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1. Introduction

In recent times, the Banach contraction principle [1] was improved and extended in
many different ways and many fixed point results were obtained [2–6]. In 2008, by com-
bining the concepts in fixed point theory and graph theory, Jachymski [7] generalized
the Banach contraction principle in a complete metric space with a directed graph. In
2012, Aleomraninejad et al. [8] introduced the notion of G-contractive mapping and G-
nonexpansive mapping in a metric space with a directed graph and stated the convergence
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for these mappings. After that, there were many the convergence results of various iter-
ation processes to fixed points and common fixed points of G-nonexpansive mappings in
Hilbert spaces and Banach spaces with graphs [9–15].

Motivated by these works, Sangago et al. [16] introduced the notion of aG-asymptotically
nonexpansive mapping and proved the weak and strong convergence of a modified Noor
iteration process to common fixed points of a finite family of G-asymptotically nonexpan-
sive mappings in Banach spaces with graphs. After that, authors in [17, 18] proposed a
two-step iteration process for two G-asymptotically nonexpansive mappings and a three-
step iteration process for three G-asymptotically nonexpansive mappings. Furthermore,
the authors also established the weak and strong convergence results of some proposed
iteration processes to common fixed points of G-asymptotically nonexpansive mappings
in Banach spaces with graphs.

Observe that the Opial’s condition [19] is considered to study the weak convergence
theorems, and the semicompact property of the mappings or the condition (A) [20], the
condition (B) [21] and the condition (C) [10] are used to state the strong convergence
results. In other way, motivated by CQ projection method in [22], some authors proposed
some modified shrinking projection methods and proved the strong convergence for com-
mon fixed points of G-nonexpansive mappings in Hilbert spaces with graphs [23–25]. The
following iteration processes were introduced in [25] by modifying the shrinking projection
method with Ishikawa iteration process and S-iteration process.


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT1un
wn = (1− an)un + anT2vn
Ωn+1 =

{
w ∈ Ωn : ‖wn − w‖ ≤ ‖un − w‖

}
un+1 = PΩn+1

u1, n ∈ N,

(1.1)


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT1un
wn = (1− an)vn + anT2vn
Ωn+1 =

{
w ∈ Ωn : ‖wn − w‖ ≤ ‖un − w‖

}
un+1 = PΩn+1

u1, n ∈ N,

(1.2)


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT1un
wn = (1− an)T1un + anT2vn
Ωn+1 =

{
w ∈ Ωn : ‖wn − w‖ ≤ ‖un − w‖

}
un+1 = PΩn+1

u1, n ∈ N,

(1.3)


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT1un
wn = (1− an)T1vn + anT2vn
Ωn+1 =

{
w ∈ Ωn : ‖wn − w‖ ≤ ‖un − w‖

}
un+1 = PΩn+1

u1, n ∈ N,

(1.4)

where {an} and {bn} are sequences in [0, 1], and T1, T2 : Ω −→ Ω are G-nonexpansive
mappings, and PΩn+1

u1 is the metric projection of u1 onto Ωn+1.
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Motivated by the iteration processes (1.1), (1.2), (1.3) and (1.4), we introduce the
following iteration processes for two G-asymptotically nonexpansive mappings:

u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT

n
1 un

wn = (1− an)un + anT
n
2 vn

Ωn+1 =
{
w ∈ Ωn : ‖wn − w‖2 ≤ ‖un − w‖2 + δn

}
un+1 = PΩn+1

u1, n ∈ N,

(1.5)


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT

n
1 un

wn = (1− an)vn + anT
n
2 vn

Ωn+1 =
{
w ∈ Ωn : ‖wn − w‖2 ≤ ‖un − w‖2 + σn

}
un+1 = PΩn+1

u1, n ∈ N,

(1.6)


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT

n
1 un

wn = (1− an)Tn
1 un + anT

n
2 vn

Ωn+1 =
{
w ∈ Ωn : ‖wn − w‖2 ≤ ‖un − w‖2 + εn

}
un+1 = PΩn+1

u1, n ∈ N,

(1.7)


u1 ∈ Ω,Ω1 = Ω
vn = (1− bn)un + bnT

n
1 un

wn = (1− an)Tn
1 vn + anT

n
2 vn

Ωn+1 =
{
w ∈ Ωn : ‖wn − w‖2 ≤ ‖un − w‖2 + γn

}
un+1 = PΩn+1

u1, n ∈ N,

(1.8)

where {an} and {bn} are sequences in [0, 1], and T1, T2 : Ω −→ Ω are G-asymptotically
nonexpansive mappings, and PΩn+1

u1 is the metric projection of u1 onto Ωn+1, and
δn, σn, εn, γn are defined as in Theorem 3.2, Theorem 3.3, Theorem 3.4 and Theorem 3.5
in Section 3, respectively. After that, we prove some strong convergence results of the
iteration processes (1.5), (1.6), (1.7), (1.8) to the projection of the initial point u1 onto
the set of all common fixed points of T1 and T2 in Hilbert spaces with graphs. In addition,
we provide a numerical example for supporting obtained results.

2. Preliminaries

Let X be a real normed space and Ω be a nonempty subset of X. Let ∆ denote
the diagonal of the Cartesian product Ω × Ω, that is, ∆ = {(u, u) : u ∈ Ω}. Consider
a directed graph G such that the set V (G) of its vertices coincides with Ω, and the set
E(G) of its edges contains all loops, that is, E(G) ⊃ ∆. We assume that G has no parallel
edges. So we can identify the graph G with the pair (V (G), E(G)). By G−1 we denote
the conversion of a graph G, that is, the graph obtained from G by reversing the direction
of edges. Therefore, we obtain

E(G−1) = {(u, v) ∈ X ×X : (v, u) ∈ E(G)}.
We recall some basic notions concerning the graphs, for others, see [26, Chapter 8]. If u

and v are vertices in a graph G, then a path in G from u to v of length N for N ∈ N∪{0}
is a sequence {ui}Ni=0 of N + 1 vertices such that u0 = u, uN = v and (ui, ui+1) ∈ E(G)
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for i = 0, 1, . . . , N − 1. A graph G is said to be connected if there is a path between
any two vertices. A directed graph G = (V (G), E(G)) is said to be transitive if for any
u, v, w ∈ V (G) such that (u, v) and (v, w) are in E(G), then (u,w) ∈ E(G).

Definition 2.1 ([12], p.4). Let X be a normed space, Ω be a nonempty subset of X,
and G = (V (G), E(G)) be a directed graph such that V (G) = Ω. Then Ω is said to have
property (G) if for any sequence {un} in Ω such that (un, un+1) ∈ E(G) for all n ∈ N
and {un} weakly converging to u ∈ Ω, there exists a subsequence {un(k)} of {un} such
that (un(k), u) ∈ E(G) for all k ∈ N.

Definition 2.2 ([25], Definition 5). Let X be a normed space, Ω be a nonempty subset
of X, and G = (V (G), E(G)) be a directed graph such that V (G) = Ω. The set of edges
E(G) is said to be convex if for all (x, y), (u, v) ∈ E(G) and for each λ ∈ [0, 1], we have

λ(x, y) + (1− λ)(u, v) ∈ E(G).

Note that in [9–13, 15, 17, 18, 23, 25], the authors assumed the directed graph G =
(V (G), E(G)) such that

(1) E(G) is convex.
(2) E(G) ⊃ {(u, u) : u ∈ V (G)}.

To support the obtained results, the authors gave some numerical examples. Unfortu-
nately, there were some confusions in those examples. Indeed, the authors [27] showed that

(1) In [10, Example 4.5], [13, Example 3.4], [15, Example 1], [18, Example 4.5],
the authors considered X = R, Ω = [0, 2], and G = (V (G), E(G)) is a directed
graph defined by V (G) = Ω and (x, y) ∈ E(G) if and only if 0.5 ≤ x ≤ y ≤ 1.7.
However, (2, 2) /∈ E(G) and hence the condition E(G) ⊃ {(u, u) : u ∈ V (G)} is
not satisfied.

(2) In [11, Example 1], the authors considered X = R, Ω = [0, 2], and G =
(V (G), E(G)) is a directed graph defined by V (G) = Ω and (x, y) ∈ E(G) if and
only if 0.8 ≤ x, y ≤ 1.7 and x, y ∈ Q. However, (2, 2) /∈ E(G) and hence the
condition E(G) ⊃ {(u, u) : u ∈ V (G)} is not satisfied.

(3) In [17, Example 4.5], the author considered X = R, Ω = [0, 2], and G =
(V (G), E(G)) is a directed graph defined by V (G) = Ω and (x, y) ∈ E(G) if and
only if 0.75 ≤ x, y ≤ 1.7. However, (2, 2) /∈ E(G) and hence the condition

E(G) ⊃ {(u, u) : u ∈ V (G)}
is not satisfied.

