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1. Introduction

In linear algebra, functional analysis and related areas of mathematics, a quasinorm
is similar to a norm in that it satisfies the norm axioms, except that the triangle inequality
is replaced by

‖x+ y‖ ≤ K(‖x‖+ ‖y‖)
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for some constants K > 0 (see [1–4]).

Definition 1.1. ([5, 6]) Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:
(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ =| λ | ‖x‖ for all λ ∈ R and all λ ∈ R and all x ∈ X.
(iii) There is a constant s ≥ 1 such that ‖x+ y‖ ≤ s(‖x‖+ ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed apace if ‖ · ‖ is a quasi-norm on X. A
quasi-normed ‖ · ‖ is called a p-norm (0 < p ≤ 1) is

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach apace is called a p-quasi-Banach space.

Definition 1.2. ([5, 6]) Let X be a quasi-normed space.
(i) A sequence {xn} in X is called a quasi-convergent to a point x ∈ X if and only if
‖xn − x‖ −→ 0 as n −→∞;
(ii) A sequence {xn} in X is called a quasi-Cauchy sequence if and only if ‖xn −
xm‖ −→ 0 as n,m −→∞;
(iii) Let {xn} is a sequence in normed space (X, ‖ · ‖). X is complete if for any quasi-
Cauchy sequence {xn} is quasi-convergent;
(iv) A complete quasi-normed space is called a quasi-Banach space.

In 1989, Bakhtin [7] developed the notion of b-metric space and established some fixed
point theorems in b-metric spaces. Subsequently, several results appeared in this direction
([8–17]) as follows:

Definition 1.3. [7] A b-metric on a set X is a mapping d : X ×X → [0,+∞) satisfying
the following conditions: for any x, y, z ∈ X,

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) there exists s ≥ 1 such that d(x, y) ≤ s(d(x, z) + d(z, y)).

Then (X, d) is known as a b-metric space with coefficient s.

Note that every metric space is a b-metric space with s = 1. Some examples of
b-metric space are given below: Let X = E be a vecter space. Define a mapping
d : X ×X → [0,∞) by

d(x, y) = ‖x− y‖
for all x, y ∈ X, where ‖ · ‖ : E → R in a quasi-norm function. Then (X, d) is a b-metric
space with coefficient s = K.

Throughout this paper, we will denote the set of natural numbers, nonnegative integers,
nonnegative real numbers, the set X \ {0} and the set of natural numbers greater than or
equal to m by N, N0, R+, X0, Nm, respectively. And we use the notation BA denotes
the family of all functions mapping a set A 6= ∅ into a set B 6= ∅).
Let X be a nonempty set, (Y, d) be a metric space, ε ∈ RXn

+ and F1, F2 be operators

mapping from a nonempty set D ⊂ Y X into Y X
n

. We say that the operator equation

F1ϕ(x1, ...., xn) = F2ϕ(x1, ...., xn), (x1, ...., xn ∈ X) (1.1)

is ε–hyperstable provided that every ϕ0 ∈ D which satisfies

d(F1ϕ0(x1, ..., xn), F2ϕ0(x1, ..., xn)) ≤ ε(x1, ..., xn), (x1, ..., xn ∈ X) (1.2)

fulfills the (1.2).
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Our aim is to prove the stability and hyperstability results for the generalization of
Cauchys and the quadratic functional equations

n−1∑
k=0

f(x+ bky) = nf(x) + nf(y), (1.3)

where n ∈ N2 and bk = exp(
2iπk

n
) for 0 ≤ k ≤ n− 1, in Banach spaces using the fixed

point method, the general solution and stability of this equation and its generalizations
were studied by numerous researchers (see, [18–22]).

Before proceeding to the main results, we state the following theorem which is useful
for our purpose.

