3.3. Let f : [0, 1]2 → R. The function

C(x, y) := f(Π(x, y),W (x, y))

is a copula if and only if the following conditions hold

(i) f(x, x) = x for any x ∈ [0, 1],
(ii) for any x, y ∈ [0, 1] with x ≤ y, the function

t 7→ f(yt, (y + t− 1)+)− f(xt, (x+ t− 1)+)

is non-decreasing in [0, 1].

Proof. Clearly,

VC([x1, x2]× [y1, y2]) = f(x2y2, (x2 + y2 − 1)+)− f(x1y2, (x1 + y2 − 1)+)

− f(x2y1, (x2 + y1 − 1)+) + f(x1y1, (x1 + y1 − 1)+).

Step 1. Assume that C is a copula.
- For any x ∈ [0, 1] and y = 1, we have f(x, x) = C(x, 1) = x.
- For any x, y, t1, t2 ∈ [0, 1] with x ≤ y and t1 ≤ t2, we have

[f(yt2, (y + t2 − 1)+)− f(xt2, (x+ t2 − 1)+)]

− [f(yt1, (y + t1 − 1)+)− f(xt1, (x+ t1 − 1)+)]

= VC([x, y]× [t1, t2])

≥ 0.

Therefore, f satisfies (i) and (ii).
Step 2. Assume that f satisfies (i) and (ii). We show that C is a copula.
Clearly, C(x, 0) = C(0, x) = f(0, 0) = 0 for any x ∈ [0, 1].
Moreover, C(x, 1) = C(1, x) = f(x, x) = x for any x ∈ [0, 1].
Now let any x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2. By assumption (ii), we

have

VC([x1, x2]× [y1, y2])

= [f(x2y2, (x2 + y2 − 1)+)− f(x1y2, (x1 + y2 − 1)+)]

− [f(x2y1, (x2 + y1 − 1)+)− f(x1y1, (x1 + y1 − 1)+)]

≥ 0.

Hence C is 2-increasing. Therefore, C is a copula.

3.3. Composition of the Fréchet-Hoeffding Upper Bound and

the Independence Copula

In this last subsection, we introduce a simple criteria for copula transformations of the
Fréchet-Hoeffding upper bound M and the independence copula Π.
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Theorem 3.4. Let f : [0, 1]2 → R. The function

C(x, y) := f(M(x, y),Π(x, y))

is a copula if and only if the following conditions hold

(i) f(x, x) = x for any x ∈ [0, 1],
(ii) f(x, x2) + f(y, y2) ≥ 2f(x, xy) for any x, y ∈ [0, 1] with x ≤ y,
(iii) for any x, y ∈ [0, 1] with x ≤ y, the function

t 7→ f(y, ty)− f(x, tx)

is non-decreasing in [y, 1].

Proof. We have

VC([x1, x2]× [y1, y2]) = f(x2 ∧ y2, x2y2)− f(x1 ∧ y2, x1y2)

− f(x2 ∧ y1, x2y1) + f(x1 ∧ y1, x1y1).

Step 1. Assume that C is a copula.
- For any x ∈ [0, 1] and y = 1, we have f(x, x) = C(x, 1) = x.
- For any x, y ∈ [0, 1] with x ≤ y, we have

f(x, x2) + f(y, y2)− 2f(x, xy)

= f(y ∧ y, yy)− f(x ∧ y, xy)− f(y ∧ x, yx) + f(x ∧ x, xx)

= VC([x, y]× [x, y])

≥ 0.

- For any x, y, t1, t2 ∈ [0, 1] with x ≤ y ≤ t1 ≤ t2, we have

[f(y, t2y)− f(x, t2x)]− [f(y, t1y)− f(x, t1x)] = VC([x, y]× [t1, t2])

≥ 0.

Therefore, f satisfies (i)− (iii).
Step 2. Assume that f satisfies (i)− (iii). We show that C is a copula.
Clearly, C(x, 0) = C(0, x) = f(0, 0) = 0 for any x ∈ [0, 1].
Moreover, C(x, 1) = C(1, x) = f(x, x) = x for any x ∈ [0, 1].
It remains to prove that C is 2-increasing, i.e., VC([x1, x2] × [y1, y2]) ≥ 0 for any

x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2. Without loss of generality, we may
assume x1 ≤ y1.

