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1. Introduction

Best proximity point for some nonlinear mappings plays very important role in opti-
mization theory. It can be applied to solve equilibrium, see [1–4]. It is well known that
the concept of a best proximity point include that of a fixed point as a special case.

In 2018, Pirbavafa and Vaezpour [5] applied the best proximity point theory to obtain
equilibrium existence in abstract economies with two constraint set-valued maps. Accord-
ingly, the concept of best proximity point attracted the attention of many mathematicians,
see ([1, 2, 5–9]).

In recent years, many researchers have tried to develop different method for solving a
best proximity point for nonexpansive mappings, see [6, 7]. In 2019, Suparatulatorn et
al. [7] introduced a general Mann iteration process {xn} which is given by{

x1 ∈ C0,

xn+1 = PC ((1− αn)PDyn + αnTyn) , ∀n ≥ 1,
(1.1)
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where C and D be two nonempty closed convex subsets of a real Hilbert space H,
C0 = {x ∈ C : ‖x − y‖ = D(C,D), for some y ∈ D} and D0 = {y ∈ D : ‖x − y‖ =
D(C,D), for some x ∈ C} . Let T : C → D be a nonself nonexpansive mapping such
that T (C0) ⊆ D0. By using the iteration process (1.1), they proved weak convergence and
strong convergence theorems for best proximity points of nonself nonexpansive mappings
in real Hilbert spaces.

Let g : H → (−∞,∞] be a proper and convex function. One of the major problems
for optimization is to find a point x ∈ H such that

g(x) = min
y∈H

g(y).

We denote the set of all minimizers of g on H by argminy∈Hg(y).
The proximal point algorithm is an important tool in solving optimization problem

which was initiated by Martinet [10] in 1970. Later, Rockafellar [11] studied the conver-
gence of a proximal point algorithm for finding a solution of the unconstrained convex min-
imization problem in H as follows. Let g be a proper, convex and lower semi-continuous
function on H. The proximal point algorithm is defined by x1 ∈ H and

xn+1 = argmin
u∈H

[
g(y) +

1

2λn
‖u− xn‖2

]
, ∀n ≥ 1, (1.2)

where λn > 0 for all n ≥ 1. It was shown that if g has a minimizer and

∞∑
n=1

λn = ∞

then the sequence {xn} converges weakly to a minimizer of g; see also [12]. However, the
proximal point algorithm does not necessarily converges strongly in general; see [13, 14].

Recently, several authors proposed modifications of Rockafellar’s proximal point algo-
rithm to have strong convergence, for example [15–17].

In recent years, many convergence results by the proximal point algorithm for solving
optimization problems have been extended in many directions, see [18–23]. The minimiz-
ers of the objective convex functionals in the spaces with nonlinearlity play an important
role in the branch of analysis and geometry. Several applications in machine learning,
computer vision, system balancing and robot manipulation can be considered as solving
optimization problems, see [19, 20, 24].

In this work, motivated by the research described above, we propose a new proximal
point algorithm which is a modification of the iterative schemes (1.1) and (1.2) for finding
a common elements of the set of best proximity point of nonself nonexpansive mappings
and the set of minimizers of convex and lower semi-continuous functions. We prove
some convergence theorems of the proposed algorithm under some mild conditions. A
numerical example to support our main result is also given. Our results are refinements
and generalizations of many recent results from the current literature.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote the
strong convergence and the weak convergence of the sequence {xn} to a point x ∈ H by
xn → x and xn ⇀ x, respectively. It is known in [25] that a Hilbert space H satisfies
Opial’s condition, that is, for any sequence {xn} with xn ⇀ x, the inequality

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖
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holds for every y ∈ H with y 6= x.
Recall that a mapping T : H → H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ H. We denote a fixed point set of T by F (T ), that is,

F (T ) = {x ∈ A : x = Tx}.

Let A and B be two nonempty closed convex subsets of H. We define A0 and B0 by the
following sets:

A0 = {x ∈ A : ‖x− y‖ = D(A,B), for some y ∈ B},
B0 = {y ∈ B : ‖x− y‖ = D(A,B), for some x ∈ A}.

