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Abstract In this paper, we investigate a convex optimization problem in the face of data uncertainty

in both objective and constraint functions. The notion of an ε-quasi highly robust solution (one sort of

approximate solutions) for the convex optimization problem with data uncertainty is introduced. The

highly robust approximate optimality theorems for ε-quasi highly robust solutions of uncertain convex

optimization problem are established by means of a robust optimization approach (worst-case approach).

Furthermore, the highly robust approximate duality theorems in terms of Wolfe type on ε-quasi highly

robust solutions for the uncertain convex optimization problem are obtained. Moreover, to illustrate the

obtained results or support this study, some examples are presented.
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1. Introduction

In these days, the robust optimization technique has been recognized as one of the
powerful deterministic methodologies that investigates an optimization problem with data
uncertainty within the objective or constraint functions. Employing this methodology,
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many interesting results are obtained for various sorts of uncertain optimization problems,
see, e.g., [1–10]. There have been proposed numerous ways to define robust solutions for
uncertain programming problems. Among the first one in all such notions is that the so-
called strictly robust solution also called minimax robust solution, which was introduced by
Soyster [11]. This concept is to have a solution that is feasible for all possible scenarios
and is obtained composed by minimizing the objective function within the worst-case
scenario. The notion of the strictly robust solution has been studied extensively from
different aspects (see, e.g., [12–16]). Another solution concept is that of a highly robust
solution which was introduced to study the various uncertain multiobjective programming
problems; see, e.g., [17–19]. To the best of our knowledge, this notion for an uncertain
(single-objective) programming problem has been not shown so far. It is worth noting that
the notion of a strictly robust solution coincides therewith of the highly robust solution if
the objective function of single-objective programming problems is uncertainty-free; see,
e.g., [3, 8, 20, 21]. The notion of a highly robust solution is stricter than that of the strictly
robust solution when the objective function is in the face of data uncertainty. Nevertheless,
in many cases, it is enough to study the highly robust solution for an uncertain single-
objective programming problem; see, e.g., [18, 19, 22].

On the other hand, finding minimizers of optimization problems might not be always
possible, and then it leads to the notion of approximate solutions that play a crucial role in
the algorithmic study of optimization problems. Among such approximate solutions, the
notion of ε-quasi solution first introduced by Loridan [23]. Since then many researchers
have studied the approximate solutions in optimization programming problems and ap-
proximate necessary conditions under different suitable constrained qualifications have
been established, see [21, 24–28] and also the references therein, for example.

To the best of our knowledge, there are only a few papers to deal with approximate
optimal solutions of optimization problems with data uncertainty in both objective and
constraint functions, for example, [29, 30]. More precisely, by virtue of the epigraphs of
the conjugates of the constraint functions, Sun et. al. [30] obtained some approximate
optimality conditions for the robust quasi approximate optimal solution of an uncertain
semi-infinite optimization problem. The notion of their obtained approximate solutions
is given to approximate the strictly robust solutions to the problems. However, as far as
we are concerned, the notion of approximate solutions to approximate the highly robust
solutions for uncertain optimization problems has been not presented so far. A natural
question is: “How about the study of approximate optimality conditions and approximate
duality theorems for an approximate solution that approximates the highly robust solutions
to an uncertain convex optimizaion problem?”. This paper is an effort in this direction.

In this paper, we propose and analyse ε-quasi highly robust solutions of single-objective
convex optimization problems with data uncertainty in both the objective and the con-
straint functions. Firstly, we introduce the concept of an ε-quasi highly robust solution
for the problem. Then we establish highly robust approximate optimality theorems for
the problem under a robust characteristic cone constraint qualification, introduced in [3].
Furthermore, for such ε-quasi highly robust solutions of the primal convex uncertain opti-
mization, we formulate a Wolfe type dual problem for the primal one. Then we propose a
highly robust approximate weak duality and a highly robust approximate strong duality
between the primal problem and its Wolfe type dual problem, and also give an example
to illustrate the approximate duality theorems.
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The organization of this paper is as follows. Section 2 collects some notations and exist-
ing results for their subsequent use. Section 3 establishes some highly robust approximate
optimality theorems for ε-quasi highly robust solutions of convex optimization problems
with data uncertainty. In Section 4, highly robust approximate duality theorems in terms
of Wolfe type on ε-quasi highly robust solutions of the problems are presented. Section 5
devotes to the conclusion.

2. Preliminary

Let us first recall some notation and preliminary results which will be used throughout
this paper. Throughout the paper, let Rn, n ∈ N, be the n-dimensional Euclidean space,
and the inner product and the norm of Rn are denoted respectively by 〈·, ·〉 and ‖ · ‖.
The symbol B(x, r) stands for the open ball centered at x ∈ Rn with the radius r > 0
while the B stands for the closed unit ball in Rn. For a nonempty subset A ⊆ Rn, we
denote the notations of the closure, boundary and convex hull of A by clA, bdA, and
coA, respectively. Specially, when λx ∈ A ⊆ Rn for every λ ≥ 0 and every x ∈ A, the set
A is said to be a cone. A dual cone A∗ of the cone A is given as A∗ := {x ∈ Rn : 〈x, y〉 ≥
0 for all y ∈ A}. Observe that the dual cone A∗ is always closed and convex (regardless
of A).

For any extended real-valued function f : Rn → R := [−∞,+∞] the following nota-
tions stand, respectively, for its effective domain and epigraph:

domf := {x ∈ Rn : f(x) < +∞},

and

epif := {(x, r) ∈ Rn × R : f(x) ≤ r}.