On the other hand, Brzdek and et al. [23] proved a simple fixed point theorem for
some (not necessarily linear) operators and derived from it several quite general results
on the stability of a very wide class of functional equations in single variable in 2011 as
follows:

Theorem 1.4. Let X be a nonempty set, (Y, d) be a complete metric space, f1, ..., fs :
X → X and L1, ..., Ls : X → R+ be given mappings. Let Λ : RX+ → RX+ be a linear
operator defined by

Λδ(x) :=

s∑
i=1

Li(x)δ(fi(x)), (1.4)

for δ ∈ RX+ and x ∈ X. If T : Y X → Y X is an operator satisfying the inequality

d(Tξ(x), Tµ(x)) ≤
∑s
i=1 Li(x)d(ξ(fi(x)), µ(fi(x))), ξ, µ ∈ Y X , x ∈ X,

and a function ε : X → R+ and a mapping ϕ : X → Y satisfy

d(Tϕ(x), ϕ(x)) ≤ ε(x), (x ∈ X),

ε∗(x) :=
∑∞
k=0 Λkε(x) <∞, (x ∈ X),

then for every x ∈ X, the limit

ψ(x) := limn→∞ Tnϕ(x),

exists and the function ψ ∈ Y X so defined is the unique fixed point of T with

d(ϕ(x), ψ(x)) ≤ ε∗(x), (x ∈ X).

In 2018, Almahalebi [24] investigated the stability of the following generalization of
Cauchys and the quadratic functional equations (1.4) in Banach spaces. Also, he proved
the hyperstability results of this equation by the fixed point method of the Brzdek’s [1]
results as follows:

Theorem 1.5. Let X be a C−normed space, Y be a Banach space, ε : X0 × X0 → R+

and

l(X) := {u ∈ Aut(X) : u′, (u′ − bku) ∈ Aut(X),

αu := nλ(u′) + nu′ +

n−1∑
k=1

λ(u′ − bku) < 1} 6= ∅

is an infinite set, where

λ(u) := inf {t ∈ R+ : ε(ux, uy) ≤ tε(x, y),∀x, y ∈ X0}
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for all u ∈ Aut(X). Assume that f : X → Y satisfies the inequality

‖f(x+ y)− nf(x)− nf(y) +

n−1∑
k=1

f(x+ bky)‖ ≤ ε(x, y)

for all x, y ∈ X0such that x+ bky 6= 0 for 0 < k < n− 1. Then, for each nonempty subset
U ⊂ l(X) such that

u ◦ v = v ◦ u,∀u, v ∈ U , (1.5)

there exists a unique function Q : X → Y satisfies the Eq. (1.2) and

‖f(x)−Q(x)‖ ≤ ε̄(x) x ∈ X0, (1.6)

where

ε̄(x) := inf {ε(u
′x, ux)

1− αu
: u ∈ U} x ∈ X0.

In this paper, we extend and improve the concept of Almahalebi [24] to qusic-Banach
spaces by using the fixed point method. Second, we investigate the stability of the fol-
lowing generalization of Cauchys and the quadratic functional equations

n−1∑
k=0

f(x+ bky) = nf(x) + nf(y),

where n ∈ N2bk = exp(2iπk) for 0 ≤ k ≤ n − 1, in quasi-Banach spaces. Moreover, we
obtain the hyperstability results of this equation by using the fixed point method.

2. A Fixed Point Approach to the Stability

For our subsequent results, we take the following four hypotheses.
(H1) X is a nonempty set and (Y, d) is a complete b-metric space.
(H2) f1, ..., fk : X → X and L1, ..., Lk : X → R+ are given maps.
(H3) T : Y X → Y X is an operator satisfying the inequality

d((T ξ)(x), (T µ)(x)) ≤
k∑
i=1

Li(x)d(ξ(fi(x)), µ(fi(x))), ξ, µ ∈ Y X , x ∈ X (2.1)

(H4) Λ is a linear operator defined by

(Λδ)(x) :=

k∑
i=1

Li(x)δ(fi(x)) (2.2)

for δ : X → R+ and x ∈ X. Obviously, Λ is monotone with respect to the pointwise
ordering in RX+ (provided that Li is nonnegative).

The basic tool in this paper is the following theorem which asserts the existence of a
unique fixed point of operator T : Y X → Y X .

