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Regular Transformation Semigroups on
Some Dictionary Chains
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Abstract : Denote by OT (X) the full order-preserving transformation semigroup
on a poset X. The following results are known. If X is any nonempty subset of
Z with the natural order, then OT (X) is a regular semigroup, that is, for every
α ∈ OT (X), α = αβα for some β ∈ OT (X). If ≤d is the dictionary partial order
on X ×X where X is a nonempty subset of Z, then OT (X ×X,≤d) is regular if
and only if X is finite. By using these two known results, we extend the second
one to the semigroup OT (X × Y,≤d) where X and Y are nonempty subsets of Z.
It is shown that OT (X × Y,≤d) is regular if and only if |X| = 1 or Y is finite.
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1 Introduction

An element a of a semigroup S is called regular if a = aba for some b ∈ S, and S
is said to be a regular semigroup if every element of S is regular.

For a nonempty set X, let T (X) be the full transformation semigroup on X,
that is, T (X) is the semigroup, under composition, of all mappings α : X → X.
The image of x ∈ X under α ∈ T (X) is written by xα. The range of α ∈ T (X) is
denoted by ran α. It is well-known that T (X) is a regular semigroup ([1], page 4
or [2], page 63).

The following easy fact which was given in [5] and [6] will be used.

Proposition 1.1 ([5], [6]). Let X be a nonempty set and α, β ∈ OT (X). If
α = αβα, then ran(βα) = ran α and xβα = x for all x ∈ ranα.

A mapping ϕ from a poset X into a poset Y is said to be order-preserving if

for all x, x
′ ∈ X, x ≤ x

′
in X ⇒ xϕ ≤ x

′
ϕ in Y .

A bijection ϕ from a poset X onto a poset Y is called an order-isomorphism if ϕ
and ϕ−1 are order-preserving. The posets X and Y are said to be order-isomorphic
if there is an order-isomorphism from X onto Y .

For a poset X, let OT (X) be the set of all order-preserving mappings α :
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X → X. Then OT (X) is a subsemigroup of T (X) which is called the full order-
preserving transformation semigroup on X. If ϕ is an order-isomorphism from a
poset X onto a poset Y , then θ : OT (X) → OT (Y ) defined by

θ(α) = ϕ−1αϕ for all α ∈ OT (X)

is clearly an isomorphism from OT (X) onto OT (Y ).

Proposition 1.2. If the posets X and Y are order-isomorphic, then OT (X) and
OT (Y ) are isomorphic.

It is known from [1, page 203] that if X is a finite chain, then OT (X) is a
regular semigroup. In 2000, Kemprasit and Changphas [3] extended this result
to any chain which is order-isomorphic to a subset of Z, the set of integers with
their natural order. In [4], the authors generalized full order-preserving transfor-
mation semigroups by using sandwich multiplication and investigated their regu-
larity. Some isomorphism theorems are also provided.

Proposition 1.3 ([3]). If X is a chain which is order-isomorphic to a subset of
Z with the natural order, then OT (X) is a regular semigroup.

For chains X and Y , define the dictionary partial order ≤d on X × Y by

(x, y) ≤d (x
′
, y
′
) ⇔ (i) x < x

′
or

(ii) x = x
′
and y ≤ y

′
.

Then (X ×Y,≤d) becomes a chain. The following result was proved in [5] and [6].

Theorem 1.4 ([5], [6]). Let X be a nonempty subset of Z with the natural order.
Then OT (X ×X,≤d) is a regular semigroup if and only if X is finite.

Our purpose is to extend Theorem 1.4 by considering the regularity of OT (X×
Y,≤d) where X and Y are nonempty subsets of Z. It will be shown that OT (X ×
Y,≤d) is a regular semigroup if and only if |X| = 1 or Y is finite where |X| denotes
the cardinality of X.

2 Main Results

Let Z+ and Z− denote respectively the set of all positive integers and the set of
all negative integers. It is clear that if ∅ 6= X ⊆ Z, then with the natural order, X
satisfies the following properties:

(I) X is bounded above and bounded below if and only if X is order-isomorphic
to {1, 2, . . . , n} for some n ∈ Z+,

(II) X is not bounded above but bounded below if and only if X is order-
isomorphic to Z+,
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(III) X is bounded above but not bounded below if and only if X is order-
isomorphic to Z− and

(IV) X is neither bounded above nor bounded below if and only if X is order-
isomorphic to Z.

Throughout, the partial order on a nonempty subset of Z always means the natural
partial order.