The function h is said to be a proper function if and only if f(x) > −∞ for every x ∈ Rn
and domf is nonempty. Further, it is said to be a convex function if for any x, y ∈ Rn
and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

or equivalently, epif is convex. On the other hand, the function f is said to be a concave
function if and only if −f is a convex function. Simultaneously, the function f is called
a lower semicontinuous at x ∈ Rn if for every sequence {xk} ⊆ Rn converging to x,

f(x) ≤ lim inf
k→∞

f(xk).

Equivalently,

f(x) ≤ lim inf
y→x

f(y),

where the term on the right-hand side of the inequality denotes the lower limit of the
function h defined as

lim inf
y→x

f(y) = lim
r↓0

inf
y∈B(x,r)

f(y).

For any proper and convex function f : Rn → R, the subdifferential of f at x̄ ∈ domf , is
defined by

∂f(x̄) := {ξ ∈ Rn : 〈ξ, x− x̄〉 ≤ f(x)− f(x̄),∀x ∈ Rn}.
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More generally, for each ε ≥ 0, the ε-subdifferential of f at x̄ ∈ domf , is defined by

∂εf(x̄) := {ξ ∈ Rn : 〈ξ, x− x̄〉 ≤ f(x)− f(x̄) + ε, ∀x ∈ Rn}.
It is obvious that for ε ≥ ε′, we have ∂ε′f(x̄) ⊆ ∂εf(x̄). Specially, if f is a proper lower
semicontinuous convex function, then for every x̄ ∈ domf, the ε-subdifferential ∂εf(x̄) is
a nonempty closed convex set and

∂f(x̄) =
⋂
ε>0

∂εf(x̄).

If x /∈ domf, then we set ∂f(x) = ∅.
The Legendre-Fenchel conjugate function of f : Rn → R is f∗ : Rn → R defined by

f∗(x∗) := sup
x∈Rn

{〈x∗, x〉 − f(x)}

for all x ∈ Rn. The function f∗ is lower semicontinuous convex irrespective of the nature
of f but for f∗ to be proper, we need f to be a proper convex function.

Now, we collect the following propositions and a constraint qualification which useful
in our later analysis.

Proposition 2.1. [31] Let f : Rn → R be a proper lower semicontinuous convex function
and a ∈ domf := {x ∈ Rn : f(x) < +∞}. Then

epi f∗ =
⋃
ε≥0

{(v, 〈v, a〉+ ε− f(a)) : v ∈ ∂εf(a)} .

Proposition 2.2. [32] Letf, g : Rn → R be proper lower semicontinuous convex functions.
If domf ∩ domg 6= ∅, then

epi (f + g)∗ = cl(epi f∗ + epi g∗).

Moreover, if one of the functions f and g is continuous, then

epi (f + g)∗ = cl(epi f∗ + epi g∗).

Proposition 2.3. [3] Let gi : Rn×Rq → R, i = 1, . . .m be continuous functions. Suppose
that each Vi ⊆ Rq, i = 1, . . . ,m, is convex, for all vi ∈ Rq, gi(·, vi) is a convex function,

and for each x ∈ Rn, gi(x, ·) is concave on Vi. Then the cone
⋃

vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
is convex.

Proposition 2.4. [3] Let gi : Rn×Rq → R, i = 1, . . .m be continuous functions. Suppose
that each Vi ⊆ Rq, i = 1, . . . ,m, is compact and convex, for all vi ∈ Rq, gi(·, vi) is a convex
function, and there exists y ∈ Rn such that gi(y, vi) < 0,∀vi ∈ Vi, i ∈ I. Then the cone⋃
vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
is closed.

Proposition 2.5. [33] Let f : Rn → R be a convex function and let gi : Rn×Rq → R, i ∈ I
be continuous functions such that for each vi ∈ Rq, g(·, vi) is convex. Let Vi ⊆ Rq, i ∈ I
be compact and let K := {x ∈ Rn : gi(x, vi) ≤ 0,∀vi ∈ Vi, i ∈ I} 6= ∅. Then the following
statements are equivalent:

(i) K ⊆ {x ∈ Rn : f(x) ≥ 0};
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(ii) (0, 0) ∈ epi f∗ + cl

co
⋃

vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗ .

The following constraint qualification, which was introduced in [3], plays a key role in
obtaining results in the paper.

Definition 2.6. [3] Let gi : Rn × Rq → R, i = 1, . . .m be functions such that for all
vi ∈ Rq, gi(·, vi) is convex. Then the robust characteristic cone constraint qualification

(RCCCQ) is satisfied if the cone
⋃

vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
is closed and convex.

To conclude this section, we recall concepts of a convex optimization problem with
data uncertainty and notions of its robust solutions as well as introduce a new concept
of approximate solution for the highly robust solutions of the problem. Firstly, we begin
by considering the following deterministic convex program:

Minimize f(x) subject to gi(x) ≤ 0, i = 1, . . . ,m, (P)

where f : Rn → R, is a convex function and for each i ∈ I := {1, . . . ,m}, gi : Rn → R
is a convex function. The following parameterized convex program is an analogue of the
deterministic convex program (P) if the objective as well as the constraints are uncertain:

Minimize f(x, u) subject to gi(x, vi) ≤ 0, i ∈ I. (UP)

Here u is an uncertain parameter belonging to a compact convex uncertainty set U ⊆ Rp,
for each u ∈ U , f(·, u) : Rn → R is a convex function, and for each i ∈ I, vi belongs
to a compact convex set Vi ⊆ Rq, gi(·, vi) is convex. By enforcing the constraints for
all possible uncertainty within Vi, i ∈ I, the problem (UP) becomes an uncertain convex
semi-infinite program:

Minimize f(x, u) subject to gi(x, vi) ≤ 0,∀vi ∈ Vi, i ∈ I. (2.1)

In other words, we study the uncertain convex programming problem (UP) by examining
its robust (worst-case) counterpart. Let K := {x ∈ Rn : gi(x, vi) ≤ 0,∀vi ∈ Vi, i ∈ I},
then it is termed as the robust feasible set of (UP). To avoid triviality in (2.1), we always
assume that K 6= ∅.