There are three possible cases.
Case 1: x1 ≤ x2 ≤ y1 ≤ y2. In this case,

VC([x1, x2]× [y1, y2])

= [f(x2, x2y2)− f(x1, x1y2)]− [f(x2, x2y1)− f(x1, x1y1)]

≥ 0.
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Case 2: x1 ≤ y1 ≤ x2 ≤ y2. In this case,

VC([x1, x2]× [y1, y2])

= [f(x2, x2y2)− f(x1, x1y2)]− [f(y1, x2y1)− f(x1, x1y1)]

≥ [f(x2, x
2
2)− f(x1, x1x2)]− [f(y1, x2y1)− f(x1, x1y1)]

= [f(x1, x1y1)− f(x1, x1x2)]− [f(y1, x2y1)− f(x2, x
2
2)]

≥ [f(y1, y
2
1)− f(y1, y1x2)]− [f(y1, x2y1)− f(x2, x

2
2)]

= f(y1, y
2
1) + f(x2, x

2
2)− 2f(y1, x2y1)

≥ 0.

Case 3: x1 ≤ y1 ≤ y2 ≤ x2. In this case,

VC([x1, x2]× [y1, y2])

= f(y2, x2y2)− f(x1, x1y2)− f(y1, x2y1) + f(x1, x1y1)

= [f(y2, x2y2)− f(y1, x2y1)] + [f(x1, x1y1)− f(x1, x1y2)]

≥ [f(y2, y
2
2)− f(y1, y1y2)] + [f(y1, y

2
1)− f(y1, y1y2)]

= f(y2, y
2
2) + f(y1, y

2
1)− 2f(y1, y1y2)

≥ 0.

Hence, C is 2-increasing. Consequently, C is a copula.

4. Quadratic Transformations of Copulas

Clearly, the linear mappings

f(x, y) = αx+ (1− α)y for all x, y ∈ [0, 1],

where α ∈ [0, 1], satisfy all conditions in Theorems 3.1, 3.3 and 3.4. This kind of f is
associated with the convex sum transformations mentioned in the introduction section.
It is natural to ask what type of quadratic polynomials satisfies those conditions.

In this section, we will give an answer to that question. More precisely, we classify all
quadratic polynomials satisfying conditions in Theorems 3.1 and 3.3. We also search for
a large class of quadratic polynomials which satisfies conditions in Theorem 3.4. These
quadratic transformations provide us new classes of copulas which are easy to compute
in practice.

We start with quadratic transformations on the Fréchet-Hoeffding bounds.

Theorem 4.1. Let P be a bivariate quadratic polynomial. The function

C(x, y) := P (M(x, y),W (x, y))

is a copula if and only if P assumes the form

P (x, y) = a(x2 − xy) + b(y2 − xy) + dx+ (1− d)y,
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where 

0 ≤ d ≤ 1,

a ≥ −d,
b ≤ 1− d,
−d ≤ a− b ≤ 1− d,
a+ b ≤ 2(1− d).

Example 4.2. Copula C under some special choices of a, b, d has the graphs presented
in Figure 1. One should notice that if a = b = 0, then the graph of C contains four flat
pieces. By choosing (a, b) 6= (0, 0), we produce some curvature on its surface.

(a) (a, b, d) = (0.5, 0.5, 0.5) (b) (a, b, d) = (−0.3, 0, 0.3) (c) (a, b, d) = (−0.6, 0.2, 0.8)

Figure 1. Quadratic transformations of M and W .

Proof of Theorem 4.1. Since P is a quadratic polynomial, we have

P (x, y) = ax2 + by2 + cxy + dx+ ey + f,

where a, b, c, d, e, f ∈ R. Clearly, P satisfies Theorem 3.1 (i) if and only if

(a+ b+ c)x2 + (d+ e)x+ f = x for all x ∈ [0, 1].

This only happens when a+ b+ c = f = 0 and d+ e = 1. Hence P has the form

P (x, y) = a(x2 − xy) + b(y2 − xy) + dx+ (1− d)y.