To obtain the main theorem, the following two lemmas are needed. The proof
of the first one straightforword.

Lemma 2.1. If ϕ1 is an order-isomorphism from a chain X onto a chain X
′
and

ϕ2 is an order-isomorphism from a chain Y onto a chain Y
′
, then ϕ : X × Y →

X
′ × Y

′
defined by

(x, y)ϕ = (xϕ1, yϕ2) for all x ∈ X and y ∈ Y

is an order-isomorphism from the chain (X ×Y,≤d) onto (X
′ ×Y

′
,≤′d) where ≤d

and ≤′d are the dictionary partial order on X × Y and X
′ × Y

′
, respectively.

Lemma 2.2. Let X and Y be nonempty subsets of Z. If Y is finite, then (X×Y,≤d

) is order-isomorphic to a subchain of Z.

Proof. Since Y is finite, it follows that Y is order-isomorphic to {1, 2, . . . , n} for
some n ∈ Z+.

If X is finite, then (X × Y,≤d) is a finite chain, so it order-isomorphic to a
finite subchain of Z.

Next, assume that X is infinite. Then X is order-isomorphic to Z+,Z− or Z.
Therefore by Lemma 2.1, (X × Y,≤d) is order-isomorphic to one of the following
chains:

(Z+ × {1, 2, . . . , n},≤d), (Z− × {1, 2, . . . , n},≤d), (Z× {1, 2, . . . , n},≤d).

We have that

Z× {1, 2, . . . , n} = {(k, i) | k ∈ Z and i ∈ {1, 2, . . . , n}}

and

. . . <d (−1, 1) <d . . . <d (−1, n) <d (0, 1) <d . . . <d (0, n) <d

(1, 1) <d . . . <d (1, n) <d . . .

Define ϕ : Z× {1, 2, . . . , n} → Z by

(k, i)ϕ = kn + i for k ∈ Z and i ∈ {1, 2, . . . , n}.

It is clearly seen that ϕ is injective and order-preserving. Consequently, (Z ×
{1, 2, . . . , n},≤d) is order-isomorphic to a subchain of Z. Since (Z+×{1, 2, . . . , n}
≤d) and (Z−×{1, 2, . . . , n},≤d) are subchains of (Z×{1, 2, . . . , n},≤d), it follows
that (X × Y,≤d) is order-isomorphic to a subchain of Z, as desired.
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Theorem 2.3. Let X and Y be nonempty subsets of Z. Then OT (X × Y,≤d) is
a regular semigroup if and only if |X| = 1 or Y is finite.

Proof. Assume that OT (X × Y,≤d) is regular and suppose that |X| > 1 and
Y is infinite. By (I)-(IV) mentioned previously, Theorem 1.4 and Lemma 2.1,
(X × Y,≤d) is order-isomorphic to one of the following chains:

(Z+ × Z,≤d), (Z− × Z,≤d), (Z× Z+,≤d), (Z× Z−,≤d),
(Z+ × Z−,≤d), (Z− × Z+,≤d), ({1, 2, . . . , n} × Z,≤d),

({1, 2, . . . , n} × Z+,≤d), ({1, 2, . . . , n} × Z−,≤d) where n > 1.

Since OT (X × Y,≤d) is regular, by Proposition 1.2, OT (C) is regular if C is one
of the above nine chains.

Case 1 : C = (Z+ × Z,≤d). Define α : Z+ × Z→ Z+ × Z by

({x} × Z)α = {(1, x)} for all x ∈ Z+.

Then α ∈ OT (Z+×Z,≤d) and ran α = {1}×Z+. Since OT (Z+×Z,≤d) is regular,
there exists an element β ∈ OT (Z+ × Z,≤d) such that α = αβα. By Proposition
1.1,

(1, x)βα = (1, x) for all x ∈ Z+.

Since (1, x) <d (2, 1) for all x ∈ Z+, it follows that

(1, x) = (1, x)βα ≤d (2, 1)βα for all x ∈ Z+.

Since (2, 1)βα ∈ ranα = {1}×Z+, we have that (2, 1)βα = (1, k) for some k ∈ Z+,
and hence x ≤ k for all x ∈ Z+, a contradiction.

Case 2 : C = (Z− × Z,≤d). Define α : Z− × Z→ Z− × Z by

({x} × Z)α = {(−1, x)} for all x ∈ Z−.