In the literature, there are multiple ways of defining robust solutions for (UP). In
the following, we recall two concepts of the robust solutions of the uncertain program
(UP). The first notion commonly referred to as strictly robust solution or robust minimax
solution, can be found in [2, 11]. This concept has been studied extensively by many
authors, see, e.g., [7, 10, 13, 19].

Definition 2.7. A feasible point x̄ ∈ K is said to be a strictly robust solution for (UP)
if for each x ∈ K,

max
u∈U

f(x, u) ≥ max
u∈U

f(x̄, u).

The second one called highly robust solution can be found in Bitran [17]. This concept
was also investigated for different uncertain multiobjective optimization problems, see,
e.g., [18, 19].
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Definition 2.8. A feasible point x̄ ∈ K is said to be a highly robust solution for (UP) if
for each u ∈ U and x ∈ K,

f(x, u) ≥ f(x̄, u).

The following notion is a concept of approximate solution that approximates the strictly
robust solutions. It was investigated in a few papers, see, e.g. [30].

Definition 2.9. Let ε ≥ 0 be given. A feasible point x̄ ∈ K is said to be an ε-quasi
strictly robust solution (or a robust quasi ε optimal solution) for (UP) if for each x ∈ K,

max
u∈U

f(x, u) +
√
ε‖x− x̄‖ ≥ max

u∈U
f(x̄, u).

Clearly, if ε = 0, then an ε-quasi strictly robust solution for (UP) reduces to be a strictly
robust solution for (UP).

Now, we introduce a new concept of solution to approximate the highly robust solutions
for (UP).

Definition 2.10. Let ε ≥ 0 be given. A feasible point x̄ ∈ K is said to be an ε-quasi
highly robust solution (or a highly robust quasi ε-optimal solution) for (UP) if for each
u ∈ U and x ∈ K,

f(x, u) +
√
ε‖x− x̄‖ ≥ f(x̄, u).

Clearly, if ε = 0, then an ε-quasi highly robust solution for (UP) reduces to be a highly
robust solution for (UP).

Remark 2.11.

(i) It is evident from Definition 2.7 and Definition 2.8 that a highly robust solution
for (UP) is a strictly robust solution for (UP), but the converse does not hold.
This means the highly robust solution is more immune to data uncertainty than
the strictly robust solution.

(ii) Also, it is evident from Definition 2.9 and Definition 2.10 that an ε-highly
robust solution for (UP) is an ε-strictly robust solution for (UP), but the converse
does not hold. Hence, the ε-quasi highly robust solution is more immune to data
uncertainty than the ε-quasi strictly robust solution.

The highly robust solution is more immune to data uncertainty than the strictly robust
solution and the ε-quasi highly robust solution can reduce to be the highly robust solution.
Therefore, the ε-quasi highly robust solution, which is more immune to data uncertainty
than the ε-quasi strictly robust solution, is different from the strictly robust solution. The
following example sheds some light onto this fact.

Example 2.12. Consider an uncertain convex program with an uncertain objective and
uncertainty-free constraints:

Minimize ux+ |x+ 1| subject to x ∈ R, (2.2)

where u ∈ [−1, 1]. Following the robust optimization of [2], the robust counterpart of
(2.2) reads

Minimize max
u∈[−1,1]

ux+ min |x+ 1| subject to x ∈ R,

which is equivalent to min{|x| + |x + 1| : x ∈ R}. Then it is easy to check that the set
of strictly robust solutions, denoted by SSR, for (2.2) is [−1, 0] while the set of solutions
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for (2.2) is (−∞,−1] if u = 1, {−1} if u ∈ (−1, 1), and [−1,∞) if u = −1. So, the set of
highly robust solutions, denoted by SHR, for (2.2) is {−1}. Consider x̄ := − 3

2 ∈ (−∞,−1]
with ε̄ := 4 > 0. We can see that for any x ∈ R and u ∈ [−1, 1],

ux+ |x+ 1|+
√
ε̄‖x− x̄| ≥ ux̄+ |x̄− 1|.

Thus, x̄ = − 3
2 is an ε̄-quasi highly robust solution of (2.2). Notice that x̄ /∈ [−1, 0] = SSR,

so, the ε-quasi highly robust solution for (2.2) is different from strictly robust solutions
of (2.2), making it valuable to study the ε-quasi highly robust solutions.

3. Highly Robust Approximate Optimality Conditions for
ε-Quasi Highly Robust Solutions

In this section, we focus on highly robust approximate optimality conditions for an
ε-quasi highly robust solution of (UP). Our desired results are established using a robust
optimization approach (worst-case approach).

