Regular Transformation Semigroups on Some Dictionary Chains

W. Mora and Y. Kemprasit

Abstract

Denote by $O T(X)$ the full order-preserving transformation semigroup on a poset X. The following results are known. If X is any nonempty subset of \mathbb{Z} with the natural order, then $O T(X)$ is a regular semigroup, that is, for every $\alpha \in O T(X), \alpha=\alpha \beta \alpha$ for some $\beta \in O T(X)$. If \leq_{d} is the dictionary partial order on $X \times X$ where X is a nonempty subset of \mathbb{Z}, then $O T\left(X \times X, \leq_{d}\right)$ is regular if and only if X is finite. By using these two known results, we extend the second one to the semigroup $O T\left(X \times Y, \leq_{d}\right)$ where X and Y are nonempty subsets of \mathbb{Z}. It is shown that $O T\left(X \times Y, \leq_{d}\right)$ is regular if and only if $|X|=1$ or Y is finite.

Keywords : Order-preserving transformation semigroup, regular semigroup. 2000 Mathematics Subject Classification : 20M17, 20M20.

1 Introduction

An element a of a semigroup S is called regular if $a=a b a$ for some $b \in S$, and S is said to be a regular semigroup if every element of S is regular.

For a nonempty set X, let $T(X)$ be the full transformation semigroup on X, that is, $T(X)$ is the semigroup, under composition, of all mappings $\alpha: X \rightarrow X$. The image of $x \in X$ under $\alpha \in T(X)$ is written by $x \alpha$. The range of $\alpha \in T(X)$ is denoted by ran α. It is well-known that $T(X)$ is a regular semigroup ([1], page 4 or [2], page 63).

The following easy fact which was given in [5] and [6] will be used.
Proposition 1.1 ([5], [6]). Let X be a nonempty set and $\alpha, \beta \in O T(X)$. If $\alpha=\alpha \beta \alpha$, then $\operatorname{ran}(\beta \alpha)=\operatorname{ran} \alpha$ and $x \beta \alpha=x$ for all $x \in \operatorname{ran} \alpha$.

A mapping φ from a poset X into a poset Y is said to be order-preserving if

$$
\text { for all } x, x^{\prime} \in X, \quad x \leq x^{\prime} \text { in } X \Rightarrow x \varphi \leq x^{\prime} \varphi \text { in } Y .
$$

A bijection φ from a poset X onto a poset Y is called an order-isomorphism if φ and φ^{-1} are order-preserving. The posets X and Y are said to be order-isomorphic if there is an order-isomorphism from X onto Y.

For a poset X, let $O T(X)$ be the set of all order-preserving mappings α :
$X \rightarrow X$. Then $O T(X)$ is a subsemigroup of $T(X)$ which is called the full orderpreserving transformation semigroup on X. If φ is an order-isomorphism from a poset X onto a poset Y, then $\theta: O T(X) \rightarrow O T(Y)$ defined by

$$
\theta(\alpha)=\varphi^{-1} \alpha \varphi \text { for all } \alpha \in O T(X)
$$

is clearly an isomorphism from $O T(X)$ onto $O T(Y)$.
Proposition 1.2. If the posets X and Y are order-isomorphic, then $O T(X)$ and $O T(Y)$ are isomorphic.

It is known from [1, page 203] that if X is a finite chain, then $O T(X)$ is a regular semigroup. In 2000, Kemprasit and Changphas [3] extended this result to any chain which is order-isomorphic to a subset of \mathbb{Z}, the set of integers with their natural order. In [4], the authors generalized full order-preserving transformation semigroups by using sandwich multiplication and investigated their regularity. Some isomorphism theorems are also provided.

Proposition 1.3 ([3]). If X is a chain which is order-isomorphic to a subset of \mathbb{Z} with the natural order, then $O T(X)$ is a regular semigroup.

For chains X and Y, define the dictionary partial order \leq_{d} on $X \times Y$ by

$$
\begin{aligned}
(x, y) \leq_{d}\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow & \text { (i) } x<x^{\prime} \text { or } \\
& \text { (ii) } x=x^{\prime} \text { and } y \leq y^{\prime} .
\end{aligned}
$$

Then $\left(X \times Y, \leq_{d}\right)$ becomes a chain. The following result was proved in [5] and [6].
Theorem 1.4 ([5], [6]). Let X be a nonempty subset of \mathbb{Z} with the natural order. Then $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup if and only if X is finite.