We recall some useful definitions and lemmas, which will be used in the later sections.
Let C be a nonempty closed convex subset of Hilbert space H. For any x ∈ H, its

projection onto C is defined as

PC(x) = argmin{‖y − x‖ : y ∈ C}

The mapping PC : H → C is called a projection operator, which has the well-known
properties in the following lemma.

Lemma 2.1 ([26]). Let C be a nonempty closed convex subset of Hilbert space H. Then
for all x, y ∈ H and z ∈ C,

(1) 〈PCx− x, z − PCx〉 ≥ 0;
(2) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉;
(3) ‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2.

Definition 2.2 ([6]). Let A and B be two nonempty subsets of a real Hilbert space H.
A mapping T : A→ B is said to be nonself nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ A.

Definition 2.3 ([8]). An element s ∈ A is said to be a best proximity point of the nonself
mapping T : A→ B if it satisfies the condition that

‖x− Tx‖ = d(A,B).

We denote a best proximity point set of T by BestAT , that is,

BestAT = {x ∈ A : ‖x− Tx‖ = d(A,B)}.

Definition 2.4 ([3]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
and T : A→ B a nonself mapping. Then a sequence {xn} in A is said to be an approximate
best proximity point sequence for T if

lim
n→∞

d(xn, Txn) = d(A,B).

Definition 2.5 ([27]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
and T : A → B a nonself mapping. We say that T satisfies the proximal property if
for each sequence {xn} in A such that xn ⇀ x ∈ A and {xn} is an approximate best
proximity point sequence for T , we have ‖x− Tx‖ = d(A,B).

We note that, if A = B, the proximal property reduces to the demiclosedness property
of I − T at 0.
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Definition 2.6 ([8]). Let A and B be nonempty closed subsets of a metric space (X, d).
Then (A,B) is said to satisfy the UC property if {xn} and {zn} are sequences in A and
{yn} is a sequence inB such that lim

n→∞
d(xn, yn) = D(A,B) and lim

n→∞
d(zn, yn) = D(A,B),

then lim
n→∞

d(xn, zn) = 0.

Example 2.7 ([8]). Let A and B be nonempty subsets of a uniformly convex Banach
space. If A is convex, then the pair (A,B) has the property UC.

Lemma 2.8 ([6]). Let A,B be two nonempty subsets of a uniformly convex Banach spaces
X such that A is closed and convex. Suppose that T : A → B is a mapping such that
T (A0) ⊆ B0. Then F (PAT |A0) = BestA(T ).

Definition 2.9 ([6]). Let A and B be two nonempty subsets of a real Hilbert space H
and C a subset of A. A mapping T : A→ B is said to be C-nonexpansive if

‖Tx− Tz‖ ≤ ‖x− z‖
for all x ∈ A and z ∈ C. If C = BestAT , we say that T is a best proximally nonexpansive
mapping.

Lemma 2.10 ([6]). Let A,B be two nonempty subsets of a uniformly convex Banach
spaces X such that A is closed and convex. Suppose that T : A → B is a best proxi-
mally nonexpansive mapping such that T (A0) ⊆ B0. Then PAT |A0 is quasi-nonexpansive
mapping.

Lemma 2.11 ([7]). Let (A,B) be a pair of two nonempty closed subsets of an uniformly
convex Banach space E such that A is convex. Let T : A→ B be a nonself nonexpansive
mapping. Then T satisfies the proximal property.

Lemma 2.12 ([6]). Let (A,B) be a pair of nonempty subsets of a normed space E such
that B is closed and convex. Then ‖x− PBx‖ = d(A,B) for all x ∈ A0.

Lemma 2.13 ([6]). Let (A,B) be a pair of nonempty subsets of a uniformly convex
Banach space E such that A is closed and convex. Suppose that T : A→ B is a mapping
such that T (A0) ⊆ B0. Then F (PAT |A0) = BestA(T ).

Lemma 2.14 ([7]). Let (A,B) be a pair of nonempty subsets of an uniformly sonvex
Banach space E such that B is closed and convex. Suppose that T : A→ B is a mapping
such that T (A0) ⊆ B0. Then PBz = Tz for all z ∈ BestA(T ).