(4) In [9, Example 3.2], the author considered X = R, Ω = [3, 3.3], and G =
(V (G), E(G)) is a directed graph defined by V (G) = Ω and

E(G) = {(x, y) : x ∈ [3, 3.2], y ∈ [3, 3.3] with |x− y| < 1}.
However, (3.3, 3.3) /∈ E(G) and hence the condition E(G) ⊃ {(u, u) : u ∈ V (G)}
is not satisfied.

(5) In [12, Example 3.5], the authors considered X = R, Ω = [0, 1
2 ], and G =

(V (G), E(G)) is a directed graph defined by V (G) = Ω and

E(G) =
{

(x, y) : x, y ∈
[
0,

3

8

]
with |x− y| < 1

8

}
.

However, ( 1
2 ,

1
2 ) /∈ E(G) and hence the condition E(G) ⊃ {(u, u) : u ∈ V (G)} is

not satisfied.
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(6) In [23, Example 4.1], the authors considered X = R, Ω = [0, 3], and G =
(V (G), E(G)) is a directed graph defined by V (G) = Ω and (x, y) ∈ E(G) if and
only if 0 ≤ x, y ≤ 2 or x = y ∈ [0, 3]. By choosing (2, 0), (3, 3) ∈ E(G), we have
0.5(2, 0) + 0.5(3, 3) = (2.5, 1.5) /∈ E(G). Therefore, E(G) is not convex.

Moreover, in [25, Example 1], we see that the authors considered X = R3, Ω = [−2, 0]3,
and G = (V (G), E(G)) is a directed graph defined by V (G) = Ω and (x, y) ∈ E(G) if
and only if −1.5 ≤ xi, yi ≤ −0.5 or x = y ∈ Ω for all x = (x1, x2, x3), y = (y1, y2, y3) ∈ Ω.
By choosing x = (−1,−1,−1.5), y = (−1.5,−1.5,−1), u = v = (−2,−2,−2), we have
(x, y), (u, v) ∈ E(G), and 0.2(x, y)+0.8(u, v) = (z, w) /∈ E(G) with z = (−1.8,−1.8,−1.9),
w = (−1.9,−1.9,−1.8). Therefore, E(G) is not convex.

Motivated by these confusions, the authors [27] introduced the coordinate-convexity
such as.

Definition 2.3 ([27], Definition 3.1 ). Let X be a normed space, Ω be a nonempty subset
of X, and G = (V (G), E(G)) be a directed graph such that V (G) = Ω. The set of edges
E(G) is said to be coordinate-convex if for all (p, u), (p, v), (u, p), (v, p) ∈ E(G) and for all
t ∈ [0, 1], we have

t(p, u) + (1− t)(p, v) ∈ E(G) and t(u, p) + (1− t)(v, p) ∈ E(G).

Remark 2.4 ([27], Remark 3.2). If E(G) is convex, then E(G) is coordinate-convex.
However, the set E(G) defined as in [23, Example 4.1] is a coordinate-convex set which
is not convex.

Definition 2.5. Let X be a normed space, Ω be a nonempty subset of X,G=(V (G),E(G))
be a directed graph such that V (G) = Ω and T : Ω −→ Ω be a mapping. Then

(1) ([14], Definition 2.1) T is said to be G-nonexpansive if
(a) T is edge-preserving, that is, for all (u, v) ∈ E(G), we have

(Tu, Tv) ∈ E(G).

(b) ‖Tu− Tv‖ ≤ ‖u− v‖ for all (u, v) ∈ E(G).
(2) ([16], Definition 3.1) T is said to be asymptotically G-nonexpansive if

(a) T is edge-preserving.

(b) There exists a sequence {λn} ⊂ [1,∞) with
∞∑

n=1
(λn − 1) < ∞ such that

for all (u, v) ∈ E(G), we have ‖Tnu−Tnv‖ ≤ λn‖u− v‖, where {λn} is said
to be an asymptotic coefficient sequence.

Remark 2.6. Every G-nonexpansive mapping is a G-asymptotically nonexpansive map-
ping with the asymptotic coefficient sequence λn = 1 for all n ∈ N.

Lemma 2.7 ([16], Theorem 3.3 ). Suppose that

(1) X is a Banach space.
(2) Ω is a nonempty closed and convex subset of X and Ω has property (G).
(3) G = (V (G), E(G)) is a directed graph such that V (G) = Ω.
(4) T : Ω −→ Ω is a G-asymptotically nonexpansive mapping with the asymptotic

coefficient sequence {λn} ⊂ [1,∞) satisfying
∞∑

n=1
(λn − 1) <∞.

(5) {un} weakly converges to u ∈ Ω, (un, un+1) ∈ E(G) and lim
n→∞

‖Tun−un‖ = 0.

Then Tu = u.
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Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, Ω be a nonempty,
closed and convex subset of a Hilbert space H. Now, we recall some basic notions of
Hilbert spaces which we will use in next section.

The nearest point projection of H onto Ω is denoted by PΩ, that is, for all u ∈ H,
‖u− PΩu‖ = inf{‖u− v‖ : v ∈ Ω}. Then PΩ is called the metric projection of H onto Ω.
It is known that for each u ∈ H, q = PΩu is equivalent to 〈u− q, q− v〉 ≥ 0 for all v ∈ Ω.

Lemma 2.8 ([28], p. 5). Let H be a real Hilbert space and Ω be a nonempty, closed and
convex subset of H, and PΩ be a metric projection of H onto Ω. Then for all u ∈ H and
v ∈ Ω, we have

‖v − PΩu‖2 + ‖u− PΩu‖2 ≤ ‖u− v‖2.

Lemma 2.9 ([29], Corollary 2.14). Let H be a real Hilbert space. Then for all u, v ∈ H
and λ ∈ [0, 1], we have

‖λu+ (1− λ)v‖2 = λ‖u‖2 + (1− λ)‖v‖2 − λ(1− λ)‖u− v‖2.

The following result will be used in next section. The proof of this lemma is easy and
is omitted.

Lemma 2.10. Let H be a real Hilbert space. Then for all u, v, w ∈ H, we have

‖u− v‖2 = ‖u− w‖2 + ‖w − v‖2 + 2〈u− w,w − v〉.

Lemma 2.11 ([30], Lemma 1.3). Let H be a real Hilbert space and Ω be a nonempty,
closed and convex subset of H. Then for x, y, z ∈ H and a ∈ R, the following set is convex
and closed. {

w ∈ Ω : ‖y − w‖2 ≤ ‖x− w‖2 + 〈z, w〉+ a
}
.

3. Main Results

First, we denote by F (T ) = {u ∈ Ω : Tu = u} the set of fixed points of the mapping
T : Ω −→ Ω. The following result is a sufficient condition for the closedness and convexity
of the set F (T ) in real Hilbert spaces, where T is a G-asymptotically nonexpansive map-
ping.

Proposition 3.1. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed and convex subset of H.
(3) G = (V (G), E(G)) is a directed graph such that V (G) = Ω.
(4) T : Ω −→ Ω is a G-asymptotically nonexpansive mapping with an asymptotic

coefficient sequence {λn} ⊂ [1,∞) satisfying
∞∑

n=1
(λn − 1) <∞, and

F (T )× F (T ) ⊂ E(G).

Then

(1) If Ω has property (G), then F (T ) is closed.
(2) If the graph G is transitive, E(G) is coordinate-convex, then F (T ) is convex.
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Proof. (1). Suppose that F (T ) 6= ∅. Let {pn} be a sequence in F (T ) such that

lim
n→∞

‖pn − p‖ = 0 (3.1)

for some p ∈ Ω. Due to the fact that F (T )× F (T ) ⊂ E(G), we obtain(pn, pn+1)∈E(G).
Since Ω has property(G), there exists a subsequence{pn(k)}of{pn}such that(pn(k), p)∈E(G)
for k ∈ N. Since T is a G-asymptotically nonexpansive mapping, we obtain

‖p− Tp‖ ≤ ‖p− pn(k)‖+ ‖pn(k) − Tp‖
= ‖p− pn(k)‖+ ‖Tpn(k) − Tp‖
≤ ‖p− pn(k)‖+ λ1‖pn(k) − p‖
= (1 + λ1)‖p− pn(k)‖. (3.2)

It follows from (3.1) and (3.2) that Tp = p and hence p ∈ F (T ). Therefore, F (T ) is closed.
(2). Let p1, p2 ∈ F (T ). For t ∈ [0, 1], we put p = tp1 + (1− t)p2. Since p1, p2 ∈ F (T )

and F (T ) × F (T ) ⊂ E(G), we obtain (p1, p1), (p1, p2), (p2, p1)(p2, p2) ∈ E(G). Since
E(G) is coordinate-convex, we conclude that (p1, p) = t(p1, p1) + (1− t)(p1, p2) ∈ E(G),
(p, p1) = t(p1, p1) + (1− t)(p2, p1) ∈ E(G) and (p2, p) = t(p2, p1) + (1− t)(p2, p2) ∈ E(G).
Due to the fact that T is a G-asymptotically nonexpansive mapping, we get

