

www.math.science.cmu.ac.th/thaijournal

Regular Transformation Semigroups on Some Dictionary Chains

W. Mora and Y. Kemprasit

Abstract : Denote by OT(X) the full order-preserving transformation semigroup on a poset X. The following results are known. If X is any nonempty subset of \mathbb{Z} with the natural order, then OT(X) is a regular semigroup, that is, for every $\alpha \in OT(X)$, $\alpha = \alpha\beta\alpha$ for some $\beta \in OT(X)$. If \leq_d is the dictionary partial order on $X \times X$ where X is a nonempty subset of \mathbb{Z} , then $OT(X \times X, \leq_d)$ is regular if and only if X is finite. By using these two known results, we extend the second one to the semigroup $OT(X \times Y, \leq_d)$ where X and Y are nonempty subsets of \mathbb{Z} . It is shown that $OT(X \times Y, \leq_d)$ is regular if and only if |X| = 1 or Y is finite.

Keywords : Order-preserving transformation semigroup, regular semigroup. **2000 Mathematics Subject Classification :** 20M17, 20M20.

1 Introduction

An element a of a semigroup S is called *regular* if a = aba for some $b \in S$, and S is said to be a *regular semigroup* if every element of S is regular.

For a nonempty set X, let T(X) be the full transformation semigroup on X, that is, T(X) is the semigroup, under composition, of all mappings $\alpha : X \to X$. The image of $x \in X$ under $\alpha \in T(X)$ is written by $x\alpha$. The range of $\alpha \in T(X)$ is denoted by ran α . It is well-known that T(X) is a regular semigroup ([1], page 4 or [2], page 63).

The following easy fact which was given in [5] and [6] will be used.

Proposition 1.1 ([5], [6]). Let X be a nonempty set and $\alpha, \beta \in OT(X)$. If $\alpha = \alpha\beta\alpha$, then $\operatorname{ran}(\beta\alpha) = \operatorname{ran} \alpha$ and $x\beta\alpha = x$ for all $x \in \operatorname{ran} \alpha$.

A mapping φ from a poset X into a poset Y is said to be *order-preserving* if

for all $x, x' \in X$, $x \leq x'$ in $X \Rightarrow x\varphi \leq x'\varphi$ in Y.

A bijection φ from a poset X onto a poset Y is called an *order-isomorphism* if φ and φ^{-1} are order-preserving. The posets X and Y are said to be *order-isomorphic* if there is an order-isomorphism from X onto Y.

For a poset X, let OT(X) be the set of all order-preserving mappings α :

 $X \to X$. Then OT(X) is a subsemigroup of T(X) which is called the *full order*preserving transformation semigroup on X. If φ is an order-isomorphism from a poset X onto a poset Y, then $\theta : OT(X) \to OT(Y)$ defined by

$$\theta(\alpha) = \varphi^{-1} \alpha \varphi$$
 for all $\alpha \in OT(X)$

is clearly an isomorphism from OT(X) onto OT(Y).

Proposition 1.2. If the posets X and Y are order-isomorphic, then OT(X) and OT(Y) are isomorphic.

It is known from [1, page 203] that if X is a finite chain, then OT(X) is a regular semigroup. In 2000, Kemprasit and Changphas [3] extended this result to any chain which is order-isomorphic to a subset of \mathbb{Z} , the set of integers with their natural order. In [4], the authors generalized full order-preserving transformation semigroups by using sandwich multiplication and investigated their regularity. Some isomorphism theorems are also provided.

Proposition 1.3 ([3]). If X is a chain which is order-isomorphic to a subset of \mathbb{Z} with the natural order, then OT(X) is a regular semigroup.

For chains X and Y, define the *dictionary partial order* \leq_d on $X \times Y$ by

$$(x,y) \leq_d (x',y') \Leftrightarrow (i) \quad x < x' \text{ or} (ii) \quad x = x' \text{ and } y \leq y'.$$

Then $(X \times Y, \leq_d)$ becomes a chain. The following result was proved in [5] and [6].