Lemma 3.1. Let x̄ ∈ K and let f : Rn × Rp → R, gi : Rn × Rq → R, i ∈ I be continuous
functions such that for each u ∈ Rp, f(·, u) is convex on Rn and for each vi ∈ Rq, gi(·, vi)

is convex on Rn and let A :=
⋃

vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
. Suppose that the constraint

qualification (RCCCQ), defined in Definition 2.6, holds. Then the following statements
are equivalent:

(i) x̄ is an ε-quasi highly robust solution for (UP);

(ii) there exist λ̂i ≥ 0 and v̂i ∈ Vi, i ∈ I such that for any x ∈ Rn and u ∈ U ,

f(x̄, u) ≤ f(x, u) +

m∑
i=1

λ̂igi(x, v̂i) +
√
ε‖x− x̄‖.

Proof. [(i) ⇒ (ii)] Assume that x̄ is an ε-quasi highly robust solution for (UP). So for
any x ∈ K, f(x, u) +

√
ε‖x − x̄‖ ≥ f(x̄, u) for all u ∈ U . Hence we obtain the inclusion

K ⊆ {x ∈ Rn : h(x, u) ≥ 0} where h(x, u) = f(x, u) +
√
ε‖x− x̄‖− f(x̄, u) for u ∈ U . Due

to the Lemma 2.5,

(0, 0) ∈ epi h∗(·, u) + cl (co A), where u ∈ U .

Since A is closed and convex,

(0, 0) ∈ epi h∗(·, u) +A, where u ∈ U .

Hence, there exist λ̄i ≥ 0, v̄i ∈ Vi such that

(0, 0) ∈ epi h∗(·, u) + epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗
, where u ∈ U . (3.1)

Let us prove that for any u ∈ U ,

epi h∗(·, u) = epi f∗(·, u) +
√
εB +

[
f(x̄, u) + ‖x̄‖,+∞

)
. (3.2)
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From Proposition 2.2, we have

epi h∗(·, u) = epi
[
f(·, u) +

√
ε‖ · −x̄‖ − f(x̄, u)

]∗
= epi f∗(·, u) + epi

[√
ε‖ · −x̄‖ − f(x̄, u)

]∗
, (3.3)

where u ∈ Rp. Observe that for any u ∈ U ,

[√
ε‖ · −x̄‖ − f(x̄, u)

]∗
(z) =

{
f(x̄, u) +

√
ε‖x̄‖; ‖z‖ ≤

√
ε,

+∞; ‖z‖ >
√
ε.

By dealing with (3.3), we obtain

epi h∗(·, u) = epi f∗(·, u) +
√
εB×

[
f(x̄, u) +

√
ε‖x̄‖,+∞

)
,

where u ∈ U . Hence, it follows from (3.1) that for u ∈ U ,

(0, 0) ∈ epi f∗(·, u) +
√
εB×

[
f(x̄, u) +

√
ε‖x̄‖,+∞

)
+ epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗
.

This yields

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) + epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗
+
√
εB× R+,

where u ∈ U . Therefore, for each u ∈ U , there exist u∗ ∈ Rn, α ≥ 0, v∗i ∈ Rn, βi ≥ 0, i ∈
I, w∗ ∈ B and η ∈ R+ such that

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ (u∗, f∗(u∗, u) + α) +

(
m∑
i=1

λ̄i(v
∗
i , g
∗
i (v∗i , v̄i) + βi

)
+ (
√
εw∗, η).

Hence, we obtain

0 = u∗ +

m∑
i=1

λ̄iv
∗
i +
√
εw∗, and

− f(x̄, u)−
√
ε‖x̄‖ = f∗(u∗, u) + α+

m∑
i=1

λ̄i(g
∗
i (v∗i , v̄i) + βi) + η, u ∈ U .
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Thus, for any x ∈ Rn, u ∈ U ,

f(x̄, u) = −f∗(u∗, u)− α−
m∑
i=1

λ̄i(g
∗
i (v∗i , v̄i) + βi)− η −

√
ε‖x̄‖

≤ −
[
〈u∗, x〉 − f(x, u)

]
−

m∑
i=1

λ̄ig
∗
i (v∗i , v̄i)−

√
ε‖x̄‖

=
〈 m∑
i=1

λ̄iv
∗
i +
√
εw∗, x

〉
+ f(x, u)−

m∑
i=1

λ̄ig
∗
i (v∗i , v̄i)−

√
ε‖x̄‖

=
〈 m∑
i=1

λ̄iv
∗
i , x
〉

+ 〈
√
εw∗, x〉+ f(x, u)−

m∑
i=1

λ̄ig
∗
i (v∗i , v̄i)−

√
ε‖x̄‖

≤
〈 m∑
i=1

λ̄iv
∗
i , x
〉

+
√
ε‖w∗‖‖x− x̄+ x̄‖+ f(x, u)

−
m∑
i=1

λ̄ig
∗
i (v∗i , v̄i)−

√
ε‖x̄‖

≤
〈 m∑
i=1

λ̄iv
∗
i , x
〉

+
√
ε‖x− x̄‖+ f(x, u)−

m∑
i=1

λ̄ig
∗
i (v∗i , v̄i)

≤
〈 m∑
i=1

λ̄iv
∗
i , x
〉

+
√
ε‖x− x̄‖+ f(x, u)

−
[〈 m∑

i=1

λ̄igi(x, vi), x
〉
−

m∑
i=1

λ̄igi(x, v̄i)
]

=f(x, u) +
√
ε‖x− x̄‖+

m∑
i=1

λ̄igi(x, v̄i).

Thus, the statement (ii) is satisfied.
[(ii) ⇒ (i)] Suppose that there exist λ̄i,≥ 0, vi ∈ Vi, i ∈ I such that for any x ∈ Rn and
u ∈ U ,

f(x, u) +
√
ε‖x− x̄‖+

m∑
i=1

λ̄igi(x, v̄i) ≥ f(x̄, u).