‖p1 − Tnp‖ = ‖Tnp1 − Tnp‖ ≤ λn‖p1 − p‖ (3.3)

and

‖p2 − Tnp‖ = ‖Tnp2 − Tnp‖ ≤ λn‖p2 − p‖. (3.4)

Furthermore, by using Lemma 2.10, we get

‖p1 − Tnp‖2 = ‖p1 − p‖2 + ‖p− Tnp‖2 + 2〈p1 − p, p− Tnp〉 (3.5)

and

‖p2 − Tnp‖2 = ‖p2 − p‖2 + ‖p− Tnp‖2 + 2〈p2 − p, p− Tnp〉. (3.6)

It follows from (3.3) and (3.5) that

‖p− Tnp‖2 ≤ (λ2
n − 1)‖p1 − p‖2 − 2〈p1 − p, p− Tnp〉 (3.7)

Moreover, we conclude from (3.4) and (3.6) that

‖p− Tnp‖2 ≤ (λ2
n − 1)‖p2 − p‖2 − 2〈p2 − p, p− Tnp〉. (3.8)

By multiplying t on the both sides of (3.7), and multiplying (1− t) on the both sides of
(3.8), we get

‖p− Tnp‖2 ≤ t(λ2
n − 1)‖p1 − p‖2 + (1− t)(λ2

n − 1)‖p2 − p‖2

−2t〈p1 − p, p− Tnp〉 − 2(1− t)〈p2 − p, p− Tnp〉
= t(λ2

n − 1)‖p1 − p‖2 + (1− t)(λ2
n − 1)‖p2 − p‖2

−2〈tp1 + (1− t)p2 − p, p− Tnp〉
= t(λ2

n − 1)‖p1 − p‖2 + (1− t)(λ2
n − 1)‖p2 − p‖2

−2〈0, p− Tnp〉
= t(λ2

n − 1)‖p1 − p‖2 + (1− t)(λ2
n − 1)‖p2 − p‖2. (3.9)
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Since
∞∑

n=1
(λn − 1) <∞, we have lim

n→∞
λn = 1. Therefore, we conclude from (3.9) that

lim
n→∞

‖p− Tnp‖ = 0. (3.10)

Furthermore, since (p1, p) ∈ E(G) and T is edge-preserving, we have (p1, T
np) ∈ E(G).

Then, from the transitive property of G and (p, p1), (p1, T
np) ∈ E(G), we conclude that

(p, Tnp) ∈ E(G). Since T is a G-asymptotically nonexpansive mapping, we obtain

‖Tp− p‖ ≤ ‖Tp− Tn+1p‖+ ‖Tn+1p− p‖ ≤ λ1‖p− Tnp‖+ ‖Tn+1p− p‖. (3.11)

Taking the limit in (3.11) as n → ∞ and using (3.10), we find that Tp = p, that is,
p ∈ F (T ). Therefore, F (T ) is convex.

Let T1, T2 : Ω −→ Ω be two G-asymptotically nonexpansive mappings with the asymp-

totic coefficient sequences {ξn}, {ηn} ⊂ [1,∞) satisfying
∞∑

n=1
(ξn−1)<∞,

∞∑
n=1

(ηn − 1)<∞,

respectively. Putting λn = max{ξn, ηn}, we have {λn} ⊂ [1,∞),
∞∑

n=1
(λn − 1) < ∞ and

by Definition 2.5, we obtain ‖Tn
1 u−Tn

1 v‖ ≤ λn‖u− v‖, ‖Tn
2 u−Tn

2 v‖ ≤ λn‖u− v‖ for all
(u, v) ∈ E(G).

In the following theorems, we will assume that the set F := F (T1)∩F (T2) is nonempty
and bounded in Ω, that is, there exists a positive number κ such that

F ⊂ {u ∈ Ω : ‖u‖ ≤ κ}.
The following theorem shows the convergence of iteration (1.5) to common fixed points

of two G-asymptotically nonexpansive mappings in Hilbert spaces with directed graphs.

Theorem 3.2. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-asymptotically nonexpansive mappings such that
F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.5) such that {an}, {bn} ⊂ [0, 1], and
lim inf
n→∞

an > 0, 0 < lim inf
n→∞

bn ≤ lim sup
n→∞

bn < 1, and (un, p), (p, un) ∈ E(G) for

all p ∈ F , and δn = (λ2
n − 1)an(1 + bnλ

2
n)(‖un‖+ κ)2. .

Then the sequence {un} strongly converges to PFu1.

Proof. The proof of Theorem 3.2 is divided into six steps.
Step 1. We claim that PFu1 is well-defined.
By Proposition 3.1, we conclude that F (T1) and F (T2) are closed and convex. There-

fore, F = F (T1)∩F (T2) is closed and convex. Note that F is nonempty by the assumption.
This fact ensures that PFu1 is well-defined.

Step 2. We claim that PΩn+1u1 is well-defined.
We first prove by mathematical induction that Ωn is closed and convex for n ∈ N.

Obviously, Ω1 = Ω is closed and convex. Now we suppose that Ωk is closed and convex
for some k ∈ N. Then by the definition of Ωk+1 and Lemma 2.11, we conclude that Ωk+1

is closed and convex. Therefore, Ωn is closed and convex for n ∈ N.
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Next, we will prove by mathematical induction that F ⊂ Ωn for all n ∈ N. Obviously,
for all p ∈ F , we have T1p = T2p = p ∈ Ω = Ω1. Therefore, F ⊂ Ω1. We suppose that
F ⊂ Ωk for some k ∈ N. We will show that F ⊂ Ωk+1. Indeed, for all p ∈ F , since
(uk, p) ∈ E(G) and T1 is edge-preserving, we have (T k

1 uk, p) ∈ E(G). Due to the fact
that E(G) is coordinate-convex, we have

(vk, p) =
(
(1− bk)uk + bkT

k
1 uk, p

)
= (1− bk)(uk, p) + bk(T k

1 uk, p) ∈ E(G). (3.12)

Then, using Lemma 2.9 and noting that T1, T2 are G-asymptotically nonexpansive map-
pings, we obtain that

‖wk − p‖2 = ‖(1− ak)(uk − p) + ak(T k
2 vk − p)‖2

= (1− ak)‖uk − p‖2 + ak‖T k
2 vk − p‖2 − ak(1− ak)‖T k

2 vk − uk‖2

≤ (1− ak)‖uk − p‖2 + akλ
2
k‖vk − p‖2 (3.13)

and

‖vk − p‖2 = ‖(1− bk)(uk − p) + bk(T k
1 uk − p)‖2

= (1− bk)‖uk − p‖2 + bk‖T k
1 uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤ (1− bk)‖uk − p‖2 + bkλ
2
k‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

=
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2. (3.14)

By substituting (3.14) into (3.13), we have

‖wk − p‖2 ≤ (1− ak)‖uk − p‖2 + akλ
2
k

(
1 + bk(λ2

k − 1)
)
‖uk − p‖2

= ‖uk − p‖2 + (λ2
k − 1)ak(1 + bkλ

2
k)‖uk − p‖2

≤ ‖uk − p‖2 + (λ2
k − 1)ak(1 + bkλ

2
k)(‖uk‖+ ‖p‖)2

≤ ‖uk − p‖2 + (λ2
k − 1)ak(1 + bkλ

2
k)(‖uk‖+ κ)2

= ‖uk − p‖2 + δk. (3.15)

This implies that p ∈ Ωk+1 and hence F ⊂ Ωk+1. Therefore, we conclude that F ⊂ Ωn

for all n ∈ N. Since F 6= ∅, we have Ωn+1 6= ∅ for all n ∈ N. Therefore, we conclude that
PΩn+1

u1 is well-defined.
Step 3. We claim that lim

n→∞
‖un − u1‖ exists. Indeed, since un = PΩnu1, we have

‖un − u1‖ ≤ ‖x− u1‖ for all x ∈ Ωn. (3.16)

Since un+1 = PΩn+1u1 ∈ Ωn+1 ⊂ Ωn, from (3.16), by taking x = un+1, we obtain

‖un − u1‖ ≤ ‖un+1 − u1‖. (3.17)

Since F is nonempty, closed and convex subset of H, there exists a unique q = PFu1 and
hence q ∈ F ⊂ Ωn. Thus, from (3.16), by taking x = q, we get

‖un − u1‖ ≤ ‖q − u1‖. (3.18)

It follows from (3.17) and (3.18) that the sequence {‖un − u1‖} is bounded and nonde-
creasing. Therefore, lim

n→∞
‖un − u1‖ exists.

Step 4. We claim that lim
n→∞

un = u for some u ∈ Ω. Indeed, since un = PΩnu1, from

Lemma 2.8, we have

‖v − un‖2 + ‖u1 − un‖2 ≤ ‖v − u1‖2 for all v ∈ Ωn. (3.19)
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For m > n, we see that um = PΩmu1 ∈ Ωm ⊂ Ωn. Therefore, from (3.19), by taking
v = um, we have

‖um − un‖2 + ‖u1 − un‖2 ≤ ‖um − u1‖2.