Theorem 2.1. Assume that hypotheses (H1)–(H4) are satisfied. Suppose that there are
functions ε : X → R+ and ϕ : X → Y such that, for all x ∈ X,

d((T ϕ)(x), ϕ(x)) ≤ ε(x) (2.3)



Stability of a Generalization of Cauchy’s and the Quadratic ... 967

and
∞∑
n=0

sn+1(Λnε)(x) =: ε∗(x) <∞ (2.4)

hold. Then, for every x ∈ X, the limit

ψ(x) := lim
n→∞

(T nϕ)(x) (2.5)

exists and the function ψ : X → Y so defined is a unique fixed point of T with

d(ϕ(x), ψ(x)) ≤ ε∗(x), x ∈ X. (2.6)

Proof. First we show by induction that, for every n ∈ N+,

d((T nϕ)(x), (T n+1ϕ)(x)) ≤ (Λnε)(x), x ∈ X. (2.7)

Clearly, by (2.5), the case n = 0 is trivial. Now fix n ∈ N+ and suppose that (2.7) is
valid. Then, using hypothesis (H3) and the inductive assumption, for every x ∈ X, we
get

d((T n+1ϕ)(x), (T n+2ϕ)(x)) ≤
k∑
i=1

Li(x)d((T nϕ)(fi(x)), (T n+1ϕ)(fi(x)))

≤
k∑
i=1

Li(x)(Λnε)(fi(x)) = (Λn+1ε)(x)

completing the proof of (2.7). Therefore, for n, k ∈ N+, k > 0,

d((T nϕ)(x), (T n+kϕ)(x)) ≤
k−1∑
i=0

si+1d((T n+iϕ)(x), (T n+i+1ϕ)(x))

≤
n+k−1∑
i=n

si+1(Λiε)(x) ≤ ε∗(x), x ∈ X. (2.8)

By the convergence of the series
∑

(Λnε)(x), it follows from the above estimate that, for
every x ∈ X, ((T nϕ)(x))n∈N is a Cauchy sequence and, as (Y, d) is complete, the limit
ψ(x) exists for all x ∈ X. Taking n = 0 and letting k →∞ in (2.8), we obtain that (2.6)
holds and, in view of (2.1), T (ψ) = ψ.

For the proof of the uniqueness of ψ, suppose that ψ1, ψ2 ∈ Y X are two fixed points of
T with d(ψ(x), ψi(x)) ≤ ε∗(x) for x ∈ X, i = 1, 2. We next prove that, for every m ∈ N,

d(ψ1(x), ψ2(x)) = d((T mϕ1)(x), (T mϕ2)(x)) ≤ 2s

∞∑
i=m

(Λiε)(x), x ∈ X. (2.9)

Clearly (for m = 0),

d(ψ2(x), ψ1(x)) ≤ s[d(ψ1(x), ψ(x)) + d(ψ(x), ψ2(x))] ≤ 2sε∗(x), x ∈ X.
Now assume that (2.9) is valid for some m ∈ N+. Then, by (2.1), for every x ∈ X we
obtain the following inequality:
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d((T m+1ϕ2)(x), (T m+1ϕ1)(x)) = d(T (T mϕ2)(x),T (T mϕ1)(x))

≤
k∑
i=1

Li(x)d((T mϕ2)(fi(x)), (T mϕ1(fi(x)))

≤ 2s

k∑
i=1

Li(x)

 ∞∑
j=m

(Λjε)(fi(x))


≤ 2s

∞∑
j=m

(
k∑
i=1

Li(x)(Λjε)(fi(x))

)

≤ 2s

∞∑
j=m+1

(Λjε)(x).

Thus we have proved that (2.9) holds for m ∈ N+. Now letting m → ∞, on account of
(2.4), we get ψ1 = ψ2.

Directly from Theorem 2.1 we obtain the following corollary.