We will exploit (ii) and (iii) in Theorem 3.1 to characterize all coefficients a, b, d.
First, we search for conditions on the coefficients a, b, d such that

g(t) := P (y, (y + t)+)− P (x, (x+ t)+)

is non-decreasing in [y − 1, 0] for any 0 ≤ x ≤ y ≤ 1. That is, g′(t) ≥ 0, where

g′(t) =
∂P

∂y
(y, (y + t)+)χ(−y,+∞)(t)−

∂P

∂y
(x, (x+ t)+)χ(−x,+∞)(t).

Here χA denotes the characteristic function of a subset A ⊂ R.
- If t < −y, then g′(t) = 0.
- If −y < t < −x, then

g′(t) =
∂P

∂y
(y, y + t) = (b− a)y + 2bt+ 1− d.
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To ensure g′(t) ≥ 0 for any max{−y, y − 1} < t < −x, where 0 ≤ x ≤ y ≤ 1, the
necessary and sufficient condition is min

0≤y≤1
[(b− a)y + 1− d] ≥ 0,

min
0≤y≤1

[(b− a)y + 2bmax{−y, y − 1}+ 1− d] ≥ 0,

⇔

{
min{1− d, b− a+ 1− d} ≥ 0,

min{1− d, b− a+ 1− d, b−a2 − b+ 1− d} ≥ 0.

That is,

1− d ≥ max{0, a− b, a+ b

2
}. (4.1)

- If −x < t < 0, then

g′(t) =
∂P

∂y
(y, y + t)− ∂P

∂y
(x, x+ t) = (b− a)(y − x) + 2bt+ 1− d.

To ensure g′(t) ≥ 0 for any max{−x, y − 1} < t < 0, where 0 ≤ x ≤ y ≤ 1, the
necessary and sufficient condition is min

0≤x≤y≤1
[(b− a)(y − x) + 1− d] ≥ 0,

min
0≤x≤y≤1

[(b− a)(y − x) + 2bmax{−x, y − 1}+ 1− d] ≥ 0,

⇔

{
min{1− d, b− a+ 1− d} ≥ 0,

min{1− d, b− a+ 1− d,−b+ 1− d} ≥ 0.

That is,

1− d ≥ max{0, a− b, b}. (4.2)

Next, we derive conditions on the coefficients a, b, d such that

h(x, y) := P (x, (2x− 1)+) + P (y, (2y − 1)+)− 2P (x, (x+ y − 1)+)

is nonnegative for any x, y ∈ [0, 1] with x ≤ y.
- If x ≤ y ≤ 1

2 , then

h(x, y) = P (x, 0) + P (y, 0)− 2P (x, 0)

= [a(x+ y) + d](y − x).

To ensure that h(x, y) ≥ 0 for any 0 ≤ x ≤ y ≤ 1
2 , the necessary and sufficient condition

is

min{d, a+ d} ≥ 0. (4.3)

- If x ≤ 1
2 ≤ y and x+ y ≤ 1, then

h(x, y) = P (x, 0) + P (y, 2y − 1)− 2P (x, 0)

= a(y − y2 − x2) + b(2y2 − 3y + 1) + d(1− x− y) + (2y − 1).

Taking x = 1− y. In order to have

h(1− y, y) = [(b− a)(y − 1) + 1](2y − 1) ≥ 0
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for all 1
2 ≤ y ≤ 1, the necessary and sufficient condition is

a− b
2

+ 1 ≥ 0. (4.4)

Conversely, under condition (4.3), for any x ≤ 1
2 ≤ y such that x+ y ≤ 1, we have

a(1− y + x) + d ≥ 0.

Combining this with (4.4), we obtain

h(x, y) = h(1− y, y) + [a(1− y + x) + d](1− x− y) ≥ 0

- If x ≤ 1
2 ≤ y and x+ y ≥ 1, then

h(x, y) = P (x, 0) + P (y, 2y − 1)− 2P (x, x+ y − 1)

= a(x2 + 2xy − 2x− y2 + y) + b(−2xy + 2x+ y − 1) + d(x+ y − 1) + 1− 2x

= h(
1

2
, y) +

(2x− 1)(2ax+ 4ay − 4by − 3a+ 4b+ 2d− 4)

4
.

Notice that

h(
1

2
, y) =

[
a(

3

2
− y) + d

](
y − 1

2

)
≥ 0 for all

1

2
≤ y ≤ 1

due to the fact min{a+ d, a/2 + d} ≥ 0 deduced from (4.3).
Moreover, from (4.2) and (4.3), we have

0 ≤ d ≤ 1, a− b ≤ 1− d, b ≤ 1− d,

which implies

max{a+ 2d− 4, 2b+ 2d− 4, 2a+ 2d− 4} ≤ 0.