This implies that

‖um − un‖2 ≤ ‖um − u1‖2 − ‖un − u1‖2. (3.20)

Since lim
n→∞

‖un − u1‖ exists, we conclude from (3.20) that lim
m,n→∞

‖um − un‖ = 0 and

hence {un} is a Cauchy sequence. Therefore, there exists u ∈ Ω such that lim
n→∞

un = u.

Furthermore, we also have

lim
n→∞

‖un+1 − un‖ = 0. (3.21)

Step 5. We claim that u ∈ F . Indeed, since un+1 ∈ Ωn+1, by the definition of Ωn+1,
we have

‖wn − un+1‖2 ≤ ‖un − un+1‖2 + δn. (3.22)

Since {un} is bounded, there exists A1 > 0 such that

0 ≤ δn = (λ2
n − 1)an(1 + bnλ

2
n)(‖un‖+ κ)2 ≤ A1(λ2

n − 1)(1 + λ2
n). (3.23)

Taking the limit in (3.23) as n → ∞ and using lim
n→∞

λn = 1, we get lim
n→∞

δn = 0. Then,

from (3.21) and (3.22), we obtain

lim
n→∞

‖wn − un+1‖ = 0. (3.24)

It follows from (3.21), (3.24) and ‖wn − un‖ ≤ ‖wn − un+1‖+ ‖un+1 − un‖ that

lim
n→∞

‖wn − un‖ = 0. (3.25)

Furthermore, we have

‖wn − un‖ = ‖(1− an)un + anT
n
2 vn − un‖ = an‖Tn

2 vn − un‖. (3.26)

Thus, by (3.25), (3.26) and noting that lim inf
n→∞

an > 0, we get

lim
n→∞

‖Tn
2 vn − un‖ = 0. (3.27)

Next, for p ∈ F , by using similar arguments as in the proof of (3.13), (3.14) and (3.15),
we obtain

‖wn − p‖2

≤ (1− an)‖un − p‖2 + anλ
2
n‖vn − p‖2

= (1− an)‖un − p‖2 + anλ
2
n

((
1 + bn(λ2

n − 1)
)
‖un − p‖2 − bn(1− bn)‖Tn

1 un − un‖2
)

≤ ‖un − p‖2 + δn − anbn(1− bn)λ2
n‖Tn

1 un − un‖2

≤ ‖un − p‖2 + δn − anbn(1− bn)‖Tn
1 un − un‖2. (3.28)

Furthermore, it follows from the boundedness property of {un} and {wn} that there
exists A2 > 0 such that ‖un‖ + ‖wn‖ ≤ A2 for all n ∈ N. In this way, we conclude from
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(3.28) that

anbn(1− bn)‖Tn
1 un − un‖2 ≤ ‖un − p‖2 − ‖wn − p‖2 + δn

= ‖un‖2 − ‖wn‖2 + 2〈wn − un, p〉+ δn

≤ (‖un‖ − ‖wn‖)(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ δn

≤ ‖un − wn‖(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ δn

≤ A2‖un − wn‖+ 2‖wn − un‖.‖p‖+ δn. (3.29)

Then, by combining (3.29) with (3.25) and using lim
n→∞

δn = 0, lim inf
n→∞

anbn(1 − bn) > 0,

we get

lim
n→∞

‖Tn
1 un − un‖ = 0. (3.30)

We also have

‖vn − un‖ = ‖(1− bn)un + bnT
n
1 un − un‖

= bn‖Tn
1 un − un‖. (3.31)

It follows from (3.30) and (3.31) that

lim
n→∞

‖vn − un‖ = 0. (3.32)

For p ∈ F , we conclude from (3.12) and the assumption (5) that (vn, p), (p, un) ∈ E(G).
Thus, by combining this and the transitive property of G, we have (vn, un) ∈ E(G). Due
to the fact that T2 is a G-asymptotically nonexpansive mapping and (vn, un) ∈ E(G),
we obtain

‖Tn
2 un − un‖ ≤ ‖Tn

2 un − Tn
2 vn‖+ ‖Tn

2 vn − un‖
≤ λn‖vn − un‖+ ‖Tn

2 vn − un‖. (3.33)

Therefore, we conclude from (3.27), (3.32) and (3.33) that

lim
n→∞

‖Tn
2 un − un‖ = 0. (3.34)

Since (p, un) ∈ E(G) for all p ∈ F and n ∈ N, we have (p, un+1) ∈ E(G). By combining
(un, p), (p, un+1) ∈ E(G) and the transitive property of G, we get (un, un+1) ∈ E(G). For
each i = 1, 2, due to the fact that Ti is a G-asymptotically nonexpansive mapping and
(un, un+1) ∈ E(G), we obtain

‖un+1 − Tn
i un+1‖ ≤ ‖un+1 − un‖+ ‖un − Tn

i un‖+ ‖Tn
i un − Tn

i un+1‖
≤ ‖un+1 − un‖+ ‖un − Tn

i un‖+ λn‖un − un+1‖
= (1 + λn)‖un+1 − un‖+ ‖un − Tn

i un‖. (3.35)

It follows from (3.21), (3.30), (3.34) and (3.35) that

lim
n→∞

‖un+1 − Tn
i un+1‖ = 0. (3.36)

Since (p, un+1) ∈ E(G) for p ∈ F and Ti is edge-preserving, we have (p, Tn
i un+1) ∈ E(G).

By combining this with (un+1, p) ∈ E(G) and using the transitive property of G, we ob-
tain (un+1, T

n
i un+1) ∈ E(G). Due to the fact that Ti is a G-asymptotically nonexpansive

mapping, we get

‖un+1 − Tiun+1‖ ≤ ‖un+1 − Tn+1
i un+1‖+ ‖Tiun+1 − Tn+1

i un+1‖
≤ ‖un+1 − Tn+1

i un+1‖+ λ1‖un+1 − Tn
i un+1‖. (3.37)
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Taking the limit in (3.37) as n→∞ and using (3.30), (3.34), (3.36), we find that

lim
n→∞

‖Tiun − un‖ = 0. (3.38)

Therefore, by Lemma 2.7 and (3.38), we find that T1u = T2u = u and hence u ∈ F .
Step 6. We claim that u = q = PFu1. Indeed, since un = PΩn

u1, we have

〈u1 − un, un − y〉 ≥ 0 for all y ∈ Ωn. (3.39)

Let p ∈ F . Since F ⊂ Ωn, we have p ∈ Ωn. Then, from (3.39), we obtain

〈u1 − un, un − p〉 ≥ 0. (3.40)

Taking the limit in (3.40) as n→∞ and using lim
n→∞

un = u, we find that

〈u1 − u, u− p〉 ≥ 0.

This implies that u = PFu1.

The following theorem shows the convergence of iteration (1.6) to common fixed points
of two G-asymptotically nonexpansive mappings in Hilbert spaces with directed graphs.

Theorem 3.3. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-asymptotically nonexpansive mappings such that
F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.6) such that {an}, {bn} ⊂ [0, 1], and
0 < lim inf

n→∞
an ≤ lim sup

n→∞
an < 1, 0 < lim inf

n→∞
bn ≤ lim sup

n→∞
bn < 1, (un, p), (p, un) ∈

E(G) for all p ∈ F , and σn = (λ2
n − 1)(an + bn − anbn + anbnλ

2
n)(‖un‖+ κ)2.

Then the sequence {un} strongly converges to PFu1.

Proof. The proof of Theorem 3.3 is divided into six steps.
Step 1. We claim that PFu1 is well-defined. By using similar arguments as in the

proof of Step 1 in Theorem 3.2, we conclude that PFu1 is well-defined.
Step 2. We claim that PΩn+1

u1 is well-defined.
First, by using similar arguments as in the proof of Step 2 in Theorem 3.2, we find

that Ωn is closed and convex for n ∈ N.
Next, we will prove by mathematical induction that F ⊂ Ωn for all n ∈ N. Obviously,

for all p ∈ F , we have T1p = T2p = p ∈ Ω = Ω1. Therefore, F ⊂ Ω1. We suppose that
F ⊂ Ωk for some k ∈ N. We will prove that F ⊂ Ωk+1. Indeed, for all p ∈ F , since
(uk, p) ∈ E(G) and T1 is edge-preserving, we have (T k

1 uk, p) ∈ E(G). Therefore, since
E(G) is coordinate-convex, we get

(vk, p) =
(
(1− bk)uk + bkT

k
1 uk, p

)
= (1− bk)(uk, p) + bk(T k

1 uk, p) ∈ E(G). (3.41)
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Then, using Lemma 2.9 and noting that T1, T2 are G-asymptotically nonexpansive map-
pings, we obtain that