So, for any feasible point x ∈ K and u ∈ U ,

f(x̄, u) ≤ f(x, u) +
√
ε‖x− x̄‖+

m∑
i=1

λ̄igi(x, v̄i)

≤ f(x, u) +
√
ε‖x− x̄‖.

Therefore, x̄ is an ε-quasi highly robust solution of (UP).

Lemma 3.2. Let all assumptions of Lemma 3.2 be satisfied. Then, the following state-
ments are equivalent:

(i) x̄ is an ε-quasi highly robust solution for (UP);
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(ii) for any u ∈ U ,

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) +

⋃
vi∈Vi,λi≥0

epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗
+
√
εB× R+.

Proof. Clearly, (i) ⇒ (ii) is true by the proof of Lemma 3.1. Let us show (ii) ⇒ (i) now.
Suppose that for any u ∈ U ,

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) +A+

√
εB× R+.

Then, for any u ∈ U , we obtain

(0, 0) ∈ epi f∗(·, u) +A+
√
εB×

[
f(x̄, u) +

√
ε‖x̄‖,+∞

)
.

From the proof of Theorem 3.1, we knew that for any u ∈ U , epi f∗(·, u)+
√
εB×

[
f(x̄, u)+

√
ε‖x̄‖,+∞

)
= epi

(
f(·, u) +

√
ε‖ · −x̄‖ − f(x̄, u)

)∗
. So, for any u ∈ U , one has

(0, 0) ∈ epi
(
f(·, u) +

√
ε‖ · −x̄‖ − f(x̄, u)

)∗
+A

= epi
(
f(·, u) +

√
ε‖ · −x̄‖ − f(x̄, u)

)∗
+ cl (co A) .

Using the Lemma 2.5, for any u ∈ U , we arrive

K ⊆
{
x ∈ Rn :

(
f(·, u) +

√
ε‖ · −x̄‖ − f(x̄, u)

)
(x) ≥ 0

}
.

Thus, for any u ∈ U and x ∈ K,

f(x, u) +
√
ε‖x− x̄‖ − f(x̄, u) ≥ 0.

Hence, for any x ∈ K and u ∈ U ,

f(x̄, u) ≤ f(x, u) +
√
ε‖x− x̄‖,

which means x̄ is an ε-quasi highly robust solution of (UP).

Theorem 3.3. (Highly robust approximate optimality theorem) Let x̄ ∈ K and let f :
Rn × Rp → R, gi : Rn × Rq → R, i ∈ I be continuous functions such that for each
u ∈ Rp, f(·, u) is convex on Rn and for each vi ∈ Rq, gi(·, vi) is convex on Rn. Suppose
that the constraint qualification (RCCCQ), defined in Definition 2.6, holds. Then the
following statements are equivalent:

(i) x̄ is an ε-quasi highly robust solution for (UP);
(ii) for any u ∈ U

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) +

⋃
vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
+
√
εB× R+.

(iii) there exist v̄i ∈ Vi and λ̄i ≥ 0, i ∈ I such that for any u ∈ U ,

0 ∈ ∂f(·, u)(x̄) +

m∑
i=1

∂(λ̄igi(·, vi))(x̄) +
√
εB and

m∑
i=1

λ̄igi(x̄, v̄i) = 0.
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Proof. By Lemma 3.1 and Lemma 3.2, the statement [(i) ⇔ (ii)] is proved.
[(ii) ⇒ (iii)] Suppose that the statement (ii) holds, i.e., for any u ∈ U ,

(0,−f(x̄, u)−
√
ε‖x̄‖)

∈ epi f∗(·, u) +
⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, v̄i)

)∗
+
√
εB× R+.

Therefore, for any u ∈ U there exist λ̄i ≥ 0, v̄i ∈ Vi, i ∈ I such that

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) + epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗
+
√
εB× R+.

By the continuity of gi(·, vi), i ∈ I and Proposition 2.2, equivalently, for any u ∈ U there
exist λ̄i ≥ 0, v̄i ∈ Vi, i ∈ I such that

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) +

m∑
i=1

epi
(
λ̄igi(·, v̄i)

)∗
+
√
εB× R+.

By Proposition 2.1, equivalently, for any u ∈ U there exist λ̄i ≥ 0, v̄i ∈ Vi, i ∈ I and
εi ≥ 0, i = 0, 1, . . . ,m such that

(0,−f(x̄, u)−
√
ε‖x̄‖)

∈
⋃
ε0≥0

{
(w0, 〈w0, x̄〉+ ε0 − f(x̄, u)) : w0 ∈ ∂ε0f(·, u)(x̄)

}
+

m∑
i=1

⋃
εi≥0

{
(wi, 〈wi, x̄〉+ εi − λ̄igi(x̄, v̄i)) : wi ∈ ∂εi λ̄igi(·, v̄i)(x̄)

}
+
√
εB× R+.

Hence, for any u ∈ U , there exist λ̄i ≥ 0, v̄i ∈ Vi, wi ∈ ∂εi λ̄igi(·, v̄i)(x̄), i ∈ I, w0 ∈
∂ε0f(·, u)(x̄), w∗ ∈ B, η ∈ R+ and εi ≥ 0, i = 0, 1, . . . ,m such that

(0,−f(x̄, u)−
√
ε‖x̄‖)

= (w0, 〈w0, x̄〉+ ε0 − f(x̄, u)) +

m∑
i=1

(wi, 〈wi, x̄〉+ εi − λ̄igi(x̄, v̄i))

+ (
√
εw∗, η).