Our purpose is to extend Theorem 1.4 by considering the regularity of $O T(X \times$ $\left.Y, \leq_{d}\right)$ where X and Y are nonempty subsets of \mathbb{Z}. It will be shown that $O T(X \times$ $\left.Y, \leq_{d}\right)$ is a regular semigroup if and only if $|X|=1$ or Y is finite where $|X|$ denotes the cardinality of X.

2 Main Results

Let \mathbb{Z}^{+}and \mathbb{Z}^{-}denote respectively the set of all positive integers and the set of all negative integers. It is clear that if $\emptyset \neq X \subseteq \mathbb{Z}$, then with the natural order, X satisfies the following properties:
(I) X is bounded above and bounded below if and only if X is order-isomorphic to $\{1,2, \ldots, n\}$ for some $n \in \mathbb{Z}^{+}$,
(II) X is not bounded above but bounded below if and only if X is orderisomorphic to \mathbb{Z}^{+},
(III) X is bounded above but not bounded below if and only if X is orderisomorphic to \mathbb{Z}^{-}and
(IV) X is neither bounded above nor bounded below if and only if X is orderisomorphic to \mathbb{Z}.
Throughout, the partial order on a nonempty subset of \mathbb{Z} always means the natural partial order.

To obtain the main theorem, the following two lemmas are needed. The proof of the first one straightforword.

Lemma 2.1. If φ_{1} is an order-isomorphism from a chain X onto a chain X^{\prime} and φ_{2}, is an order-isomorphism from a chain Y onto a chain Y^{\prime}, then $\varphi: X \times Y \rightarrow$ $X^{\prime} \times Y^{\prime}$ defined by

$$
(x, y) \varphi=\left(x \varphi_{1}, y \varphi_{2}\right) \text { for all } x \in X \text { and } y \in Y
$$

is an order-isomorphism from the chain $\left(X \times Y, \leq_{d}\right)$ onto $\left(X^{\prime} \times Y^{\prime}, \leq_{d}^{\prime}\right)$ where \leq_{d} and \leq_{d}^{\prime} are the dictionary partial order on $X \times Y$ and $X^{\prime} \times Y^{\prime}$, respectively.

Lemma 2.2. Let X and Y be nonempty subsets of \mathbb{Z}. If Y is finite, then $\left(X \times Y, \leq_{d}\right.$) is order-isomorphic to a subchain of \mathbb{Z}.

Proof. Since Y is finite, it follows that Y is order-isomorphic to $\{1,2, \ldots, n\}$ for some $n \in \mathbb{Z}^{+}$.

If X is finite, then $\left(X \times Y, \leq_{d}\right)$ is a finite chain, so it order-isomorphic to a finite subchain of \mathbb{Z}.

Next, assume that X is infinite. Then X is order-isomorphic to $\mathbb{Z}^{+}, \mathbb{Z}^{-}$or \mathbb{Z}. Therefore by Lemma 2.1, $\left(X \times Y, \leq_{d}\right)$ is order-isomorphic to one of the following chains:

$$
\left(\mathbb{Z}^{+} \times\{1,2, \ldots, n\}, \leq_{d}\right),\left(\mathbb{Z}^{-} \times\{1,2, \ldots, n\}, \leq_{d}\right),\left(\mathbb{Z} \times\{1,2, \ldots, n\}, \leq_{d}\right)
$$

We have that

$$
\mathbb{Z} \times\{1,2, \ldots, n\}=\{(k, i) \mid k \in \mathbb{Z} \text { and } i \in\{1,2, \ldots, n\}\}
$$

and

$$
\begin{gathered}
\ldots<_{d}(-1,1)<_{d} \ldots<_{d}(-1, n)<_{d}(0,1)<_{d} \ldots<_{d}(0, n)<_{d} \\
(1,1)<_{d} \ldots<_{d}(1, n)<_{d} \ldots
\end{gathered}
$$

Define $\varphi: \mathbb{Z} \times\{1,2, \ldots, n\} \rightarrow \mathbb{Z}$ by

$$
(k, i) \varphi=k n+i \text { for } k \in \mathbb{Z} \text { and } i \in\{1,2, \ldots, n\}
$$

It is clearly seen that φ is injective and order-preserving. Consequently, $(\mathbb{Z} \times$ $\left.\{1,2, \ldots, n\}, \leq_{d}\right)$ is order-isomorphic to a subchain of \mathbb{Z}. Since $\left(\mathbb{Z}^{+} \times\{1,2, \ldots, n\}\right.$ $\left.\leq_{d}\right)$ and $\left(\mathbb{Z}^{-} \times\{1,2, \ldots, n\}, \leq_{d}\right)$ are subchains of $\left(\mathbb{Z} \times\{1,2, \ldots, n\}, \leq_{d}\right)$, it follows that $\left(X \times Y, \leq_{d}\right)$ is order-isomorphic to a subchain of \mathbb{Z}, as desired.