‖wk − p‖2 = ‖(1− ak)(vk − p) + ak(T k
2 vk − p)‖2

= (1− ak)‖vk − p‖2 + ak‖T k
2 vk − p‖2 − ak(1− ak)‖T k

2 vk − vk‖2

≤ (1− ak)‖vk − p‖2 + akλ
2
k‖vk − p‖2

=
(
1 + ak(λ2

k − 1)
)
‖vk − p‖2 (3.42)

and

‖vk − p‖2 = ‖(1− bk)(uk − p) + bk(T k
1 uk − p)‖2

= (1− bk)‖uk − p‖2 + bk‖T k
1 uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤ (1− bk)‖uk − p‖2 + bkλ
2
k‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

=
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2. (3.43)

By substituting (3.43) into (3.42), we obtain

‖wk − p‖2 ≤
(
1 + ak(λ2

k − 1)
)(

1 + bk(λ2
k − 1)

)
‖uk − p‖2

= ‖uk − p‖2 + (λ2
k − 1)(ak + bk − akbk + akbkλ

2
k)‖uk − p‖2

≤ ‖uk − p‖2 + (λ2
k − 1)(ak + bk − akbk + akbkλ

2
k)(‖uk‖+ ‖p‖)2

≤ ‖uk − p‖2 + (λ2
k − 1)(ak + bk − akbk + akbkλ

2
k)(‖uk‖+ κ)2

= ‖uk − p‖2 + σk. (3.44)

This implies that p ∈ Ωk+1 and hence F ⊂ Ωk+1. Therefore, we conclude that F ⊂ Ωn

for all n ∈ N. Since F 6= ∅, we have Ωn+1 6= ∅ for all n ∈ N. Therefore, we conclude that
PΩn+1

u1 is well-defined.
Step 3. We claim that lim

n→∞
‖un − u1‖ exists. Indeed, by using similar arguments as

in the proof of Step 3 in Theorem 3.2, we find that there exists a unique q = PFu1 and
lim
n→∞

‖un − u1‖ exists.

Step 4. We claim that lim
n→∞

un = u for some u ∈ Ω. Indeed, by using similar arguments

as in the proof of Step 4 in Theorem 3.2, we find that there exists u ∈ Ω such that
lim
n→∞

un = u and

lim
n→∞

‖un+1 − un‖ = 0. (3.45)

Step 5. We claim that u ∈ F . Indeed, since un+1 ∈ Ωn+1, by the definition of Ωn+1,
we have

‖wn − un+1‖2 ≤ ‖un − un+1‖2 + σn. (3.46)

Since {un} is bounded, there exists B1 > 0 such that

0 ≤ σn = (λ2
n−1)(an+bn−anbn+anbnλ

2
n)(‖un‖+κ)2 ≤ B1(λ2

n−1)(λ2
n+2). (3.47)

Taking the limit in (3.47) as n → ∞ and using lim
n→∞

λn = 1, we get lim
n→∞

σn = 0. Then,

from (3.45) and (3.46), we obtain

lim
n→∞

‖wn − un+1‖ = 0. (3.48)
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Therefore, from (3.45), (3.48) and ‖wn − un‖ ≤ ‖wn − un+1‖+ ‖un+1 − un‖, we obtain

lim
n→∞

‖wn − un‖ = 0. (3.49)

Next, for p ∈ F , by using similar arguments as in the proof of (3.42), (3.43) and (3.44),
we obtain

‖wn − p‖2 ≤
(
1 + an(λ2

n − 1)
)
‖vn − p‖2

≤
(
1+an(λ2

n − 1)
)((

1 + bn(λ2
n − 1)

)
‖un − p‖2 − bn(1− bn)‖Tn

1 un − un‖2
)

= ‖un − p‖2 + (λ2
n − 1)(an + bn − anbn + anbnλ

2
n)‖un − p‖2

−(1− an + anλ
2
n)bn(1− bn)‖Tn

1 un − un‖2

≤ ‖un − p‖2 + σn − (1− an + anλ
2
n)bn(1− bn)‖Tn

1 un − un‖2

≤ ‖un − p‖2 + σn − (1− an)bn(1− bn)‖Tn
1 un − un‖2. (3.50)

Moreover, by the boundedness property of {un} and {wn}, we conclude that there exists
B2 > 0 such that ‖un‖+ ‖wn‖ ≤ B2 for all n ∈ N. It follows from (3.50) that

(1− an)bn(1− bn)‖Tn
1 un − un‖2

≤ ‖un − p‖2 − ‖wn − p‖2 + σn

= ‖un‖2 − ‖wn‖2 + 2〈wn − un, p〉+ σn

≤ (‖un‖ − ‖wn‖)(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ σn

≤ ‖un − wn‖(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ σn

≤ B2‖un − wn‖+ 2‖wn − un‖.‖p‖+ σn. (3.51)

Then, by combining (3.49) with (3.51) and using lim
n→∞

σn = 0, lim inf
n→∞

(1−an)bn(1−bn) > 0,

we conclude that

lim
n→∞

‖Tn
1 un − un‖ = 0. (3.52)

Moreover, we have

‖vn − un‖ = ‖(1− bn)un + bnT
n
1 un − un‖

= bn‖Tn
1 un − un‖. (3.53)

It follows from (3.52) and (3.53), we find that

lim
n→∞

‖vn − un‖ = 0. (3.54)

We also have

‖vn − wn‖ ≤ ‖vn − un‖+ ‖un − wn‖. (3.55)

It follows from (3.49), (3.54) and (3.55) that

lim
n→∞

‖vn − wn‖ = 0. (3.56)

We have

‖wn − vn‖ = ‖(1− an)vn + anT
n
2 vn − vn‖

= an‖Tn
2 vn − vn‖. (3.57)

Therefore, from (3.56), (3.57) and lim inf
n→∞

an > 0, we obtain

lim
n→∞

‖Tn
2 vn − vn‖ = 0. (3.58)
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For p ∈ F , from (3.41) and the assumption (5), we have (vn, p), (p, un) ∈ E(G). Then, by
the transitive property of G, we get that (vn, un) ∈ E(G). Since T2 is a G-asymptotically
nonexpansive mapping and (vn, un) ∈ E(G), we obtain

‖Tn
2 un − un‖ ≤ ‖Tn

2 un − Tn
2 vn‖+ ‖Tn

2 vn − vn‖+ ‖vn − un‖
≤ λn‖un − vn‖+ ‖Tn

2 vn − vn‖+ ‖vn − un‖
= (1 + λn)‖vn − un‖+ ‖Tn

2 vn − vn‖. (3.59)

Thus, we conclude from (3.54), (3.58) and (3.59) that

lim
n→∞

‖Tn
2 un − un‖ = 0. (3.60)

Next, by (3.52), (3.60), and using similar arguments as in the proof of Step 5 in Theo-
rem 3.2, we find that T1u = T2u = u and hence u ∈ F .

Step 6. We claim that u = q = PFu1. Indeed, by using similar arguments as in the
proof of Step 6 in Theorem 3.2, we conclude that u = PFu1.

The following theorem shows the convergence of iteration (1.7) to common fixed points
of two G-asymptotically nonexpansive mappings in Hilbert spaces with directed graphs.

Theorem 3.4. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-asymptotically nonexpansive mappings such that
F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.7) such that {an}, {bn} ⊂ [0, 1], and
0 < lim inf

n→∞
an ≤ lim sup

n→∞
an < 1, 0 < lim inf

n→∞
bn ≤ lim sup

n→∞
bn < 1, (un, p), (p, un) ∈

E(G) for all p ∈ F , and εn = (λ2
n − 1)(1 + anbnλ

2
n)(‖un‖+ κ)2.

Then the sequence {un} strongly converges to PFu1.