Corollary 2.2. Assume that hypotheses (H1)–(H4) are satisfied. Suppose that there exist
two functions ε : X → R+, ψ : X → Y and a constant q ∈ [0, 1s ) such that, for all x ∈ X,
(2.3) and

(Λε)(x) ≤ qε(x) (2.10)

hold. Then the limit (2.5) exists for every x ∈ X and the function ψ : X → Y so defined
is the unique fixed point of T with

d(ϕ(x), ψ(x)) ≤ s

1− qs
ε(x), x ∈ X.

Proof. Iterating inequality (2.10), for n ∈ N and x ∈ X, it follows that

(Λnε)(x) ≤ (
s

1− qs
)nε(x).

Therefore, for all x ∈ X,

ε∗(x) =

∞∑
n=0

(Λnε)(x) ≤
∞∑
n=0

rnε(x) = rε(x),

where r = s
1−qs . Thus, condition (2.4) holds and the statement follows from Theorem 2.1.

In fact the statement about the uniqueness is not the consequence of that of Theorem
2.1, however, the argument followed in the proof of Theorem 2.1 can easily be adjusted.

3. Stability of a Functional Equation in a Quasi-Banach Space

We will denote by Aut(X) the family of all automorphisms of X. Moreover, for each
u ∈ XX , we write ux := u(x) for x ∈ X and we define ú by úx := x− ux for x ∈ X.
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The following theorem is the main result concerning the stability of the functional in
equation .

Theorem 3.1. Let X be a C−normed space, Y be a b-Banach space, ε : X0 ×X0 → R+

and

l(X) := {u ∈ Aut(X) : u′, (u′ − bku) ∈ Aut(X),

αu := nλ(u′) + nu′ +

n−1∑
k=1

λ(u′ − bku) <
1

s
} 6= ∅ (3.1)

is an infinite set, where

λ(u) := inf {t ∈ R+ : ε(ux, uy) ≤ tε(x, y),∀x, y ∈ X0}
for all u ∈ Aut(X). Assume that f : X → Y satisfies the inequality

‖f(x+ y)− nf(x)− nf(y) +

n−1∑
k=1

f(x+ bky)‖ ≤ ε(x, y) (3.2)

for all x, y ∈ X0such that x+ bky 6= 0 for 0 < k < n− 1. Then, for each nonempty subset
U ⊂ l(X) such that

u ◦ v = v ◦ u, ∀u, v ∈ U , (3.3)

there exists a unique function Q : X → Y satisfies the equation (1.3) and

‖f(x)−Q(x)‖ ≤ ε̄(x) x ∈ X0, (3.4)

where

ε̄(x) := inf {sε(u
′x, ux)

1− sαu
: u ∈ U}, x ∈ X0.

Proof. Let us fix u ∈ U and replacing x with u′x and y with ux in inequality (3.2), we
get

‖f(x)− nf(u′x)− nf(ux) +

n−1∑
k=1

f((u′ − bku)x)‖ ≤ ε(u′x, ux) := εu(x) (3.5)

for all x ∈ X0. Given u ∈ U , we define the operators Tu : Y X0 → Y X0 and
Λu : RX0

+ → RX0
+ by

Tuξ(x) := nξ(u′x) + nξ(ux)−
∑n−1
k=1 ξ((u

′ − bku)x),

Λuδ(x) := nδ(u′x) + nδ(ux)−
n−1∑
k=1

δ((u′ − bku)x) (3.6)

for all x ∈ X0, ξ ∈ Y X0 and δ ∈ RX0
+ . Then, the inequality (3.5) takes the form

‖f(x)− Tuf(x)‖ ≤ εu(x)



970 Thai J. Math. Vol. 18 (2020) /T. Bantaojai and C. Suanoom

for all x ∈ X0.
Observe that the operator Λu has the form given by (2.3) with s = n+1 and fn+1(x) =

ux, fn(x) = u′x, fi(x) = (u′− biu)x, Ln(x) = sn = Ln+1(x), Li(x) = s, i ∈ {1, 2, ..., n− 1}
for all x ∈ X0. Furthermore, for each x ∈ X0 and ξ, µ ∈ Y X0 , we obtain

‖Tuξ(x)− Tuµ(x)‖ = ‖nξ(u′x) + nξ(ux)−
∑n−1
k=1 ξ((u

′ − bku)x)

−nµ(u′x)− nµ(ux) +
∑n−1
k=1 µ((u′ − bku)x)‖

≤ sn‖ξ(u′x)− µ(u′x)‖+ sn‖ξ(ux)− µ(ux)‖

+
∑n−1
k=1 s‖ξ((u′ − bku)x)− µ((u′ − bku)x)‖

In view of the definition of λ(u), we note that

ε(ux, uy) ≤ λ(u)ε(x, y), x, y ∈ X0.