Theorem 2.3. Let X and Y be nonempty subsets of \mathbb{Z}. Then $O T\left(X \times Y, \leq_{d}\right)$ is a regular semigroup if and only if $|X|=1$ or Y is finite.

Proof. Assume that $O T\left(X \times Y, \leq_{d}\right)$ is regular and suppose that $|X|>1$ and Y is infinite. By (I)-(IV) mentioned previously, Theorem 1.4 and Lemma 2.1, ($X \times Y, \leq_{d}$) is order-isomorphic to one of the following chains:

$$
\begin{gathered}
\left(\mathbb{Z}^{+} \times \mathbb{Z}, \leq_{d}\right),\left(\mathbb{Z}^{-} \times \mathbb{Z}, \leq_{d}\right),\left(\mathbb{Z} \times \mathbb{Z}^{+}, \leq_{d}\right),\left(\mathbb{Z} \times \mathbb{Z}^{-}, \leq_{d}\right), \\
\left(\mathbb{Z}^{+} \times \mathbb{Z}^{-}, \leq_{d}\right),\left(\mathbb{Z}^{-} \times \mathbb{Z}^{+}, \leq_{d}\right),\left(\{1,2, \ldots, n\} \times \mathbb{Z}, \leq_{d}\right), \\
\left(\{1,2, \ldots, n\} \times \mathbb{Z}^{+}, \leq_{d}\right),\left(\{1,2, \ldots, n\} \times \mathbb{Z}^{-}, \leq_{d}\right) \text { where } n>1 .
\end{gathered}
$$

Since $O T\left(X \times Y, \leq_{d}\right)$ is regular, by Proposition 1.2, $O T(C)$ is regular if C is one of the above nine chains.

Case 1: $C=\left(\mathbb{Z}^{+} \times \mathbb{Z}, \leq_{d}\right)$. Define $\alpha: \mathbb{Z}^{+} \times \mathbb{Z} \rightarrow \mathbb{Z}^{+} \times \mathbb{Z}$ by

$$
(\{x\} \times \mathbb{Z}) \alpha=\{(1, x)\} \text { for all } x \in \mathbb{Z}^{+} .
$$

Then $\alpha \in O T\left(\mathbb{Z}^{+} \times \mathbb{Z}, \leq_{d}\right)$ and $\operatorname{ran} \alpha=\{1\} \times \mathbb{Z}^{+}$. Since $O T\left(\mathbb{Z}^{+} \times \mathbb{Z}, \leq_{d}\right)$ is regular, there exists an element $\beta \in O T\left(\mathbb{Z}^{+} \times \mathbb{Z}, \leq_{d}\right)$ such that $\alpha=\alpha \beta \alpha$. By Proposition 1.1,

$$
(1, x) \beta \alpha=(1, x) \text { for all } x \in \mathbb{Z}^{+} .
$$

Since $(1, x)<_{d}(2,1)$ for all $x \in \mathbb{Z}^{+}$, it follows that

$$
(1, x)=(1, x) \beta \alpha \leq_{d}(2,1) \beta \alpha \text { for all } x \in \mathbb{Z}^{+} .
$$

Since $(2,1) \beta \alpha \in \operatorname{ran} \alpha=\{1\} \times \mathbb{Z}^{+}$, we have that $(2,1) \beta \alpha=(1, k)$ for some $k \in \mathbb{Z}^{+}$, and hence $x \leq k$ for all $x \in \mathbb{Z}^{+}$, a contradiction.

Case 2: $C=\left(\mathbb{Z}^{-} \times \mathbb{Z}, \leq_{d}\right)$. Define $\alpha: \mathbb{Z}^{-} \times \mathbb{Z} \rightarrow \mathbb{Z}^{-} \times \mathbb{Z}$ by

$$
(\{x\} \times \mathbb{Z}) \alpha=\{(-1, x)\} \text { for all } x \in \mathbb{Z}^{-} .
$$