Proof. The proof of Theorem 3.4 is divided into six steps.
Step 1. We claim that PFu1 is well-defined. Indeed, by using similar arguments as in

the proof of Step 1 in Theorem 3.2, we find that PFu1 is well-defined.
Step 2. We claim that PΩn+1u1 is well-defined.
First, by using similar arguments as in the proof of Step 2 in Theorem 3.2, we find

that Ωn is closed and convex for n ∈ N.
Next, we will prove by mathematical induction that F ⊂ Ωn for all n ∈ N. Obviously,

for all p ∈ F , we have T1p = T2p = p ∈ Ω = Ω1. Therefore, F ⊂ Ω1. We suppose that
F ⊂ Ωk for some k ∈ N. We will prove that F ⊂ Ωk+1. Indeed, for all p ∈ F , since
(uk, p) ∈ E(G) and T1 is edge-preserving, we have (T k

1 uk, p) ∈ E(G). Due to the fact
that E(G) is coordinate-convex, we obtain

(vk, p) =
(
(1− bk)uk + bkT

k
1 uk, p

)
= (1− bk)(uk, p) + bk(T k

1 uk, p) ∈ E(G). (3.61)
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Then, using Lemma 2.9 and noting that T1, T2 are G-asymptotically nonexpansive map-
pings, we get

‖wk − p‖2 = ‖(1− ak)(T k
1 uk − p) + ak(T k

2 vk − p)‖2

= (1− ak)‖T k
1 uk − p‖2 + ak‖T k

2 vk − p‖2 − ak(1− ak)‖T k
2 vk − T k

1 uk‖2

≤ (1− ak)λ2
k‖uk − p‖2 + akλ

2
k‖vk − p‖2 − ak(1− ak)‖T k

2 vk − T k
1 uk‖2

≤ (1− ak)λ2
k‖uk − p‖2 + akλ

2
k‖vk − p‖2 (3.62)

and

‖vk − p‖2 = ‖(1− bk)(uk − p) + bk(T k
1 uk − p)‖2

= (1− bk)‖uk − p‖2 + bk‖T k
1 uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤ (1− bk)‖uk − p‖2 + bkλ
2
k‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

=
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2. (3.63)

By substituting (3.63) into (3.62), we get

‖wk − p‖2 ≤ (1− ak)λ2
k‖uk − p‖2 + akλ

2
k[1 + bk(λ2

k − 1)]‖uk − p‖2

=
(
λ2
k + akbkλ

2
k(λ2

k − 1)
)
‖uk − p‖2

≤ ‖uk − p‖2 + (λ2
k − 1)(1 + akbkλ

2
k)(‖uk‖+ ‖p‖)2

≤ ‖uk − p‖2 + (λ2
k − 1)(1 + akbkλ

2
k)(‖uk‖+ κ)2

= ‖uk − p‖2 + εk. (3.64)

This implies that p ∈ Ωk+1 and hence F ⊂ Ωk+1. Therefore, we conclude that F ⊂ Ωn

for all n ∈ N. Since F 6= ∅, we have Ωn+1 6= ∅ for all n ∈ N. Therefore, we conclude that
PΩn+1u1 is well-defined.

Step 3. We claim that lim
n→∞

‖un − u1‖ exists. Indeed, by using similar arguments as

in the proof of Step 3 in Theorem 3.2, we find that there exists a unique q = PFu1 and
lim
n→∞

‖un − u1‖ exists.

Step 4. We claim that lim
n→∞

un = u for some u ∈ Ω. Indeed, by using similar arguments

as in the proof of Step 4 in Theorem 3.2, we conclude that there exists u ∈ Ω such that
lim
n→∞

un = u and

lim
n→∞

‖un+1 − un‖ = 0. (3.65)

Step 5. We claim that u ∈ F . Indeed, since un+1 ∈ Ωn+1, by the definition of Ωn+1,
we obtain

‖wn − un+1‖2 ≤ ‖un − un+1‖2 + εn. (3.66)

Since {un} is bounded, there exists C1 > 0 such that

0 ≤ εn = (λ2
n − 1)(1 + anbnλ

2
n)(‖un‖+ κ)2 ≤ C1(λ2

n − 1)(1 + λ2
n). (3.67)

Taking the limit in (3.67) as n → ∞ and using lim
n→∞

λn = 1, we get lim
n→∞

εn = 0. Then,

from (3.65) and (3.66), we obtain

lim
n→∞

‖wn − un+1‖ = 0. (3.68)
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Then, we conclude from (3.65), (3.68) and ‖wn−un‖ ≤ ‖wn−un+1‖+ ‖un+1−un‖ that

lim
n→∞

‖wn − un‖ = 0. (3.69)

Next, for p ∈ F , by using similar arguments as in the proof of (3.62), (3.63) and (3.64),
we obtain

‖wn − p‖2 ≤ (1− an)λ2
n‖un − p‖2 + anλ

2
n‖vn − p‖2

≤ (1− an)λ2
n‖un − p‖2 + anλ

2
n

(
[1 + bn(λ2

n − 1)]‖un − p‖2

−bn(1− bn)‖Tn
1 un − un‖2

)
= ‖un−p‖2+(λ2

n−1)(1+anbnλ
2
n)‖un−p‖2−λ2

nanbn(1−bn)‖Tn
1 un−un‖2

≤ ‖un − p‖2 + εn − λ2
nanbn(1− bn)‖Tn

1 un − un‖2

≤ ‖un − p‖2 + εn − anbn(1− bn)‖Tn
1 un − un‖2. (3.70)

Moreover, by the boundedness property of {un} and {wn}, we find that there exists
C2 > 0 such that ‖un‖+ ‖wn‖ ≤ C2 for all n ∈ N. It follows from (3.70) that

anbn(1− bn)‖Tn
1 un − un‖2 ≤ ‖un − p‖2 − ‖wn − p‖2 + εn

= ‖un‖2 − ‖wn‖2 + 2〈wn − un, p〉+ εn

≤ (‖un‖ − ‖wn‖)(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ εn

≤ ‖un − wn‖(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ εn

≤ C2‖un − wn‖+ 2‖wn − un‖.‖p‖+ εn. (3.71)

Then, by combining (3.71) with (3.69) and using lim
n→∞

εn = 0, lim inf
n→∞

anbn(1 − bn) > 0,

we get

lim
n→∞

‖Tn
1 un − un‖ = 0. (3.72)

By using similar arguments as in the proof of (3.62), (3.63) and (3.64), we obtain

‖wn − p‖2 ≤ (1− an)λ2
n‖un − p‖2 + anλ

2
n‖vn − p‖2 − an(1− an)‖Tn

2 vn − Tn
1 un‖2

≤ (1− an)λ2
n‖un − p‖2 + anλ

2
n[1 + bn(λ2

n − 1)]‖un − p‖2

−an(1− an)‖Tn
2 vn − Tn

1 un‖2

= ‖un − p‖2 + εn − an(1− an)‖Tn
2 vn − Tn

1 un‖2. (3.73)

Therefore, by the boundedness property of {un}, {wn} and using similar arguments as in
the proof of (3.71), from (3.73), we find that

an(1− an)‖Tn
2 vn − Tn

1 un‖2 ≤ ‖un − p‖2 − ‖wn − p‖2 + εn

≤ C2‖un − wn‖+ 2‖wn − un‖.‖p‖+ εn. (3.74)

Then, by combining (3.74) with (3.69) and using lim
n→∞

εn = 0, lim inf
n→∞

an(1 − an) > 0,

we get

lim
n→∞

‖Tn
2 vn − Tn

1 un‖ = 0. (3.75)

We also have

‖vn − un‖ = ‖(1− bn)un + bnT
n
1 un − un‖ = bn‖Tn

1 un − un‖. (3.76)
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It follows from (3.72) and (3.76) that

lim
n→∞

‖vn − un‖ = 0. (3.77)

We have

‖Tn
2 vn − vn‖ ≤ ‖Tn

2 vn − Tn
1 un‖+ ‖Tn

1 un − un‖+ ‖un − vn‖. (3.78)

Therefore, we conclude from (3.72), (3.75), (3.77) and (3.78) that

lim
n→∞

‖Tn
2 vn − vn‖ = 0. (3.79)

For p ∈ F , from (3.61) and the assumption (5), we get (vn, p), (p, un) ∈ E(G). Then,
by transitive property of G, we obtain (vn, un) ∈ E(G). Since T2 is a G-asymptotically
nonexpansive mapping and (vn, un) ∈ E(G), we have

‖Tn
2 un − un‖ ≤ ‖Tn

2 un − Tn
2 vn‖+ ‖Tn

2 vn − vn‖+ ‖vn − un‖
≤ λn‖vn − un‖+ ‖Tn

2 vn − vn‖+ ‖vn − un‖
= (1 + λn)‖vn − un‖+ ‖Tn

2 vn − vn‖. (3.80)

It follows from (3.77), (3.79) and (3.80) that

lim
n→∞

‖Tn
2 un − un‖ = 0. (3.81)

Next, by (3.72), (3.81), and using similar arguments as in the proof of Step 5 in Theo-
rem 3.2, we find that T1u = T2u = u and hence u ∈ F .

Step 6. We claim that u = q = PFu1. Indeed, by using similar arguments as in the
proof of Step 6 in Theorem 3.2, we conclude that u = PFu1.

The following theorem shows the convergence of iteration (1.8) to common fixed points
of two G-asymptotically nonexpansive mappings in Hilbert spaces with directed graphs.

Theorem 3.5. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-asymptotically nonexpansive mappings such that
F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.8) such that {an}, {bn} ⊂ [0, 1], and
0 < lim inf

n→∞
an ≤ lim sup

n→∞
an < 1, 0 < lim inf

n→∞
bn ≤ lim sup

n→∞
bn < 1, (un, p), (p, un) ∈

E(G) for all p ∈ F , and γn = (λ2
n − 1)(1 + bnλ

2
n)(‖un‖+ κ)2.

Then the sequence {un} strongly converges to PFu1.