So, it is easy to show that

Λsuεu(x) ≤ αsu(u′x, ux),

for all x ∈ X0 and s ∈ N0, where

αu = nλ(u′) + nλ(u) +
∑n−1
k=1 λ(u′ − bku).

Hence, we obtain

ε∗(x) :=

∞∑
r=0

sr+1Λruεu(x) ≤ sε(u′x, ux)

∞∑
r=0

(sαu)r =
sε(u′x, ux)

1− sαu
<∞ (3.7)

for all x ∈ X0. Therefore, according to Theorem 2.1, there exists a unique solution
Qu : X → Y of the equation

Qu(x) = nQu(u′x) + nQu(ux)−
n−1∑
k=1

Qu((u′ − bku)x) (3.8)

for allx ∈ X0, which is the fixed point of Tu such that

‖Qu(x)− f(x)‖ ≤ sε(u′x, ux)

1− sαu
, x ∈ X0. (3.9)

Moreover,

Qu(x) = limr→∞ T ru f(x)

To prove that Qu satisfies the functional (1.4) on X0, we just prove the following inequal-
ity:

‖T ru f(x+ y)− nT ru f(x)− nT ru f(y) +

n−1∑
k=1

T ru f(x+ bky)‖ ≤ αruε(x, y) (3.10)

for all x, y ∈ X0 and all r ∈ N0 such that x + bky 6= 0 for 0 < k < n − 1. Since the case
r = 0 is just (3.2), take r ∈ N and assume that (3.10) holds for all x, y ∈ X0 and r ∈ N.
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Then, using (3.6) and the triangle inequality in p-quasi-Banach, we get

‖T r+1
u f(x+ y)− nT r+1

u f(x)− nT r+1
u f(y) +

∑n−1
k=1 T r+1

u f(x+ bky)‖p

= ‖nT ru f(u′(x+ y)) + nT ru f(u(x+ y))−
∑n−1
k=1 T ru f((u′ − bku)(x+ y))

−n2T ru f(u′x)− n2T ru f(ux) + n
∑n−1
k=1 T ru f((u′ − bku)x)

−n2T ru f(u′y)− n2T ru f(uy) + n
∑n−1
k=1 T ru f((u′ − bku)y)

+
∑n−1
k=1{nT ru f(u′(x+ bky)) + nT ru (u(x+ bky))

−
∑n−1
k=1 T ru f((u′ − bku)(x+ bky))}‖p

≤ np‖T ru f(u′(x+ y))− nT ru f(u′x)− nT ru f(u′y) +
∑n−1
k=1 T ru f(u′(x− bky)‖p

+np‖T ru f(u(x+ y))− nT ru f(ux)− nT ru f(uy) +
∑n−1
k=1 T ru f(u(x− bky)‖

+
∑n−1
k=1 ‖T ru f(u′ − bku)(x+ y))− nT ru f((u′ − bku)x)

−nT ru f((u′ − bku)y) +
∑n−1
k=1 T ru f(u′ − bku)(x+ bky))‖p

≤ αrpu (npεp(u′x, u′y) + npεp(ux+ uy) +
∑n−1
k=1 ε

p((u′ − bku)x), (u′ − bku)y)))

≤ αrpu (npλp(u′) + npλp(u) +
∑n−1
k=1 λ

p(u′ − bku))εp(x, y)

≤ αrpu (nλ(u′) + nλ(u) +
∑n−1
k=1 λ(u′ − bku))pεp(x, y)

= αrp+pu εp(x, y).
Since 0 < p ≤ 1, we get

‖T r+1
u f(x+ y)− nT r+1

u f(x)− nT r+1
u f(y) +

∑n−1
k=1 T r+1

u f(x+ bky)‖ ≤ αr+1
u ε(x, y).