Then $\alpha \in O T\left(\mathbb{Z}^{-} \times \mathbb{Z}, \leq_{d}\right)$ and $\operatorname{ran} \alpha=\{-1\} \times \mathbb{Z}^{-}$. Since $O T\left(\mathbb{Z}^{-} \times \mathbb{Z}, \leq_{d}\right)$ is regular, $\alpha=\alpha \beta \alpha$ for some $\beta \in O T\left(\mathbb{Z}^{-} \times \mathbb{Z}, \leq_{d}\right)$. By Proposition 1.1,

$$
(-1, x) \beta \alpha=(-1, x) \text { for all } x \in \mathbb{Z}^{-} .
$$

But $(-2,-1)<_{d}(-1, x)$ for all $x \in \mathbb{Z}^{-}$, so

$$
(-1, x)=(-1, x) \beta \alpha \geq_{d}(-2,-1) \beta \alpha=(-1, l) \text { for some } l \in \mathbb{Z}^{-} .
$$

since $(-2,-1) \beta \alpha \in \operatorname{ran} \alpha=\{-1\} \times \mathbb{Z}^{-}$. Hence $x \geq l$ for all $x \in \mathbb{Z}^{-}$which is a contradiction.

Case 3: $C=\left(\mathbb{Z} \times \mathbb{Z}^{+}, \leq_{d}\right)$. Define $\alpha: \mathbb{Z} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z} \times \mathbb{Z}^{+}$by

$$
\left(\{x\} \times \mathbb{Z}^{+}\right) \alpha=\{(1,1)\} \quad \text { if } \quad x \in \mathbb{Z}^{-} \cup\{0\}
$$

and

$$
\left(\{x\} \times \mathbb{Z}^{+}\right) \alpha=\{(1, x)\} \quad \text { if } x \in \mathbb{Z}^{+}
$$

Then $\alpha \in O T\left(\mathbb{Z} \times \mathbb{Z}^{+}, \leq_{d}\right)$ and $\operatorname{ran} \alpha=\{1\} \times \mathbb{Z}^{+}$. By the same proof of Case 1 , we have that \mathbb{Z}^{+}is bounded above, a contradiction.

Case 4: $C=\left(\mathbb{Z} \times \mathbb{Z}^{-}, \leq_{d}\right)$. Let $\alpha: \mathbb{Z} \times \mathbb{Z}^{-} \rightarrow \mathbb{Z} \times \mathbb{Z}^{-}$be defined by

$$
\left(\{x\} \times \mathbb{Z}^{-}\right) \alpha=\{(-1,-1)\} \quad \text { if } \quad x \in \mathbb{Z}^{+} \cup\{0\}
$$

and

$$
\left(\{x\} \times \mathbb{Z}^{-}\right) \alpha=\{(-1, x)\} \quad \text { if } \quad x \in \mathbb{Z}^{-}
$$

Then $\alpha \in O T\left(\mathbb{Z} \times \mathbb{Z}^{-}, \leq_{d}\right)$ and $\operatorname{ran} \alpha=\{-1\} \times \mathbb{Z}^{-}$. We can see from the proof of Case 2 that \mathbb{Z}^{-}is bounded below, a contradiction.

Case 5: $C=\left(\mathbb{Z}^{+} \times \mathbb{Z}^{-}, \leq_{d}\right)$ or $C=\left(\{1,2, \ldots, n\} \times \mathbb{Z}^{-}, \leq_{d}\right)$ where $n>1$. Let $\alpha: C \rightarrow C$ be defined by

$$
(x, y) \alpha= \begin{cases}(2, y) & \text { if } x=1 \text { and } y \in \mathbb{Z}^{-} \\ (2,-1) & \text { otherwise }\end{cases}
$$

Then $\alpha \in O T(C)$ and $\operatorname{ran} \alpha=\{2\} \times \mathbb{Z}^{-}$. Since $O T(C)$ is regular, we have that $\alpha=\alpha \beta \alpha$ for some $\beta \in O T(C)$. By Proposition 1.1,

$$
(2, x) \beta \alpha=(2, x) \text { for all } x \in \mathbb{Z}^{-}
$$

Since $(1,-1)<_{d}(2, x)$ for all $x \in \mathbb{Z}^{-}$, it follows that

$$
(2, x)=(2, x) \beta \alpha \geq_{d}(1,-1) \beta \alpha \text { for all } x \in \mathbb{Z}^{-}
$$

Since $(1,-1) \beta \alpha \in \operatorname{ran} \alpha=\{2\} \times \mathbb{Z}^{-}$, there is an element $r \in \mathbb{Z}^{-}$such that $(1,-1) \beta \alpha=(2, r)$, and hence $x \geq r$ for all $x \in \mathbb{Z}^{-}$which is a contradiction.