Lemma 2.15 ([28]). Let E be an uinformly convex Banach space, and {αn} a sequence
such that 0 < a ≤ αn ≤ b < 1 for some positive real number a, b and for all n ∈ N. Suppose
that sequences {xn} and {yn} in E are such that lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and

lim
n→∞

‖αnxn + (1− αn)yn‖ = r for some r ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Definition 2.16 ([7]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d).
A nonself mapping T : A → B is said to be proximal semicompact if for any sequence
{xn} in A which is an approximate best proximity point sequence for T , then {xn} has a
convergent subsequence.

Let f : H → (−∞,∞] be a proper convex and lower semi-continuous function. For
any λ > 0, define the Moreau-Yosida resolvent of f in a real Hilbert space H as follows:

Jλx = argmin
u∈H

[
f(u) +

1

2λ
‖u− x‖2

]
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for all x ∈ H. It was shown in [14] that the set of fixed points of the resolvent associated
with f coincides with the set of minimizers of g. Also, the resolvent Jλ of f is nonexpansive
for all λ > 0; see [29].

Lemma 2.17 ([29]). Let H be a real Hilbert space and g : H → (−∞,∞] be a proper
convex and lower semi-continuous function. For each x ∈ H and λ > µ > 0, we have the
following identity holds:

Jλx = Jµ

(
λ− µ
λ

Jλx+
µ

λ
x

)
.

Lemma 2.18 ([30]). Let H be a real Hilbert space and g : H → (−∞,∞] be a proper
convex and lower semi-continuous function. Then, for all x, y ∈ H and λ > 0, the
following sub-differential inequality holds:

1

2λ
‖Jλx− y‖2 −

1

2λ
‖x− y‖2 +

1

2λ
‖x− Jλx‖2 ≤ f(y)− f(Jλx). (2.1)

Lemma 2.19 ([31]). Let H be a real Hilbert space and T : H → H be a nonexpansive
mapping. If {xn} is a sequence in H such that xn ⇀ x with xn−Txn → 0, then x = Tx.

3. Main Results

In this section, we propose our main algorithm and prove the strong convergence
theorem for finding a common solution of minimizers of proper convex and lower-semi
continuous functions and best proximity points of of nonself nonexpansive mappings in
real Hilbert space.

Let C and D be two nonempty closed convex subsets of a real Hilbert space H.
Let T : C → D be a nonself nonexpansive mapping such that T (C0) ⊆ D0. Let
f : C → (−∞,∞] be a proper, convex and lower semicontinuous function. We pro-
pose a new proximal point algorithm for nonself nonexpansive mappings in real Hilbert
spaces as follows:

Algorithm 
x1 ∈ C0,

yn = argmin
u∈C

[
f(u) +

1

2λn
‖u− xn‖2

]
,

xn+1 = PC ((1− αn)PDyn + αnTyn) , ∀n ≥ 1,

(3.1)

where {αn} and {λn} are sequences in (0, 1).

Theorem 3.1. Let C and D be two nonempty closed convex subsets of a real Hilbert space
H. Let T : C → D be a nonself nonexpansive mapping and f : C → (−∞,∞] be a proper

convex and lower semi-continuous function. Suppose that F = BestCT
⋂

argminu∈Cf(u)

is nonempty. Let {xn} be a sequence generated by (3.1) where {αn}, {λn} are sequences
in (0, 1) such that 0 ≤ a ≤ αn ≤ b < 1 and λn ≥ λ for some a, b and λ. Then the sequence
{xn} converges weakly to an element of F .
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Proof. Let q ∈ F . By Lemma 2.13 and Lemma 2.14, we get q = PCTq and PDq = Tq.
Moreover, we have f(q) ≤ f(u) for all u ∈ C. It follows that

f(q) +
1

2λn
‖q − q‖2 ≤ f(u) +

1

λn
‖u− q‖2, ∀u ∈ C,

and hence q = Jλn
q for all n ≥ 1. Since yn = Jλn

xn, it implies by the nonexpansiveness
of Jλn

that

‖yn − q‖ = ‖Jλn
xn − Jλn

q‖ ≤ ‖xn − q‖. (3.2)

Consider

‖xn+1 − q‖ = ‖PC ((1− αn)PDyn + αnTyn)− q‖
= ‖PC ((1− αn)PDyn + αnTyn)− PCTq‖
≤ ‖ ((1− αn)PDyn + αnTyn)− Tq‖
≤ (1− αn)‖PDyn − PDq‖+ αn‖Tyn − Tq‖
≤ ‖yn − q‖.