Proof. The proof of Theorem 3.5 is divided into six steps.
Step 1. We claim that PFu1 is well-defined. Indeed, by using similar arguments as in

the proof of Step 1 in Theorem 3.2, we conclude that PFu1 is well-defined.
Step 2. We claim that PΩn+1u1 is well-defined.
First, by using similar arguments as in the proof of Step 2 in Theorem 3.2, we find

that Ωn is closed and convex for n ∈ N.
Next, we will prove by mathematical induction that F ⊂ Ωn for all n ∈ N. Obviously,

for all p ∈ F , we have T1p = T2p = p ∈ Ω = Ω1. Therefore, F ⊂ Ω1. We suppose that
F ⊂ Ωk for some k ∈ N. We will prove that F ⊂ Ωk+1. Indeed, for all p ∈ F , since
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(uk, p) ∈ E(G) and T1 is edge-preserving, we have (T k
1 uk, p) ∈ E(G). Due to the fact

that E(G) is coordinate-convex, we get

(vk, p) =
(
(1− bk)uk + bkT

k
1 uk, p

)
= (1− bk)(uk, p) + bk(T k

1 uk, p) ∈ E(G). (3.82)

Then, using Lemma 2.9 and noting that T1, T2 are G-asymptotically nonexpansive map-
pings, we find that

‖wk − p‖2 = ‖(1− ak)(T k
1 vk − p) + ak(T k

2 vk − p)‖2

= (1− ak)‖T k
1 vk − p‖2 + ak‖T k

2 vk − p‖2 − ak(1− ak)‖T k
2 vk − T k

1 vk‖2

≤ (1− ak)λ2
k‖vk − p‖2 + akλ

2
k‖vk − p‖2 − ak(1− ak)‖T k

2 vk − T k
1 vk‖2

= λ2
k‖vk − p‖2 − ak(1− ak)‖T k

2 vk − T k
1 vk‖2

≤ λ2
k‖vk − p‖2 (3.83)

and

‖vk − p‖2 = ‖(1− bk)(uk − p) + bk(T k
1 uk − p)‖2

= (1− bk)‖uk − p‖2 + bk‖T k
1 uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤ (1− bk)‖uk − p‖2 + bkλ
2
k‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

=
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2 − bk(1− bk)‖T k

1 uk − uk‖2

≤
(
1 + bk(λ2

k − 1)
)
‖uk − p‖2. (3.84)

By substituting (3.84) into (3.83), we obtain

‖wk − p‖2 ≤ λ2
k‖vk − p‖2

= λ2
k

(
1 + bk(λ2

k − 1)
)
‖uk − p‖2

= ‖uk − p‖2 + (λ2
k − 1)(1 + bkλ

2
k)‖uk − p‖2

≤ ‖uk − p‖2 + (λ2
k − 1)(1 + bkλ

2
k)(‖uk‖+ ‖p‖)2

≤ ‖uk − p‖2 + (λ2
k − 1)(1 + bkλ

2
k)(‖uk‖+ κ)2

= ‖uk − p‖2 + γk. (3.85)

This implies that p ∈ Ωk+1 and hence F ⊂ Ωk+1. Therefore, we conclude that F ⊂ Ωn

for all n ∈ N. Since F 6= ∅, we have Ωn+1 6= ∅ for all n ∈ N. Therefore, we conclude that
PΩn+1u1 is well-defined.

Step 3. We claim that lim
n→∞

‖un − u1‖ exists. Indeed, by using similar arguments as

in the proof of Step 3 in Theorem 3.2, we conclude that there exists a unique q = PFu1

and lim
n→∞

‖un − u1‖ exists.

Step 4. We claim that lim
n→∞

un = u for some u ∈ Ω. Indeed, by using similar arguments

as in the proof of Step 4 in Theorem 3.2, we find that there exists u ∈ Ω such that
lim
n→∞

un = u and

lim
n→∞

‖un+1 − un‖ = 0. (3.86)

Step 5. We claim that u ∈ F . Indeed, since un+1 ∈ Ωn+1, by the definition of Ωn+1,
we have

‖wn − un+1‖2 ≤ ‖un − un+1‖2 + γn. (3.87)
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Since {un} is bounded, there exists D1 > 0 such that

0 ≤ γn = (λ2
n − 1)(1 + bnλ

2
n)(‖un‖+ κ)2 ≤ D1(λ2

n − 1)(1 + λ2
n). (3.88)

Taking the limit in (3.88) as n → ∞ and using lim
n→∞

λn = 1, we get lim
n→∞

γn = 0. Then,

from (3.86) and (3.87), we obtain

lim
n→∞

‖wn − un+1‖ = 0. (3.89)

Therefore, from (3.86), (3.89) and ‖wn−un‖ ≤ ‖wn−un+1‖+‖un+1−un‖, we find that

lim
n→∞

‖wn − un‖ = 0. (3.90)

Next, for p ∈ F , by using similar arguments as in the proof of (3.83), (3.84) and (3.85),
we obtain

‖wn − p‖2 ≤ λ2
n‖vn − p‖2

≤ λ2
n

(
1 + bn(λ2

n − 1)
)
‖un − p‖2 − λ2

nbn(1− bn)‖Tn
1 un − un‖2

≤ ‖un − p‖2 + (λ2
n − 1)(1 + bnλ

2
n)‖un − p‖2 − bn(1− bn)‖Tn

1 un − un‖2

≤ ‖un − p‖2 + γn − bn(1− bn)‖Tn
1 un − un‖2. (3.91)

Moreover, by the boundedness property of {un} and {wn}, we conclude that there exists
D2 > 0 such that ‖un‖+ ‖wn‖ ≤ D2 for all n ∈ N. It follows from (3.91) that

bn(1− bn)‖Tn
1 un − un‖2 ≤ ‖un − p‖2 − ‖wn − p‖2 + γn

= ‖un‖2 − ‖wn‖2 + 2〈wn − un, p〉+ γn

≤ (‖un‖ − ‖wn‖)(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ γn

≤ ‖un − wn‖(‖un‖+ ‖wn‖) + 2‖wn − un‖.‖p‖+ γn

≤ D2‖un − wn‖+ 2‖wn − un‖.‖p‖+ γn. (3.92)

Therefore, by combining (3.92) with (3.90) and using lim
n→∞

γn = 0, lim inf
n→∞

bn(1− bn) > 0,

we get

lim
n→∞

‖Tn
1 un − un‖ = 0. (3.93)

By using similar arguments as in the proof of (3.83), (3.84) and (3.85), we have

‖wn − p‖2 ≤ λ2
n‖vn − p‖2 − an(1− an)‖Tn

2 vn − Tn
1 vn‖2

≤ λ2
n[1 + bn(λ2

n − 1)]‖un − p‖2 − an(1− an)‖Tn
2 vn − Tn

1 vn‖2

= ‖un − p‖2 + (λ2
n − 1)(1 + bnλ

n
2 )‖un − p‖2 − an(1− an)‖Tn

2 vn − Tn
1 vn‖2

≤ ‖un − p‖2 + γn − an(1− an)‖Tn
2 vn − Tn

1 vn‖2. (3.94)

Furthermore, by the boundedness property of {un}, {wn} and using similar arguments
as in the proof of (3.92), from (3.94), we find that

an(1− an)‖Tn
2 vn − Tn

1 vn‖2 ≤ ‖un − p‖2 − ‖wn − p‖2 + γn

≤ D2‖un − wn‖+ 2‖wn − un‖.‖p‖+ γn. (3.95)

Then, by combining (3.90) with (3.95) and using lim
n→∞

γn = 0, lim inf
n→∞

an(1 − an) > 0,

we get

lim
n→∞

‖Tn
2 vn − Tn

1 vn‖ = 0. (3.96)
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We have

‖vn − un‖ = ‖(1− bn)un + bnT
n
1 un − un‖ = bn‖Tn

1 un − un‖. (3.97)

Therefore, we conclude from (3.93) and (3.97) that

lim
n→∞

‖vn − un‖ = 0. (3.98)

For p ∈ F , from (3.82) and the assumption (5), we have (vn, p), (p, un) ∈ E(G). Then, by
the transitive property of G, we obtain (vn, un) ∈ E(G). Since T1 is a G-asymptotically
nonexpansive mapping and (vn, un) ∈ E(G), we get

‖Tn
1 vn − vn‖ ≤ ‖Tn

1 vn − Tn
1 un‖+ ‖Tn

1 un − un‖+ ‖un − vn‖
≤ λn‖vn − un‖+ ‖Tn

1 un − un‖+ ‖un − vn‖
= (1 + λn)‖vn − un‖+ ‖Tn

1 un − un‖ (3.99)

It follows from (3.98), (3.93) and (3.99) that

lim
n→∞

‖Tn
1 vn − vn‖ = 0. (3.100)

We have

‖Tn
2 vn − vn‖ ≤ ‖Tn

2 vn − Tn
1 vn‖+ ‖Tn

1 vn − vn‖. (3.101)

Therefore, from (3.96), (3.100) and (3.101), we get

lim
n→∞

‖Tn
2 vn − vn‖ = 0. (3.102)

By combining (vn, p), (p, un) ∈ E(G) and the transitive property of G, we conclude that
(vn, un) ∈ E(G). Since T2 is a G-asymptotically nonexpansive mapping and (vn, un) ∈
E(G), we have

‖Tn
2 un − un‖ ≤ ‖Tn

2 un − Tn
2 vn‖+ ‖Tn

2 vn − vn‖+ ‖vn − un‖
≤ λn‖vn − un‖+ ‖Tn

2 vn − vn‖+ ‖vn − un‖
= (1 + λn)‖vn − un‖+ ‖Tn

2 vn − vn‖. (3.103)

Then, we conclude from (3.98), (3.102) and (3.103) that

lim
n→∞

‖Tn
2 un − un‖ = 0. (3.104)

Next, by (3.93), (3.104), and using similar arguments as in the proof of Step 5 in Theo-
rem 3.2, we find that T1u = T2u = u and hence u ∈ F .