Theorem 1.4 ([5], [6]). Let X be a nonempty subset of \mathbb{Z} with the natural order. Then $OT(X \times X, \leq_d)$ is a regular semigroup if and only if X is finite.

Our purpose is to extend Theorem 1.4 by considering the regularity of $OT(X \times Y, \leq_d)$ where X and Y are nonempty subsets of Z. It will be shown that $OT(X \times Y, \leq_d)$ is a regular semigroup if and only if |X| = 1 or Y is finite where |X| denotes the cardinality of X.

2 Main Results

Let \mathbb{Z}^+ and \mathbb{Z}^- denote respectively the set of all positive integers and the set of all negative integers. It is clear that if $\emptyset \neq X \subseteq \mathbb{Z}$, then with the natural order, X satisfies the following properties:

- (I) X is bounded above and bounded below if and only if X is order-isomorphic to $\{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$,
- (II) X is not bounded above but bounded below if and only if X is orderisomorphic to \mathbb{Z}^+ ,

- (III) X is bounded above but not bounded below if and only if X is order-isomorphic to \mathbb{Z}^- and
- (IV) X is neither bounded above nor bounded below if and only if X is orderisomorphic to \mathbb{Z} .

Throughout, the partial order on a nonempty subset of \mathbb{Z} always means the natural partial order.

To obtain the main theorem, the following two lemmas are needed. The proof of the first one straightforword.

Lemma 2.1. If φ_1 is an order-isomorphism from a chain X onto a chain X' and φ_2 is an order-isomorphism from a chain Y onto a chain Y', then $\varphi : X \times Y \to X' \times Y'$ defined by

$$(x,y)\varphi = (x\varphi_1, y\varphi_2)$$
 for all $x \in X$ and $y \in Y$

is an order-isomorphism from the chain $(X \times Y, \leq_d)$ onto $(X^{'} \times Y^{'}, \leq_d^{'})$ where \leq_d and $\leq_d^{'}$ are the dictionary partial order on $X \times Y$ and $X^{'} \times Y^{'}$, respectively.

Lemma 2.2. Let X and Y be nonempty subsets of \mathbb{Z} . If Y is finite, then $(X \times Y, \leq_d)$ is order-isomorphic to a subchain of \mathbb{Z} .

Proof. Since Y is finite, it follows that Y is order-isomorphic to $\{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.

If X is finite, then $(X \times Y, \leq_d)$ is a finite chain, so it order-isomorphic to a finite subchain of \mathbb{Z} .

Next, assume that X is infinite. Then X is order-isomorphic to $\mathbb{Z}^+, \mathbb{Z}^-$ or \mathbb{Z} . Therefore by Lemma 2.1, $(X \times Y, \leq_d)$ is order-isomorphic to one of the following chains:

$$(\mathbb{Z}^+ \times \{1, 2, \dots, n\}, \leq_d), (\mathbb{Z}^- \times \{1, 2, \dots, n\}, \leq_d), (\mathbb{Z} \times \{1, 2, \dots, n\}, \leq_d).$$

We have that

$$\mathbb{Z} \times \{1, 2, \dots, n\} = \{(k, i) \mid k \in \mathbb{Z} \text{ and } i \in \{1, 2, \dots, n\}\}$$

and

$$\dots <_d (-1,1) <_d \dots <_d (-1,n) <_d (0,1) <_d \dots <_d (0,n) <_d (1,1) <_d \dots <_d (1,n) <_d \dots$$

Define $\varphi : \mathbb{Z} \times \{1, 2, \dots, n\} \to \mathbb{Z}$ by

$$(k,i)\varphi = kn + i$$
 for $k \in \mathbb{Z}$ and $i \in \{1, 2, \dots, n\}$.

It is clearly seen that φ is injective and order-preserving. Consequently, $(\mathbb{Z} \times \{1, 2, \ldots, n\}, \leq_d)$ is order-isomorphic to a subchain of \mathbb{Z} . Since $(\mathbb{Z}^+ \times \{1, 2, \ldots, n\} \leq_d)$ and $(\mathbb{Z}^- \times \{1, 2, \ldots, n\}, \leq_d)$ are subchains of $(\mathbb{Z} \times \{1, 2, \ldots, n\}, \leq_d)$, it follows that $(X \times Y, \leq_d)$ is order-isomorphic to a subchain of \mathbb{Z} , as desired. \Box

Theorem 2.3. Let X and Y be nonempty subsets of \mathbb{Z} . Then $OT(X \times Y, \leq_d)$ is a regular semigroup if and only if |X| = 1 or Y is finite.