From this, one can easily verify that

2ax+ 4ay − 4by − 3a+ 4b+ 2d− 4 ≤ 0

and hence

h(x, y) ≥ 0

for any x ≤ 1
2 ≤ y with x+ y ≥ 1.

- If 1
2 ≤ x ≤ y, then

h(x, y) = P (x, 2x− 1) + P (y, 2y − 1)− 2P (x, x+ y − 1)

= [(x− y + 1)a+ (1− 2x)b+ d](y − x).

To ensure h(x, y) ≥ 0 for any 1
2 ≤ x ≤ y ≤ 1, the necessary and sufficient condition is

min{a+ d, a/2 + d, a− b+ d} ≥ 0. (4.5)

Combining conditions (4.1)–(4.5), we finish the proof.

Next, we find necessary and sufficient criteria for quadratic transformations on the
independence copula and the Fréchet-Hoeffding lower bound.
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Theorem 4.3. Let P be a bivariate quadratic polynomial. The function

C(x, y) := P (Π(x, y),W (x, y))

is a copula if and only if P assumes the form

P (x, y) = a(x2 − xy) + b(y2 − xy) + dx+ (1− d)y,

where 

0 ≤ d ≤ 1,

a+ d ≥ 0,

a+ b ≤ 4(1− d),

−d ≤ b− a ≤ d,
(a+b)2

8a + d ≥ 0 if a < 0 and 0 ≤ a+b
4a ≤ 1,

b+ d ≥ 0 if a < 0.

Example 4.4. Figure 2 contains some examples of copula P (Π(x, y),W (x, y)) under
suitable choices of a, b, d.

(a) (a, b, d) = (0, 0.5, 0.5) (b) (a, b, d) = (−0.2, 0, 0.2) (c) (a, b, d) = (0.5,−0.5, 1)

Figure 2. Quadratic transformations of M and W .

Proof of Theorem 4.3. As in the proof of Theorem 4.1, P must have the form

P (x, y) = a(x2 − xy) + b(y2 − xy) + dx+ (1− d)y.

By exploiting Theorem 3.3, we find conditions on the coefficients a, b, d such that

g(t) := P (yt, (y + t− 1)+)− P (xt, (x+ t− 1)+)

is non-decreasing in [0, 1] for any 0 ≤ x ≤ y ≤ 1. That is, g′(t) ≥ 0.
Case 1. For t ∈ [0, 1− y], we have

g(t) = P (yt, 0)− P (xt, 0) = a(y2 − x2)t2 + d(y − x)t

and

g′(t) = [2a(x+ y)t+ d](y − x).
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Hence g′(t) ≥ 0 for all t ∈ [0, 1− y] and x ≤ y if and only if{
d ≥ 0,

min
0≤x≤y≤1

{2a(x+ y)(1− y) + d} ≥ 0,

⇔

{
d ≥ 0,

min
0≤y≤1

{2ay(1− y) + d, 4ay(1− y) + d} ≥ 0.

If a ≥ 0, then

min
0≤y≤1

{2ay(1− y) + d, 4ay(1− y) + d} = d.

If a < 0, then

min
0≤y≤1

{2ay(1− y) + d, 4ay(1− y) + d} = a+ d < d.

Combining these facts, we obtain the condition{
d ≥ 0, if a ≥ 0,

a+ d ≥ 0, if a < 0.
(4.6)

Case 2. For 1− x ≤ t ≤ 1, we have

g(t) = P (yt, y + t− 1)− P (xt, x+ t− 1)

= [at2x+ at2y − at2 − atx− aty − bt2 − btx− bty + at+ 3bt

+ bx+ by + dt− 2b− d+ 1](y − x)

and

g′(t) = (2atx+ 2aty − 2at− ax− ay − 2bt− bx− by + a+ 3b+ d)(y − x).