Step 6. We claim that u = q = PFu1. Indeed, by using similar arguments as in the
proof of Step 6 in Theorem 3.2, we find that u = PFu1.

Since every G-nonexpansive mapping is a G-asymptotically nonexpansive mapping
with the asymptotic coefficient λn = 1 for all n ∈ N, by Theorem 3.2, Theorem 3.3,
Theorem 3.4, Theorem 3.5 we get the following corollaries. Note that these corollaries are
the improvement of [25, Theorem 1], [25, Theorem 2], [25, Theorem 3] and [25, Theorem
4] in the sense that the convexity of E(G) is replaced by coordinate-convexity.

Corollary 3.6. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
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(4) T1, T2 : Ω −→ Ω are two G-nonexpansive mappings such that F = F (T1) ∩
F (T2) 6= ∅, F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.1) such that {an}, {bn} ⊂ [0, 1], and
lim inf
n→∞

an > 0, 0 < lim inf
n→∞

bn ≤ lim sup
n→∞

bn < 1, and (un, p), (p, un) ∈ E(G) for

all p ∈ F .

Then the sequence {un} strongly converges to PFu1.

Corollary 3.7. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-nonexpansive mappings such that F = F (T1) ∩
F (T2) 6= ∅, F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.2) such that {an}, {bn} ⊂ [0, 1], and
0 < lim inf

n→∞
an ≤ lim sup

n→∞
an < 1, 0 < lim inf

n→∞
bn ≤ lim sup

n→∞
bn < 1, (un, p), (p, un) ∈

E(G) for all p ∈ F .

Then the sequence {un} strongly converges to PFu1.

Corollary 3.8. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-nonexpansive mappings such that F = F (T1) ∩
F (T2) 6= ∅, F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.3) such that {an}, {bn} ⊂ [0, 1], and
0 < lim inf

n→∞
an ≤ lim sup

n→∞
an < 1, 0 < lim inf

n→∞
bn ≤ lim sup

n→∞
bn < 1, (un, p), (p, un) ∈

E(G) for all p ∈ F .

Then the sequence {un} strongly converges to PFu1.

Corollary 3.9. Assume that

(1) H is a real Hilbert space.
(2) Ω is a nonempty closed, convex subset of H and Ω has property (G).
(3) G = (V (G), E(G)) is a directed and transitive graph, V (G) = Ω and E(G) is

coordinate-convex.
(4) T1, T2 : Ω −→ Ω are two G-nonexpansive mappings such that F = F (T1) ∩
F (T2) 6= ∅, F (Ti)× F (Ti) ⊂ E(G) for all i = 1, 2.

(5) {un} is the sequence generated by (1.4) such that {an}, {bn} ⊂ [0, 1], and
0 < lim inf

n→∞
an ≤ lim sup

n→∞
an < 1, 0 < lim inf

n→∞
bn ≤ lim sup

n→∞
bn < 1, (un, p), (p, un) ∈

E(G) for all p ∈ F .

Then the sequence {un} strongly converges to PFu1.

Finally, we give a numerical example to illustrate for the convergence of the proposed
iteration processes to common fixed points two asymptotically G-nonexpansive mappings.
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In addition, the example also shows that the convergence of the proposed iteration pro-
cesses to common fixed points of given mappings are faster than known others.

Example 3.10. Let H = R, Ω = [0.5, 2], and G = (V (G), E(G)) be a directed graph
defined by V (G) = Ω, (u, v) ∈ E(G) if and only if 0.5 ≤ u 6= v ≤ 1.7 or u = v ∈ Ω.
Then E(G) is coordinate-convex and {(u, u) : u ∈ V (G)} ⊂ E(G). Define two mappings
T1, T2 : Ω −→ Ω by

T1u =
20

31
arcsin(u− 1) + 1, T2u = ulnu for all u ∈ Ω.

Consider an =
n+ 2

4n+ 5
and bn =

n+ 1

3n+ 7
for all n ∈ N. Then T1, T2 are two asymptotically

G-nonexpansive mappings with λn = 1 for all n ∈ N . Indeed, for all (u, v) ∈ E(G),
we only consider 0.5 ≤ u, v ≤ 1.7. Thus, for each i = 1, 2 we get 0.5 ≤ Tiu, Tiv ≤ 1.7
and hence (Tiu, Tiv) ∈ E(G). This implies that T1, T2 are edge-preserving. Moreover, by
calculating directly, we conclude that ‖Tn

i u − Tn
i v‖ ≤ ‖u − v‖ for all (u, v) ∈ E(G) and

for each i = 1, 2. Therefore, T1, T2 are two G-asymptotically nonexpansive mappings. We
also have F (T1) ∩ F (T2) = {1} 6= ∅. By choosing u1 = 1.4. From the iteration processes
{un} generated by (1.1)–(1.8), we obtain the following iteration processes.

Iter.(1.1):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT1un

wn = (1− an)un + anT2vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.2):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT1un

wn = (1− an)vn + anT2vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.3):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT1un

wn = (1− an)T1un + anT2vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.4):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT1un

wn=(1−an)T1vn+anT2vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.5):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT
n
1 un

wn = (1− an)un + anT
n
2 vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.6):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT
n
1 un

wn = (1− an)vn + anT
n
2 vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.7):



u1 = 1.4,Ω1 = Ω

vn = (1− bn)un + bnT
n
1 un

wn =(1−an)Tn
1 un+anT

n
2 vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Iter.(1.8):



u1 = 1.4,Ω1 = Ω

vn = (1−bn)un+bnT
n
1 un

wn=(1−an)Tn
1 vn+anT

n
2 vn

Ωn+1 = [0.5, un+wn

2 ]

un+1 = un+wn

2 .

Numerical results of the iteration processes (1.1)–(1.8) are presented by the following
table and figure.
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Table 1. Comparison of the rate of convergences of iteration processes (1.1)–(1.8).

n (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) (1.8)
1 1.4000000 1.4000000 1.4000000 1.4000000 1.4000000 1.4000000 1.4000000 1.4000000
2 1.3509601 1.3419931 1.306125 1.2998519 1.3509601 1.3419931 1.306125 1.2998519
3 1.3095293 1.2920305 1.2323242 1.2217892 1.2977383 1.2744698 1.1986696 1.1884618

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
23 1.0229087 1.0082666 1.0005835 1.0002762 1.0168919 1.0011666 1.0000003 1.0000003
24 1.0200088 1.0068644 1.0004315 1.0001969 1.0147151 1.0008796 1.0000002 1.0000001
25 1.0174733 1.0056995 1.0003191 1.0001403 1.0128211 1.000663 1.0000001 1.0000001
26 1.0152572 1.0047318 1.000236 1.0001 1.0111727 1.0004997 1. 1.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
48 1.000768 1.0000786 1.0000003 1.0000001 1.0005551 1.000001 1. 1.
49 1.0006706 1.0000653 1.0000002 1. 1.0004847 1.0000007 1. 1.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
54 1.0003405 1.0000257 1.0000001 1. 1.000246 1.0000002 1. 1.
55 1.0002974 1.0000214 1. 1. 1.0002149 1.0000001 1. 1.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
58 1.0001981 1.0000122 1. 1. 1.0001431 1.0000001 1. 1.
59 1.0001731 1.0000102 1. 1. 1.000125 1. 1. 1.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
87 1.0000039 1.0000001 1. 1. 1.0000029 1. 1. 1.
88 1.0000035 1. 1. 1. 1.0000025 1. 1. 1.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
117 1.0000001 1. 1. 1. 1.0000001 1. 1. 1.
118 1.0000001 1. 1. 1. 1. 1. 1. 1.
119 1.0000001 1. 1. 1. 1. 1. 1. 1.
120 1. 1. 1. 1. 1. 1. 1. 1.

Figure 1. Comparison of the convergence of iteration processes (1.1)–(1.8).

The above table and figure show that the iteration processes (1.1)–(1.8) converge to 1.
Furthermore, the convergence of the iteration process (1.7) and the iteration process (1.8)
to 1 are faster than the iteration processes (1.1)–(1.4) in [25].
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