It follows that, for any u ∈ U , there exist λ̄i ≥ 0, v̄i ∈ Vi, wi ∈ ∂εi λ̄igi(·, v̄i)(x̄), i ∈ I, w0 ∈
∂ε0f(·, u)(x̄), w∗ ∈ B, η ∈ R+ and εi ≥ 0, i = 0, 1, . . . ,m such that

0 =

m∑
i=0

wi +
√
εw∗ and

−
√
ε‖x̄− f(x̄, u) =

m∑
i=0

(〈wi, x̄〉+ εi)− f(x̄, u)−
m∑
i=1

λ̄igi(x̄, v̄i) + η.
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Equivalently, for any u ∈ U , there exist λ̄i ≥ 0, v̄i ∈ Vi, wi ∈ ∂εi λ̄igi(·, v̄i)(x̄), i ∈ I, w0 ∈
∂ε0f(·, u)(x̄), w∗ ∈ B, η ∈ R+ and εi ≥ 0, i = 0, 1, . . . ,m such that

0 ≥
m∑
i=1

λ̄igi(x̄, v̄i)

=
√
ε‖x̄‖+

m∑
i=0

(〈wi, x̄〉+ εi) + η

=
√
ε‖x̄‖+

m∑
i=0

εi − 〈
√
εw∗, x̄〉+ η

≥
√
ε‖x̄‖+

m∑
i=0

εi −
√
ε‖w∗‖‖x̄‖+ η

≥
m∑
i=0

εi ≥ 0.

Hence, the statement (iii) holds.
[(iii) ⇒ (ii)] Suppose that the statement (iii) holds. Then for any u ∈ U , there exist
λ̄i ≥ 0, v̄i ∈ Vi, wi ∈ ∂(λ̄igi)(·, v̄i)(x̄), i ∈ I, w0 ∈ ∂f(·, u)(x̄) and w∗ ∈ B such that

0 = w0 +

m∑
i=1

λ̄iwi +
√
εw∗ and

m∑
i=1

λ̄igi(x̄, v̄i) = 0.

This, together with the definition of the subdifferential of f(·, u) , yields that for any
x ∈ K,u ∈ U ,

f(x, u)− f(x̄, u) ≥ 〈w0, x− x̄〉

=

〈
−

m∑
i=1

λ̄iwi −
√
εw∗, x− x̄

〉

= −

〈
m∑
i=1

λ̄iwi, x− x̄

〉
− 〈
√
εw∗, x− x̄〉

≥ −
m∑
i=1

λ̄igi(x, v̄i) +

m∑
i=1

λ̄igi(x̄, v̄i)−
√
ε‖w∗‖‖x− x̄‖

≥ −
√
ε‖x− x̄‖.

Therefore, for any x ∈ K,u ∈ U ,
f(x̄, u) ≤ f(x, u) +

√
ε‖x− x̄‖,

which means x̄ is an ε-quasi highly robust solution of (UP). Thus, by Lemma 3.2, the
statement (ii) holds.

Corollary 3.4. Let x̄ ∈ K and let f : Rn×Rp → R, gi : Rn×Rq → R, i ∈ I be continuous
functions such that for each u ∈ Rp, f(·, u) is convex on Rn and for each vi ∈ Rq, gi(·, vi)
is convex on Rn. Suppose that for each x ∈ Rn, gi(x, ·) is concave on Vi, i ∈ I and there
exists y ∈ Rn such that gi(y, vi) < 0,∀vi ∈ Vi, i ∈ I. Then the following statements are
equivalent:

(i) x̄ is an ε-quasi highly robust solution for (UP);
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(ii) for any u ∈ U ,

(0,−f(x̄, u)−
√
ε‖x̄‖) ∈ epi f∗(·, u) +

⋃
vi∈Vi,
λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
+
√
εB× R+.

(iii) there exist v̄i ∈ Vi and λ̄i ≥ 0, i ∈ I such that for any u ∈ U ,

0 ∈ ∂f(·, u)(x̄) +

m∑
i=1

∂(λ̄igi(·, vi))(x̄) +
√
εB and

m∑
i=1

λ̄igi(x̄, v̄i) = 0.

Proof. It follows from Proposition (2.4) and Proposition (2.3) that the constraint quali-
fication (RCCCQ), defined in Definition 2.6, holds. Then, all conditions of Theorem 3.3
are satisfied and so we finish this proof.

4. Highly Robust Approximate Duality Theorems for
ε-Quasi Highly Robust Solutions

In this section, we formulate a Wolfe type dual problem (UD) for the primal uncertain
convex optimization problem (UP). Then we propose a highly robust approximate weak
duality theorem and a highly robust approximate strong duality between the primal
problem and its Wolfe type dual problem.

Now we formulate a Wolfe dual problem (UD) for (UP) as follows:

Maximize f(y, u) +

m∑
i=1

λigi(y, vi)

subject to 0 ∈ ∂f(·, u)(y) +

m∑
i=1

∂ (λigi) (·, vi)(y) +
√
εB,

u ∈ U , λi ≥ 0, vi ∈ Vi, i ∈ I, ε ≥ 0. (UD)

Let KD :=
{

(y, v, λ) ∈ Rn×V×Rm+ : 0 ∈ ∂f(·, u)(y)+
∑m
i=1 ∂ (λigi) (·, vi)(y)+

√
εB, λi ≥

0, vi ∈ Vi, i ∈ I
}
, then it is termed as the robust feasible set of the dual problem (UD).