To ensure g′(t) ≥ 0 for any 1 − x ≤ t ≤ 1, where 0 ≤ x ≤ y ≤ 1, the necessary and
sufficient condition is min

0≤x≤y≤1
{ax+ ay − bx− by − a+ b+ d} ≥ 0,

min
0≤x≤y≤1

{−2ax2 − 2axy + 3ax+ ay + bx− by − a+ b+ d} ≥ 0,

⇔


min{−a+ b+ d, d, a− b+ d} ≥ 0,

min
0≤x≤1

{−2ax2 + (a+ b)x+ d} ≥ 0,

min
0≤x≤1

{−4ax2 + 4ax− a+ b+ d} ≥ 0,

which is equivalent to
min{−a+ b+ d, d, a− b+ d} ≥ 0,
(a+b)2

8a + d ≥ 0 if a < 0 and 0 ≤ a+b
4a ≤ 1,

b+ d ≥ 0 if a < 0.

(4.7)

Case 3. For t ∈ [1− y, 1− x], we have

g(t) = P (yt, y + t− 1)− P (xt, 0)

= [(ayt− by − bt+ b+ d)(y − 1)(t− 1) + y + t− 1]− (ax2t2 + dxt)
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and

g′(t) = −2atx2+2aty2−2aty−ay2−2bty−by2+ay+2bt+3by−dx+dy−2b−d+1.

We have

g′(1− y) = [(2x2 − 2y2 + y)a+ by](y − 1) + d(y − x− 1) + 1.

When x = y,

g′(1− y) = (a+ b)(y2 − y) + 1− d.
To ensure g′(1 − y) ≥ 0 for any 0 ≤ x = y ≤ 1, the necessary and sufficient condition

is

min{−a+ b

4
+ 1− d, 1− d} ≥ 0. (4.8)

Conversely, under condition (4.8) and x ≤ y, we have

g′(1− y) = [(2x2 − 2y2 + y)a+ by](y − 1) + d(y − x− 1) + 1

≥ (a+ b)(y2 − y) + 1− d
≥ 0.

(4.9)

Moreover,

g′(1− x) = 2ax3 − 2axy2 − 2ax2 + 2axy + ay2 + 2bxy − by2

− ay − 2bx+ by − dx+ dy − d+ 1

:= h(y).

We have

h′(y) = (−4ax+ 2a− 2b)y + 2ax+ 2bx− a+ b+ d.

Using (4.7), we derive

h′(1) = −2ax+ 2bx+ a− b+ d

≥ min
0≤x≤1

{−2ax+ 2bx+ a− b+ d}

≥ min{a− b+ d,−a+ b+ d}
≥ 0

and

h′(x) = −4ax2 + 4ax− a+ b+ d

≥ min
0≤x≤1

{−4ax2 + 4ax− a+ b+ d}

≥ −a+ b+ d

≥ 0.

From this and the fact that h′(y) is linear in y, we deduce h′(y) ≥ 0 for all x ≤ y ≤ 1.
That means that h is non-decreasing in [x, 1].

Therefore,

g′(1− x) ≥ h(x) = (a+ b)(x2 − x) + 1− d ≥ 0, (4.10)

where we have used (4.8).
Since g′(t) is linear in t, from (4.9) and (4.10) we deduce that g′(t) ≥ 0 for all t ∈

[1− y, 1− x].
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By collecting (4.6)–(4.8), we obtain the necessary and sufficient condition for C to be
a copula. This completes the proof of the theorem.

Finally, we introduce a sufficient condition for quadratic transformations on the Fréchet-
Hoeffding upper bound and the independence copula.

Theorem 4.5. Let P be a bivariate quadratic polynomial. The function

C(x, y) := P (M(x, y),Π(x, y))

is a copula if P assumes the form

P (x, y) = a(x2 − xy) + b(y2 − xy) + dx+ (1− d)y, (4.11)

where 
0 ≤ d ≤ 1,

0 ≤ b ≤ a,
d− 1 ≤ 2(b− a),

d− 1 ≤ − (a+b)2

4b if 0 < a ≤ 3b

(4.12)

or {
0 ≤ d ≤ 1,
|2d−1|−1

2 ≤ a = b ≤ |2d−1|+1
2 .

(4.13)

Example 4.6. We give some examples of copulas generated by quadratic transformations
of M and W in Figure 3 below.

(a) (a, b, d) = (0.2, 0.2, 0.8) (b) (a, b, d) = (0.2, 0, 0.6) (c) (a, b, d) = (−0.3,−0.3, 0.3)

Figure 3. Quadratic transformations of M and W .