Proof. Assume that $OT(X \times Y, \leq_d)$ is regular and suppose that |X| > 1 and Y is infinite. By (I)-(IV) mentioned previously, Theorem 1.4 and Lemma 2.1, $(X \times Y, \leq_d)$ is order-isomorphic to one of the following chains:

 $\begin{array}{l} (\mathbb{Z}^+ \times \mathbb{Z}, \leq_d), (\mathbb{Z}^- \times \mathbb{Z}, \leq_d), (\mathbb{Z} \times \mathbb{Z}^+, \leq_d), (\mathbb{Z} \times \mathbb{Z}^-, \leq_d), \\ (\mathbb{Z}^+ \times \mathbb{Z}^-, \leq_d), (\mathbb{Z}^- \times \mathbb{Z}^+, \leq_d), (\{1, 2, \dots, n\} \times \mathbb{Z}, \leq_d), \\ (\{1, 2, \dots, n\} \times \mathbb{Z}^+, \leq_d), (\{1, 2, \dots, n\} \times \mathbb{Z}^-, \leq_d) \text{ where } n > 1. \end{array}$

Since $OT(X \times Y, \leq_d)$ is regular, by Proposition 1.2, OT(C) is regular if C is one of the above nine chains.

Case 1 : $C = (\mathbb{Z}^+ \times \mathbb{Z}, \leq_d)$. Define $\alpha : \mathbb{Z}^+ \times \mathbb{Z} \to \mathbb{Z}^+ \times \mathbb{Z}$ by

 $(\{x\} \times \mathbb{Z})\alpha = \{(1, x)\}$ for all $x \in \mathbb{Z}^+$.

Then $\alpha \in OT(\mathbb{Z}^+ \times \mathbb{Z}, \leq_d)$ and ran $\alpha = \{1\} \times \mathbb{Z}^+$. Since $OT(\mathbb{Z}^+ \times \mathbb{Z}, \leq_d)$ is regular, there exists an element $\beta \in OT(\mathbb{Z}^+ \times \mathbb{Z}, \leq_d)$ such that $\alpha = \alpha \beta \alpha$. By Proposition 1.1,

$$(1, x)\beta\alpha = (1, x)$$
 for all $x \in \mathbb{Z}^+$.

Since $(1, x) <_d (2, 1)$ for all $x \in \mathbb{Z}^+$, it follows that

$$(1, x) = (1, x)\beta\alpha \leq_d (2, 1)\beta\alpha$$
 for all $x \in \mathbb{Z}^+$.

Since $(2,1)\beta\alpha \in \operatorname{ran} \alpha = \{1\} \times \mathbb{Z}^+$, we have that $(2,1)\beta\alpha = (1,k)$ for some $k \in \mathbb{Z}^+$, and hence $x \leq k$ for all $x \in \mathbb{Z}^+$, a contradiction.

Case 2: $C = (\mathbb{Z}^- \times \mathbb{Z}, \leq_d)$. Define $\alpha : \mathbb{Z}^- \times \mathbb{Z} \to \mathbb{Z}^- \times \mathbb{Z}$ by

$$({x} \times \mathbb{Z})\alpha = \{(-1, x)\}$$
 for all $x \in \mathbb{Z}^{-1}$

Then $\alpha \in OT(\mathbb{Z}^- \times \mathbb{Z}, \leq_d)$ and ran $\alpha = \{-1\} \times \mathbb{Z}^-$. Since $OT(\mathbb{Z}^- \times \mathbb{Z}, \leq_d)$ is regular, $\alpha = \alpha \beta \alpha$ for some $\beta \in OT(\mathbb{Z}^- \times \mathbb{Z}, \leq_d)$. By Proposition 1.1,

$$(-1, x)\beta\alpha = (-1, x)$$
 for all $x \in \mathbb{Z}^-$.