Definition 4.1. Let ε ≥ 0 be given, then (ȳ, λ̄, v̄) is said to be an ε-quasi highly robust
solution of the dual problem (UD) if for any robust feasible solution (y, v, λ) ∈ KD and
u ∈ U ,

f(ȳ, u) +

m∑
i=1

λ̄igi(ȳ, v̄i) ≥ f(y, u) +

m∑
i=1

λigi(y, vi)−
√
ε‖ȳ − y‖.

Let us move on the highly robust approximate weak duality theorem and the highly
robust approximate strong duality theorem for highly robust solutions. The following
theorem proposes a highly robust approximate weak duality between the primal problem
and its Wolfe type dual problem.

Theorem 4.2. (Highly robust approximate weak duality theorem) Let ε ≥ 0 be given. For
any (x, u) ∈ K × U and any (y, v, λ) ∈ KD,

f(x, u) ≥ f(y, u) +

m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.
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Proof. Let (x, u) ∈ K × U and (y, v, λ) ∈ KD, be arbitrary. Then, there exist w0 ∈
∂f(·, u)(y), wi ∈ ∂ (λigi(·, vi)) (y), i ∈ I and w∗ ∈ B such that w0 +

∑m
i=1 wi +

√
εw∗ = 0.

Hence, we obtain

f(x, u)− f(y, u)−
m∑
i=1

λigi(y, vi)

≥ 〈w0, x− y〉 −
m∑
i=1

λigi(y, vi)

=
〈
−

m∑
i=1

wi −
√
εw∗, x− y

〉
−

m∑
i=1

λigi(y, vi)

= −
〈 m∑
i=1

wi, x− y
〉
− 〈
√
εw∗, x− y〉 −

m∑
i=1

λigi(y, vi)

≥ −
m∑
i=1

λigi(x, vi) +

m∑
i=1

λigi(y, vi)− 〈
√
εw∗, x− y〉 −

m∑
i=1

λigi(y, vi)

= −
m∑
i=1

λigi(x, vi)−
√
ε‖x− y‖

≥ −
√
ε‖x− y‖.

Thus, one has f(x, u) ≥ f(y, u) +
∑m
i=1 λigi(y, vi)−

√
ε‖x− y‖ as desired.

The following highly robust approximate strong duality theorem holds under the con-
straint qualification (RCCCQ).

Theorem 4.3. (Highly robust approximate strong duality theorem) Let f : Rn × Rp →
R, gi : Rn × Rq → R, i ∈ I be continuous functions such that for each u ∈ Rp, f(·, u) is
convex on Rn and for each vi ∈ Rq, gi(·, vi) is convex on Rn. Suppose that the constraint
qualification (RCCCQ), defined in Definition 2.6, holds. If x̄ ∈ K is an ε-quasi highly
robust solution of the primal problem (UP), then there exist λ̄ ∈ Rm+ and v̄ ∈ Rq such that

(x̄, v̄, λ̄) is an ε-quasi highly robust solution of the dual problem (UD).

Proof. Let x̄ ∈ K be an ε-quasi highly robust solution of (UP). Hence, by Theorem 3.3,
for any u ∈ U , there exist v̄i ∈ Vi, λ̄i ≥ 0, i ∈ I such that

0 ∈ ∂f(·, u)(x̄) +

m∑
i=1

∂(λ̄igi(·, vi))(x̄) +
√
εB and

m∑
i=1

λ̄igi(x̄, v̄i) = 0.

This means (x̄, v̄, λ̄) is a feasible solution of (UD), i.e., (x̄, v̄, λ̄) ∈ KD. By Theorem 4.2,
for any u ∈ U and (y, v, λ) ∈ KD, we have

f(x̄, u) ≥ f(y, u) +

m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.
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It follows that for any u ∈ U and (y, v, λ) ∈ KD,

f(x̄, u) +

m∑
i=1

λ̄igi(x̄, v̄i)−
[
f(y, u) +

m∑
i=1

λigi(y, vi)
]

≥ −
√
ε‖x− y‖+

m∑
i=1

λ̄igi(x̄, v̄i)

= −
√
ε‖x− y‖.

It yields, for any u ∈ U and (y, v, λ) ∈ KD,

f(x̄, u) +

m∑
i=1

λ̄igi(x̄, v̄i) ≥ f(y, u) +

m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Therefore, (x̄, v̄, λ̄) is an ε-quasi highly robust solution of (UD) as desired.

The following example illustrates Theorem 4.2 and Theorem 4.3.

Example 4.4. Let f : R2 × U → R and g : R2 × V → R be defined by

f(x, u) = ux1 + x22 and g(x, v) = x21 − vx1,

where U := [−1, 1] and V := R. Consider the following convex optimization problem with
uncertainty:

Minimize f(x, u) subject to g(x, v) ≤ 0, v ∈ V. (4.1)

Observe that the robust feasible set of (4.1) is the set

K : = {(x1, x2) ∈ R2 : x21 − vx1 ≤ 0, v ∈ V}
= {(x1, x2) ∈ R2 : x1 = 0, x2 ∈ R},

while the set of all ε-quasi highly solution of (4.1) is

SHR :=
{

(x1, x2) ∈ K : ux1 + x22 ≤ uy1 + y22 +
√
ε‖(y1, y2)− (x1, x2)‖,

(y1, y2) ∈ K,u ∈ U
}

=
{
(x1, x2)∈K : u(0)+x22≤u(0)+y22+

√
ε‖(0, y2)−(0, x2)‖, y2∈R,u∈ U

}
=
{

(x1, x2) ∈ R2 : x1 = 0,
−
√
ε

2
≤ x2 ≤

√
ε

2

}
.