Thus, by the mathematical induction, we have shown that (3.10) holds for all x, y ∈ X0

and all r ∈ N0 such that x+ bky 6= 0 for 0 < k < n− 1. Letting r →∞ in (3.10), we get∑n−1
k=0 Qu(x+ bky) = nQu(x) + nQu(y),

for all x, y ∈ X0 such that x+ bky = 0 for 0 ≤ k ≤ n− 1. Thus, we have proved that for
each u ∈ U , there exists a function Qu : X0 → Y which is a solution of the functional
equation (1.4) on X0 and satisfies

‖f(x)−Qu(x)‖ ≤ ε(u′x, ux)

1− αu
for all x ∈ X0.

Next, we prove that each solution Q : X → Y of (1.3) satisfying the inequality

‖f(x)−Q(x)‖ ≤ Lε(v′x, vx) x ∈ X0 (3.11)
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with some L > 0 and v ∈ U is equal to Jw for each w ∈ U . So, fix v, w ∈ U ,L > 0 and
Q : X → Y a solution of (1.4) satisfying (3.11). Note that, by (3.9) and (3.11), there is
L0 > 0 such that

‖Q(x)−Qw(x)‖ ≤ ‖Q(x)− f(x)‖+ ‖f(x)−Qw(x)‖

≤ L0s(ε(v
′x, vx) + ε(w′x,wx)) ·

∞∑
r=0

(αws)
r (3.12)

for x ∈ X0. In other side, Q and Qw are solutions of (3.8) because they satisfy (1.3). For
each j ∈ N, we show that

‖Q(x)−Qw(x)‖ ≤ L0s(ε(v
′x, vx) + ε(w′x,wx)) ·

∞∑
r=j

(αws)
r x ∈ X0. (3.13)

The case j = 0 is exactly (3.12). So fix γ ∈ N0 and assume that (3.13) holds for j = γ.
Then, in view of the definition of λ(u), we obtain

‖Q(x)−Qw(x)‖ = ‖nQ(w′x) + nQ(wy)−
∑n−1
k=1 Q((w′ − bkw)x)

−nQw(w′x)− nQw(wx) +
∑n−1
k=1 Qw((w′ − bkw)x)‖

≤ ns‖Q(w′x)−Qw(w′x)‖+ ns‖Q(wx)−Qw(wx)‖

+s
∑n−1
k=1 ‖J((w′ − bkw)x)− Jw((w′ − bkw)x)‖

≤ s2nL0(ε(v′w′x, vw′x) + ε(w′w′x,ww′x)) ·
∑∞
r=γ(αws)

r

+s2nL0(ε(v′wx, vwx) + ε(w′wx,wwx)) ·
∑∞
r=γ(αws)

r

+sL0

∑n−1
k=1(ε(v′(w′ − bkw)x, v(w′ − bkw)x)

+ε(w′(w′ − bkw)x,w(w′ − bkw)x)) ·
∑∞
r=γ(αws)

r

≤ s2L0(ε(v′x, vx) + ε(w′x,wx))(nλ(w′) + nλ(w)

+
∑n−1
k=1 λ(w′ − bkw)) ·

∑∞
r=γ α

r
w.

= sL0(ε(v′x, vx) + ε(w′x,wx)) ·
∑∞
r=γ+1(αws)

r.

Now, letting j →∞ in (3.13) , we get

Q(x) = Qw(x) ∀x ∈ X0. (3.14)

In this way, we also have proved that Qu = Qw for each u ∈ U , which yields

‖f(x)−Qu(x)‖ ≤ sε(u′x, ux)

1− sαu
x ∈ X0, u ∈ U .

This implies (3.4) with Q := Qw and the uniqueness of Q is given by (3.14).
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