But $(-2, -1) <_d (-1, x)$ for all $x \in \mathbb{Z}^-$, so

$$(-1,x) = (-1,x)\beta\alpha \ge_d (-2,-1)\beta\alpha = (-1,l)$$
 for some $l \in \mathbb{Z}^-$.

since $(-2, -1)\beta\alpha \in \operatorname{ran} \alpha = \{-1\} \times \mathbb{Z}^-$. Hence $x \ge l$ for all $x \in \mathbb{Z}^-$ which is a contradiction.

Case 3: $C = (\mathbb{Z} \times \mathbb{Z}^+, \leq_d)$. Define $\alpha : \mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{Z} \times \mathbb{Z}^+$ by

$$(\{x\} \times \mathbb{Z}^+) \alpha = \{(1,1)\} \text{ if } x \in \mathbb{Z}^- \cup \{0\}$$

and

$$({x} \times \mathbb{Z}^+)\alpha = \{(1,x)\}$$
 if $x \in \mathbb{Z}^+$.

Then $\alpha \in OT(\mathbb{Z} \times \mathbb{Z}^+, \leq_d)$ and ran $\alpha = \{1\} \times \mathbb{Z}^+$. By the same proof of Case 1, we have that \mathbb{Z}^+ is bounded above, a contradiction.

Case 4 : $C = (\mathbb{Z} \times \mathbb{Z}^{-}, \leq_d)$. Let $\alpha : \mathbb{Z} \times \mathbb{Z}^{-} \to \mathbb{Z} \times \mathbb{Z}^{-}$ be defined by

$$(\{x\} \times \mathbb{Z}^{-})\alpha = \{(-1, -1)\} \text{ if } x \in \mathbb{Z}^{+} \cup \{0\}$$

and

$$(\{x\} \times \mathbb{Z}^-)\alpha = \{(-1,x)\}$$
 if $x \in \mathbb{Z}^-$.

Then $\alpha \in OT(\mathbb{Z} \times \mathbb{Z}^-, \leq_d)$ and ran $\alpha = \{-1\} \times \mathbb{Z}^-$. We can see from the proof of Case 2 that \mathbb{Z}^- is bounded below, a contradiction.

Case 5: $C = (\mathbb{Z}^+ \times \mathbb{Z}^-, \leq_d)$ or $C = (\{1, 2, \ldots, n\} \times \mathbb{Z}^-, \leq_d)$ where n > 1. Let $\alpha : C \to C$ be defined by

$$(x,y)\alpha = \begin{cases} (2,y) & \text{if } x = 1 \text{ and } y \in \mathbb{Z}^-, \\ (2,-1) & \text{otherwise.} \end{cases}$$

Then $\alpha \in OT(C)$ and ran $\alpha = \{2\} \times \mathbb{Z}^-$. Since OT(C) is regular, we have that $\alpha = \alpha \beta \alpha$ for some $\beta \in OT(C)$. By Proposition 1.1,

$$(2, x)\beta\alpha = (2, x)$$
 for all $x \in \mathbb{Z}^-$.

Since $(1, -1) <_d (2, x)$ for all $x \in \mathbb{Z}^-$, it follows that

$$(2,x) = (2,x)\beta\alpha \ge_d (1,-1)\beta\alpha$$
 for all $x \in \mathbb{Z}^-$.

Since $(1,-1)\beta\alpha \in \operatorname{ran} \alpha = \{2\} \times \mathbb{Z}^-$, there is an element $r \in \mathbb{Z}^-$ such that $(1,-1)\beta\alpha = (2,r)$, and hence $x \geq r$ for all $x \in \mathbb{Z}^-$ which is a contradiction.