Case 6 : $C=\left(\mathbb{Z}^{-} \times \mathbb{Z}^{+}, \leq_{d}\right)$. Define $\alpha: \mathbb{Z}^{-} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{-} \times \mathbb{Z}^{+}$by

$$
(x, y) \alpha= \begin{cases}(-2, y) & \text { if } x=-1 \text { and } y \in \mathbb{Z}^{+} \\ (-2,1) & \text { otherwise }\end{cases}
$$

Then $\alpha \in O T\left(\mathbb{Z}^{-} \times \mathbb{Z}^{+}, \leq_{d}\right)$ and $\operatorname{ran} \alpha=\{-2\} \times \mathbb{Z}^{+}$. Since $O T\left(\mathbb{Z}^{-} \times \mathbb{Z}^{+}, \leq_{d}\right)$ is regular, $\alpha=\alpha \beta \alpha$ for some $\beta \in O T\left(\mathbb{Z}^{-} \times \mathbb{Z}^{+}, \leq_{d}\right)$. By Proposition 1.1,

$$
(-2, x) \beta \alpha=(-2, x) \text { for all } x \in \mathbb{Z}^{+}
$$

But $(-2, x)<_{d}(-1,1)$ for all $x \in \mathbb{Z}^{+}$, so

$$
(-2, x)=(-2, x) \beta \alpha \leq_{d}(-1,1) \beta \alpha=(-2, s) \text { for some } s \in \mathbb{Z}^{+}
$$

since $(-1,1) \beta \alpha \in \operatorname{ran} \alpha=\{-2\} \times \mathbb{Z}^{+}$. Hence $x \leq s$ for all $x \in \mathbb{Z}^{+}$which is a contradiction.

Case 7: $C=\left(\{1, \ldots, n\} \times \mathbb{Z}, \leq_{d}\right)$ or $C=\left(\{1, \ldots, n\} \times \mathbb{Z}^{+}, \leq_{d}\right)$ where $n>1$. Let $\alpha: C \rightarrow C$ be defined by

$$
(i, x) \alpha= \begin{cases}(n-1, x) & \text { if } i=n \text { and } x \in \mathbb{Z}^{+} \\ (n-1,1) & \text { otherwise } .\end{cases}
$$

It is easy to see that $\alpha \in O T(C)$ and $\operatorname{ran} \alpha=\{n-1\} \times \mathbb{Z}^{+}$. Since $O T(C)$ is regular, we have that $\alpha=\alpha \beta \alpha$ for some $\beta \in O T(C)$. By Proposition 1.1,

$$
(n-1, x) \beta \alpha=(n-1, x) \text { for all } x \in \mathbb{Z}^{+} .
$$

Since $(n-1, x)<_{d}(n, 1)$ and $\operatorname{ran} \alpha=\{n-1\} \times \mathbb{Z}^{+}$, it follows that

$$
(n-1, x)=(n-1, x) \beta \alpha \leq_{d}(n, 1) \beta \alpha=(n-1, k) \text { for some } k \in \mathbb{Z}^{+} .
$$

We deduce that $x \leq k$ for all $x \in \mathbb{Z}^{+}$which is a contradiction.
Hence it is shown that if $O T\left(X \times Y, \leq_{d}\right)$ is regular, then $|X|=1$ or Y is finite.
For the converse, if $|X|=1,\left(X \times Y, \leq_{d}\right)$ is clearly order-isomorphic to Y, then by Proposition 1.3, $O T\left(X \times Y, \leq_{d}\right)$ is regular. If Y is finite, then by Proposition 1.3 and Lemma 2.2, $O T\left(X \times Y, \leq_{d}\right)$ is regular.

References

[1] P. M. Higgins, Techniques of semigroup theory, Oxford University Press, New York, 1992.
[2] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press. Oxford, 1995.
[3] Y. Kemprasit and T. Changphas, Regular order-preserving transformation semigroups, Bull. Austral. Math. Soc. 62 (2000), 511-524.
[4] Y. Kemprasit and S. Jaidee, Regularity and isomorphism theorems of generalized order-preserving transformation semigroups, Vietnam J. Math. 33 (2005), 253-260.
[5] W. Mora, Regular elements of order-preserving transformation semigroups, Master Thesis, Chulalongkorn University, 2007
[6] W. Mora and Y. Kemprasit, Regularity of full order-preserving transformation semigroups on some dictionary posets, Thai J. Math., Spec. Issue for Annual Meetings in Math. 2006 (2006), 19-23.
W. Mora and Y. Kemprasit

Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, THAILAND.
e-mail: winita.m@student.chula.ac.th, yupaporn.k@chula.ac.th