(3.3)

This implies by (3.2) and (3.3) that {‖xn− q‖} is nonincreasing and bounded below, thus
lim
n→∞

‖xn − q‖ exists. So we can assume that

lim
n→∞

‖xn − q‖ = d for some d. (3.4)

It follows from (3.2), (3.3) and (3.4) that

lim sup
n→∞

‖yn − q‖ = d. (3.5)

By the sub-differential inequality (2.1), we obtain

1

2λ
‖yn − q‖2 −

1

2λ
‖xn − q‖2 +

1

2λ
‖xn − yn‖2 ≤ f(q)− f(yn). (3.6)

Since f(q) ≤ f(yn) for all n ≥ 1, we get

‖xn − yn‖2 ≤ ‖xn − q‖2 − ‖yn − q‖2.

It implies by (3.4) and (3.5) that

lim
n→∞

‖xn − yn‖ = 0. (3.7)
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It follows from Lemma 2.17, the nonexpansiveness of Jλ, and λn ≥ λ > 0 that

‖xn − Jλxn‖ ≤ ‖xn − yn‖+ ‖yn − Jλxn‖
= ‖xn − yn‖+ ‖Jλn

xn − Jλxn‖

= ‖xn − yn‖+

∥∥∥∥Jλ(λn − λλn
Jλn

xn +
λ

λn
xn

)
− Jλxn

∥∥∥∥
≤ ‖xn − yn‖+

∥∥∥∥(λn − λλn

)
Jλnxn +

λ

λn
xn − xn

∥∥∥∥
= ‖xn − yn‖+

(
1− λ

λn

)
‖Jλn

xn − xn‖

= ‖xn − yn‖+

(
1− λ

λn

)
‖yn − xn‖

=

(
2− λ

λn

)
‖xn − yn‖ .

This implies by (3.7) that

lim
n→∞

‖xn − Jλxn‖ = 0. (3.8)

By the nonexpansiveness of PD and T , and Lemma 2.14, we obtain

lim sup
n→∞

‖PDxn − Tq‖ = lim sup
n→∞

‖PDxn − PDq‖ ≤ lim sup
n→∞

‖xn − q‖ = d,

and

lim sup
n→∞

‖Txn − Tq‖ ≤ lim sup
n→∞

‖xn − q‖ = d.

It follows that

lim
n→∞

‖(1− αn)(PDyn − Tq) + αn(Tyn − Tq)‖ = d.

Using Lemma 2.15, we get

lim
n→∞

‖PDyn − Tyn‖ = 0. (3.9)

It implies by (3.7) and (3.9) that

‖PDxn − Txn‖ ≤ ‖PDxn − PDyn‖+ ‖PDyn − Tyn‖+ ‖Tyn − Txn‖
≤ ‖xn − yn‖+ ‖PDyn − Tyn‖+ ‖yn − xn‖ → 0.

Using Lemma 2.12, we obtain

‖xn − Txn‖ ≤ ‖xn − PDxn‖+ ‖PDxn − Txn‖
= d(C,D) + ‖PDxn − Txn‖
→ d(C,D) as n→∞,

which implies that

lim
n→∞

‖xn − Txn‖ = d(C,D). (3.10)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ q1 ∈ C.
It implies by (3.10) and Lemma 2.11 that q1 ∈ BestCT . Since Jλ is a nonexpansive
mapping, by (3.8) and Lemma 2.19, we have q1 ∈ F (Jλ) = argminu∈Cf(u). Hence, we
have q1 ∈ F . We will show that xn ⇀ q1. To show this, suppose not. So, there exists a
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subsequence {xnj} of {xn} such that xnj ⇀ q2 ∈ C and q2 6= q1. Again, as above, we can
conclude that q2 ∈ F . Since lim

n→∞
‖xn − q‖ exists for all q ∈ F , by Opial’s condition, we

have

lim sup
k→∞

‖xnk
− q1‖ < lim sup

k→∞
‖xnk

− q2‖

= lim
n→∞

‖xn − q2‖

= lim sup
j→∞

‖xnj − q2‖

< lim sup
j→∞

‖xnj
− q1‖

= lim
n→∞

‖xn − q1‖

= lim
k→∞

‖xnk
− q1‖.