Case 6: $C = (\mathbb{Z}^- \times \mathbb{Z}^+, \leq_d)$. Define $\alpha : \mathbb{Z}^- \times \mathbb{Z}^+ \to \mathbb{Z}^- \times \mathbb{Z}^+$ by

$$(x,y)\alpha = \begin{cases} (-2,y) & \text{if } x = -1 \text{ and } y \in \mathbb{Z}^+, \\ (-2,1) & \text{otherwise.} \end{cases}$$

Then $\alpha \in OT(\mathbb{Z}^- \times \mathbb{Z}^+, \leq_d)$ and $\operatorname{ran} \alpha = \{-2\} \times \mathbb{Z}^+$. Since $OT(\mathbb{Z}^- \times \mathbb{Z}^+, \leq_d)$ is regular, $\alpha = \alpha \beta \alpha$ for some $\beta \in OT(\mathbb{Z}^- \times \mathbb{Z}^+, \leq_d)$. By Proposition 1.1,

$$(-2, x)\beta\alpha = (-2, x)$$
 for all $x \in \mathbb{Z}^+$.

But $(-2, x) <_d (-1, 1)$ for all $x \in \mathbb{Z}^+$, so

$$(-2, x) = (-2, x)\beta\alpha \leq_d (-1, 1)\beta\alpha = (-2, s)$$
 for some $s \in \mathbb{Z}^+$

since $(-1,1)\beta\alpha \in \operatorname{ran} \alpha = \{-2\} \times \mathbb{Z}^+$. Hence $x \leq s$ for all $x \in \mathbb{Z}^+$ which is a contradiction.

Case 7: $C = (\{1, \ldots, n\} \times \mathbb{Z}, \leq_d)$ or $C = (\{1, \ldots, n\} \times \mathbb{Z}^+, \leq_d)$ where n > 1. Let $\alpha : C \to C$ be defined by

$$(i,x)\alpha = \begin{cases} (n-1,x) & \text{if } i = n \text{ and } x \in \mathbb{Z}^+, \\ (n-1,1) & \text{otherwise.} \end{cases}$$

It is easy to see that $\alpha \in OT(C)$ and $\operatorname{ran} \alpha = \{n-1\} \times \mathbb{Z}^+$. Since OT(C) is regular, we have that $\alpha = \alpha \beta \alpha$ for some $\beta \in OT(C)$. By Proposition 1.1,

$$(n-1,x)\beta\alpha = (n-1,x)$$
 for all $x \in \mathbb{Z}^+$.

Since $(n-1, x) <_d (n, 1)$ and ran $\alpha = \{n-1\} \times \mathbb{Z}^+$, it follows that

$$(n-1,x) = (n-1,x)\beta\alpha \leq_d (n,1)\beta\alpha = (n-1,k)$$
 for some $k \in \mathbb{Z}^+$.

We deduce that $x \leq k$ for all $x \in \mathbb{Z}^+$ which is a contradiction.

Hence it is shown that if $OT(X \times Y, \leq_d)$ is regular, then |X| = 1 or Y is finite. For the converse, if |X| = 1, $(X \times Y, \leq_d)$ is clearly order-isomorphic to Y, then by Proposition 1.3, $OT(X \times Y, \leq_d)$ is regular. If Y is finite, then by Proposition 1.3 and Lemma 2.2, $OT(X \times Y, \leq_d)$ is regular. \Box

References

- P. M. Higgins, *Techniques of semigroup theory*, Oxford University Press, New York, 1992.
- [2] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press. Oxford, 1995.
- [3] Y. Kemprasit and T. Changphas, Regular order-preserving transformation semigroups, Bull. Austral. Math. Soc. 62 (2000), 511-524.
- [4] Y. Kemprasit and S. Jaidee, Regularity and isomorphism theorems of generalized order-preserving transformation semigroups, *Vietnam J. Math.* 33 (2005), 253-260.
- [5] W. Mora, Regular elements of order-preserving transformation semigroups, Master Thesis, Chulalongkorn University, 2007
- [6] W. Mora and Y. Kemprasit, Regularity of full order-preserving transformation semigroups on some dictionary posets, *Thai J. Math.*, Spec. Issue for Annual Meetings in Math. 2006 (2006), 19-23.

(Received 30 May 2007)

W. Mora and Y. Kemprasit Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, THAILAND. e-mail: winita.m@student.chula.ac.th, yupaporn.k@chula.ac.th