Proof of Theorem 4.5. As in the proof of Theorem 4.1, P must have the form

P (x, y) = a(x2 − xy) + b(y2 − xy) + dx+ (1− d)y.

If a, b, d satisfy (4.13), then C is a copula due to Proposition 1.1. Hence, it suffices to
consider assumption (4.12) in the rest of the proof.
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First, we search for conditions on the coefficients a, b, d such that condition (iii) of
Theorem 3.4 is satisfied. That is, q is non-decreasing in [y, 1] for any 0 ≤ x ≤ y ≤ 1,
where

q(t) := P (y, ty)− P (x, tx)

= [a(y2 − ty2) + b(t2y2 − ty2) + dy + (1− d)ty]

− [a(x2 − tx2) + b(t2x2 − tx2) + dx+ (1− d)tx].

Direct calculation yields

q′(t) = [(2bt− a− b)(x+ y)− d+ 1](y − x).

To ensure q′(t) ≥ 0 for all x ≤ y ≤ t ≤ 1, the necessary and sufficient condition is min
0≤x≤y≤1

{(b− a)(x+ y)− d+ 1} ≥ 0,

min
0≤x≤y≤1

{(2by − a− b)(x+ y)− d+ 1} ≥ 0,

⇔

{
min{−d+ 1, 2(b− a)− d+ 1} ≥ 0,

min
0≤y≤1

{(2by − a− b)y − d+ 1, 2(2by − a− b)y − d+ 1} ≥ 0,

⇔

{
d− 1 ≤ min{2(b− a), 0},
d− 1 ≤ 2 min

0≤y≤1
{(2by − a− b)y},

- If b > 0 and a+b
4b ∈ [0, 1], then

min
0≤y≤1

{(2by − a− b)y} = − (a+ b)2

8b
≤ min{0, b− a}.

- Otherwise,

min
0≤y≤1

{(2by − a− b)y} = min{0, b− a}.

Combining the above facts, we deduce that P satisfies Theorem 3.4 (iii) if and only if

d− 1 ≤

{
min{2(b− a), 0},
− (a+b)2

4b if b > 0 and a+b
4b ∈ [0, 1].

(4.14)

Clearly, (4.14) holds under assumption (4.12).
Next, we derive a sufficient condition on the coefficients a, b, d such that condition (ii)

of Theorem 3.4 is satisfied. That is,

P (x, x2) + P (y, y2) ≥ 2P (x, xy)

for any x, y ∈ [0, 1] with x ≤ y. By a direct calculation, we have

P (x, x2) + P (y, y2)− 2P (x, xy)

= [(a− by)(x2 − xy − y2 + x+ y) + bx2(1− x) + d(1 + x− y) + (y − x)](y − x).

Setting g(y) := x2 − xy − y2 + x + y for x ≤ y ≤ 1. Since g does not admit local
minimums, we have

g(y) ≥ min{g(x), g(1)} = min{2x− x2, x2} ≥ 0.

Combining the above facts, we deduce that P satisfies Theorem 3.4 (ii) if a ≥ b ≥ 0
and 0 ≤ d ≤ 1.
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This completes the proof of the theorem.

Remark 4.7. Unlike Theorems 4.1 and 4.3, we are not able to classify all quadratic
transformations in Theorem 4.5 due to some technical difficulties. Nevertheless, it turns
out from the proof of Theorem 4.5 that, if P is a bivariate quadratic polynomial such
that (x, y) 7→ P (M(x, y),Π(x, y)) is a copula, then P must have the form (4.11) with
coefficients a, b, d satisfy{

0 ≤ d ≤ 1,

d− 1 ≤ 2(b− a).

5. Conclusion

In this paper, we proposed three new classes of copulas generated by function composi-
tions on three well-known copulas: the independence copula, the Fréchet-Hoeffding lower
bound, and the Fréchet-Hoeffding upper bound (see Theorems 3.1, 3.3 and 3.4 in Section
3). In particular, some quadratic transformations of this type were completely classified
(see Theorems 4.1, 4.3 and 4.5 in Section 4). For future research, we will investigate more
general compositions of this type for multivariate copulas and find out the probabilistic
properties of copulas generated by such transformations. This would open the door to
applying new copulas to empirical research on dependence modeling.
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