Then α ∈ OT (Z− × Z,≤d) and ran α = {−1} × Z−. Since OT (Z− × Z,≤d) is
regular, α = αβα for some β ∈ OT (Z− × Z,≤d). By Proposition 1.1,

(−1, x)βα = (−1, x) for all x ∈ Z−.

But (−2,−1) <d (−1, x) for all x ∈ Z−, so

(−1, x) = (−1, x)βα ≥d (−2,−1)βα = (−1, l) for some l ∈ Z−.

since (−2,−1)βα ∈ ranα = {−1} × Z−. Hence x ≥ l for all x ∈ Z− which is a
contradiction.

Case 3 : C = (Z× Z+,≤d). Define α : Z× Z+ → Z× Z+ by

({x} × Z+)α = {(1, 1)} if x ∈ Z− ∪ {0}
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and
({x} × Z+)α = {(1, x)} if x ∈ Z+.

Then α ∈ OT (Z × Z+,≤d) and ran α = {1} × Z+. By the same proof of Case 1,
we have that Z+ is bounded above, a contradiction.

Case 4 : C = (Z× Z−,≤d). Let α : Z× Z− → Z× Z− be defined by

({x} × Z−)α = {(−1,−1)} if x ∈ Z+ ∪ {0}
and

({x} × Z−)α = {(−1, x)} if x ∈ Z−.

Then α ∈ OT (Z×Z−,≤d) and ran α = {−1} ×Z−. We can see from the proof of
Case 2 that Z− is bounded below, a contradiction.

Case 5 : C = (Z+ × Z−,≤d) or C = ({1, 2, . . . , n} × Z−,≤d) where n > 1. Let
α : C → C be defined by

(x, y)α =

{
(2, y) if x = 1 and y ∈ Z−,

(2,−1) otherwise.

Then α ∈ OT (C) and ranα = {2} × Z−. Since OT (C) is regular, we have that
α = αβα for some β ∈ OT (C). By Proposition 1.1,

(2, x)βα = (2, x) for all x ∈ Z−.

Since (1,−1) <d (2, x) for all x ∈ Z−, it follows that

(2, x) = (2, x)βα ≥d (1,−1)βα for all x ∈ Z−.

Since (1,−1)βα ∈ ranα = {2} × Z−, there is an element r ∈ Z− such that
(1,−1)βα = (2, r), and hence x ≥ r for all x ∈ Z− which is a contradiction.

Case 6 : C = (Z− × Z+,≤d). Define α : Z− × Z+ → Z− × Z+ by

(x, y)α =

{
(−2, y) if x = −1 and y ∈ Z+,

(−2, 1) otherwise.

Then α ∈ OT (Z− × Z+,≤d) and ran α = {−2} × Z+. Since OT (Z− × Z+,≤d) is
regular, α = αβα for some β ∈ OT (Z− × Z+,≤d). By Proposition 1.1,

(−2, x)βα = (−2, x) for all x ∈ Z+.

But (−2, x) <d (−1, 1) for all x ∈ Z+, so

(−2, x) = (−2, x)βα ≤d (−1, 1)βα = (−2, s) for some s ∈ Z+
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since (−1, 1)βα ∈ ran α = {−2} × Z+. Hence x ≤ s for all x ∈ Z+ which is a
contradiction.

Case 7 : C = ({1, . . . , n}×Z,≤d) or C = ({1, . . . , n}×Z+,≤d) where n > 1. Let
α : C → C be defined by

(i, x)α =

{
(n− 1, x) if i = n and x ∈ Z+,

(n− 1, 1) otherwise.

It is easy to see that α ∈ OT (C) and ranα = {n − 1} × Z+. Since OT (C) is
regular, we have that α = αβα for some β ∈ OT (C). By Proposition 1.1,

(n− 1, x)βα = (n− 1, x) for all x ∈ Z+.

Since (n− 1, x) <d (n, 1) and ran α = {n− 1} × Z+, it follows that

(n− 1, x) = (n− 1, x)βα ≤d (n, 1)βα = (n− 1, k) for some k ∈ Z+.

We deduce that x ≤ k for all x ∈ Z+ which is a contradiction.

Hence it is shown that if OT (X×Y,≤d) is regular, then |X| = 1 or Y is finite.
For the converse, if |X| = 1, (X×Y,≤d) is clearly order-isomorphic to Y , then

by Proposition 1.3, OT (X × Y,≤d) is regular. If Y is finite, then by Proposition
1.3 and Lemma 2.2, OT (X × Y,≤d) is regular.
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