This is a contradiction. Therefore, q1 = q2 and so {xn} converges weakly to an element
of F .

Next, we prove the strong convergence theorem.

Theorem 3.2. Let {xn} be as in Theorem 3.1 with BestCT 6= ∅. If T is proximal
semicompact, then {xn} converges strongly to an element of F .

Proof. It follows that from Theorem 3.1 that the sequence {xn} is bounded and

lim
n→∞

‖xn − Txn‖ = d(C,D).

Since T is proximal semicompact, there exists a subsequence {xnk
} of {xn} such that

xnk
→ q for some q ∈ C0. Then, by the nonexpansiveness of T , we have

‖q − Tq‖ ≤ ‖q − xnk
‖+ ‖xnk

− Txnk
‖+ ‖Txnk

− Tq‖
≤ 2‖q − xnk

‖+ ‖xnk
− Txnk

‖
→ d(C,D) as k →∞.

Then q ∈ BestCT . Since (3.8) and demiclosedness of Jλxn, we get q ∈ F (Jλ). Therefore
q ∈ F . We know that lim

n→∞
‖xn−q‖ exists. Therefore q is the strong limit of the sequence

{xn}.

The following results are obtained from Theorem 3.1 by putting C = D.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a nonexpansive mapping and f : C → (−∞,∞] be a proper convex and

lower semi-continuous function. Suppose that F = F (T )
⋂

argminu∈Cf(u) is nonempty.

Let {xn} be a sequence generated by
x1 ∈ C,

yn = argmin
u∈C

[
f(u) +

1

2λn
‖u− xn‖2

]
,

xn+1 = (1− αn)yn + αnTyn, ∀n ≥ 1,

where {αn}, {λn} are sequences in (0, 1) such that 0 ≤ a ≤ αn ≤ b < 1 and λn ≥ λ for
some a, b and λ. Then the sequence {xn} converges weakly to an element of F .
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Theorem 3.4. Let C and D be two nonempty closed convex subsets of a real Hilbert
space H. Let T : C → D be a nonself nonexpansive mapping. Suppose that BestCT is
nonempty. Let {xn} be a sequence generated by{

x1 ∈ C0,

xn+1 = PC ((1− αn)PDxn + αnTxn) , ∀n ≥ 1,

where {αn} is a sequence in (0, 1) such that 0 ≤ a ≤ αn ≤ b < 1 for some a and b. Then
the sequence {xn} converges weakly to an element of BestCT .

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f : C → (−∞,∞] be a proper convex and lower semi-continuous function. Suppose that
argminu∈Cf(u) is nonempty. Let {xn} be a sequence generated by

x1 ∈ C,

xn+1 = argmin
u∈C

[
f(u) +

1

2λn
‖u− xn‖2

]
, ∀n ≥ 1,

where {λn} is a sequence in (0, 1) such that λn ≥ λ for some λ. Then the sequence {xn}
converges weakly to an element of argminu∈Cf(u).

4. Numerical Example

In this section, we give an numerical experiment for solving the best proximity point
problem and the convex minimization problem by using Algorithm (3.1).

Example 4.1. Let H = R2 with usual norm, C = (−∞,−3] × [1, 4] and D = [3,∞) ×
(−∞,∞). Define T : C → D by

T (x, y) = (−x, 2− cos(y − 1)) , for all (x, y) ∈ C.

Then C0 = {−3} × [1, 4], D0 = {3} × [1, 4] and d(C,D) = 6. It is easy to see that T is
nonself nonexpansive such that T (C0) ⊆ D0. Define f : C → (−∞,∞] by

f(x, y) =
1

2

[
(x+ 3)2 + (y + 3)2

]
, for all (x, y) ∈ C.

We see that f is proper convex and lower semi-continuous withBestCT
⋂

argminu∈Cf(u) =

{(−3, 1)}. Using proximity operator [32], we know that

argmin
(u,v)∈C

[
f(u, v) +

1

2
‖(u, v)− (x, y)‖2

]
= proxf (x, y) =

(
x− 3

2
,
y + 1

2

)
.