We can prove that the (RCCCQ) holds for (4.1). To show the cone
⋃
v∈V,λ≥0 epi (λg(·, v))∗

is closed and convex, let v ∈ V and λ ≥ 0 be given. Then, we have

(λg(·, v))
∗

(x∗) =

 0; λ = 0,
(x∗ + λv)2

4λ
; λ > 0.

So, it can be seen that⋃
v∈V,λ≥0

epi (λg(·, v))
∗

=
(
{0} × R+

)
∪

⋃
v∈V,λ>0

{
(x∗, α) : α ≥ (x∗ + λv)2

4λ

}
= R× R+.
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Next, we formulate a dual problem for (4.1) as follows:

Maximize f(y1, y2, u) + λg(y1, y2, v)

subjet to 0 ∈ ∂f(·, u)(y1, y2) + ∂ (λg(·, v)) (y1, y2) +
√
εB,

u ∈ U , λ ≥ 0, v ∈ V, ε ≥ 0. (4.2)

Then the setKD :=
{

((y1, y2), v, λ) : y1 ∈ R, (0, 0) ∈ ∂f(·, u)(y1, y2)+∂ (λg(·, v)) (y1, y2)+
√
εB, u ∈ [−1, 1], λ ≥ 0, v ∈ R, ε ≥ 0

}
is the robust feasible set of (4.2). We can calculate

the robust feasible set KD as follows:

KD :=
{

((y1, y2), v, λ) : (0, 0) ∈ ∂f(·, u)(y1, y2) + ∂ (λg(·, v)) (y1, y2)

+
√
εB, u ∈ [−1, 1], λ ≥ 0, v ∈ R, ε ≥ 0

}
=
{

((y1, y2), v, λ) : y1 ∈ R, u+ 2λy1 − λv +
√
εw1 = 0,

y2 = −
√
ε

2
, w2

1 + w2
2 ≤ 1, u ∈ [−1, 1], λ ≥ 0, v ∈ R, ε ≥ 0

}
.

Observe that for any u ∈ U , (x1, x2) ∈ K and (y1, y2, v, λ) ∈ KD,

f(x1, x2, u)−
[
f(y1, y2, u) + λg(y1, y2, v)−

√
ε‖(x1, x2)− (y1, y2)‖

]
= x22 −

[
uy1 + y22 + λy21 − λvy1 −

√
ε
√
y21 + (x2 − y2)2

]
= x22 − y22 − λy21 + (λv − u)y1 +

√
ε
√
y21 + (x2 − y2)2

= x22 −
ε

4
w2

2 + λy21 +
√
εw1y1 +

√
ε

√
y21 + (x2 +

√
ε

2
w2)2

= (x2 +

√
ε

2
w2)2 + λy21 +

√
ε

[
w1y1 − w2(x2 +

√
ε

2
w2)

]
+
√
ε

√
y21 + (x2 +

√
ε

2
w2)2

≥
√
ε

[
w1y1 − w2(x2 +

√
ε

2
w2)

]
+
√
ε

√
y21 + (x2 +

√
ε

2
w2)2

≥ −
√
ε
√

(−w1)2 + w2
2

√
y21 + (x2 +

√
ε

2
w2)2 + .

√
ε

√
y21 + (x2 +

√
ε

2
w2)2

≥ 0.

Hence, for any u ∈ U , (x1, x2) ∈ K and (y1, y2, v, λ) ∈ KD,

f(x1, x2, u) ≥ f(y1, y2, u) + λg(y1, y2, v)−
√
ε‖(x1, x2)− (y1, y2)‖,

and so the conclusion of Theorem 4.2 (The highly robust approximate weak duality
theorem) holds. Let (x̄1, x̄2) ∈ K be an ε-quasi highly robust solution for (UP). So,

x̄1 = 0 and −
√
ε
2 ≤ x̄2 ≤

√
ε
2 . By taking λ̄ :=

√
ε and v̄ = u√

ε
+ w1, we can see that

((x̄1, x̄2), v̄, λ̄) ∈ KD. Indeed, λ̄ ≥ 0, v̄ ∈ R and

u+ 2λ̄x̄1 − λ̄v̄ +
√
εw1 = u−

√
ε

(
u√
ε

+ w1

)
+
√
εw1 = 0.
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Besides, for any u ∈ U and (y1, y2, v, λ) ∈ KD,

f(x̄1, x̄2, u) + λ̄g(x̄1, x̄2, v̄)−
[
f(y1, y2, u) + λg(y1, y2, v)

]
≥ −
√
ε‖(x1, x2)− (y1, y2)‖+ λ̄g(x̄1, x̄2, v̄)

= −
√
ε‖(x1, x2)− (y1, y2)‖.

Therefore, (x̄1, x̄2) is an ε-quasi highly robust solution of (4.2), and then the conclusion
of Theorem 4.3 (The highly robust approximate strong duality theorem) holds.

5. Conclusion

This paper devotes to the ε-quasi highly robust solution for a robust convex optimiza-
tion problem in the face of data uncertainty in both objective and constraint functions.
The highly robust approximate optimality theorems for an ε-quasi highly robust solution
of a robust convex optimization problem are established by using a robust optimization
approach (worst-case approach). Furthermore, by employing this approach, we obtain
highly robust approximate duality theorems in terms of Wolfe type on ε-quasi highly
robust solution for the convex optimization problems with data uncertainty. In addition,
to illustrate or support this study, some examples are presented.
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