Suppose the sequence {xn} generated by (3.1) and put x1 = (−3, 4). In the experiment,
we choose the stopping criterion En := ‖xn − z‖ < 10−10 where z = (−3, 1) or the maxi-
mum iteration exceeds 10, 000 iterations. Since the αn effects to the rate of convergence,
therefore αn are proposed in different values i.e. 0.1, 0.2, . . . , 0.9 respectively. The pro-
posed algorithm is coded in MATLAB2014b, and run on MacBook Air (1.4 GHz Intel
Core i5 and 4 GB 1600 MHz DDR3). The number of iterations of each case are shown in
Table 1.
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αn number of iterations αn number of iterations
0.1 235 0.6 29
0.2 112 0.7 23
0.3 71 0.8 17
0.4 50 0.9 13
0.5 37

Table 1. The number of iterations for Algorithm (3.1) with difference αn

The results in Table 1 show that the biggest size of parameter αn(αn = 0.9) provides
less iterations than other cases. When the size of parameter αn get close to 0, the number
of iteration is increased. While the higher size of parameters αn make the number of
iterations slightly increased.

Number of iteration (n)
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Figure 1. Error (En := ‖xn − z‖) of the sequence {xn} in different
parameters αn.

We choose the different parameters αn which are 0.1, 0.5 and 0.9 to show the sequence
of {xn} generated by Algorithm (3.1). The sequences of {xn} obtained by the proposed
algorithm are shown in Table 2. In case αn = 0.1, the second term of sequence {xn} is
slightly decreased. In case αn = 0.5, the second term of sequence {xn} is moderately
decreased. While the sequence {xn} is rapidly decreased in the last case.
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αn = 0.1 αn = 0.5 αn = 0.9
n xn n xn n xn

1 (−3, 4) 1 (−3, 4) 1 (−3, 4)
2 (−3, 3.792926279833230) 2 (−3, 2.96463139916615) 2 (−3, 2.13633651849907)
3 (−3, 3.59628850481420) 3 (−3, 2.20476676330093) 3 (−3, 1.03281082055393)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
234 (−3, 1.00000000010482) 36 (−3, 1.00000000019188) 12 (−3, 1.00000000034167)
235 (−3, 1.00000000009434) 37 (−3, 1.00000000009594) 13 (−3, 1.00000000003417)

Table 2. The sequence of {xn} generated by Algorithm (3.1) with dif-
ferent constant parameters αn

In addition, the parameters αn depend on the number of iteration are studied in 2 cases:
decreasing αn to 0 and increasing αn to 1. In decreasing case, we defined the parameter

αn = 0.0001 +
1

n+ 1
. In increasing case, the parameter is defined by αn = 0.99− 1

n+ 1
.

The comparision of the sequence {xn} generated by Algorithm (3.1) with vary parameters
αn and constant αn = 0.5 is shown in Table 3.

αn = 0.0001 +
1

n+ 1
αn = 0.5 αn = 0.99−

1

n+ 1
n xn n xn n xn

1 (−3, 4) 1 (−3, 4) 1 (−3, 4)
2 (−3, 3.99979292627983) 2 (−3, 2.96463139916615) 2 (−3, 1.94997017034897)
3 (−3, 2.96426916040579) 3 (−3, 2.20476676330093) 3 (−3, 1.53872801098075)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
129, 584 (−3, 1.00000000010001) 36 (−3, 1.00000000019188) 14 (−3, 1.00000000050447)
129, 585 (−3, 1.00000000009434) 37 (−3, 1.00000000009594) 15 (−3, 1.00000000004108)

Table 3. The sequence of {xn} generated by Algorithm (3.1) with dif-
ferent parameters αn

From Table 3, we observe that the number of iterations extremely increase in the

decreasing case of αn (αn = 0.0001+
1

n+ 1
). While the number of iterations in increasing

case of αn (αn = 0.99 − 1

n+ 1
) is slightly different from the number of iterations in

constant αn (αn = 0.5).
From the numerical experiment, the choosing large parameter αn (close to 1) causes

the proposed algorithm works faster. While tiny parameter (close to 0) causes Algorithm
(3.1) work extremely slow.

5. Conclusion

In this paper, we have presented a proximal point algorithm for solving a common solu-
tion of the minimization problems and best proximity point problem. Under appropriate
conditions, we proved that the sequence generated by the proposed algorithms converges
to best proximity points and minimum point. Numerical results have been demonstrated
the behaviour of algorithm’s convergence and its effectiveness.
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