New Delay-Dependent Exponential Passivity Analysis of Neutral-Type Neural Networks with Discrete and Distributed Time-Varying Delays

Peerapongpat Singkibud ${ }^{1, *}$, Narongsak Yotha ${ }^{1}$ and Kanit Mukdasai ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics and Statistics, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
e-mail : peerapongpat.si@rmuti.ac.th (P. Singkibud); narongsak.yo@rmuti.ac.th (N. Yotha)
${ }^{2}$ Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
e-mail : kanit@kku.ac.th (K. Mukdasai)

Abstract

This work focuses on the problem of exponential passivity analysis for neutral-type neural networks with discrete and distributed time-varying delays by employing the mixed model transformation approach. The delays are discrete, neutral and distributed time-varying delays that the upper bounds for the time-varying delays are available. The restrictions on the derivatives of the distributed timevarying delays are removed, which mean that a fast distributed time-varying delay is allowed. Based on a appropriate Lyapunov-Krasovskii functional, application of zero equations and using various inequalities, such as the famous Jensen inequality, Wirtinger-based integral inequality, Peng-Park's integral inequality, etc. A novel delay-dependent criterion is established to ensure the exponential passivity of the systems considered. Moreover, the exponential passivity criterion is presented in terms of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the superiority of the proposed method and capability of results over another research as compared with the least upper bounds of delay as well.

MSC: 93D05; 93D09; 37B25; 37C75
Keywords: exponential passivity; neutral-type neural networks; linear matrix inequality (LMIs); distributed time-varying delay; model transformation

Submission date: 24.05 .2020 / Acceptance date: 09.07.2020

1. Introduction

Since neural networks (NNs) appered. NNs have received extensive attention and have been applied successfully in many areas such as signal processing, pattern recognition,

[^0]associative memory and optimization problems [1]. Many scholars have paid their attentions to NNs which possess many advantages, including paralel computation, learning ability, function approximation, fault tolerance, etc. Most of these applications require that the equilibrium points of the designed network should be stable. So, it is important to study the stability of NNs. In reality, time-delay systems are frequently encountered in NNs, where a time delay is often a source of instability and oscillations. During the past few decades, both delay-independent and delay-dependent sufficient conditions have been proposed to verify the asymptotical or exponential stability of delay NNs and the references cited therein. Consequently, NNs with time delay has an important issue in control theory and has been extensively studied [1-10]. Moreover, the NNs containing the information of past state derivatives are called neutral-type [11-13] neural networks (NTNNs). Futhermore, neutral-type time-delay in the system models are usually encountered in many practical applications, such as population ecology, heat exchangers, water pipes, chemical reactors and robots in contact with rigid environments [14]. The existing work on the state estimator of NTNNs with mixed delays are only [15, 16] at present. Recently, study of NTNNs with delays has become one of impressive research topics and has been widely studied by many researchers. Therefore, it is necessary and important to investigate the NTNNs with delays.

The passivity theory plays an important role in the analysis of the stability of dynamical system, complexity [17], signal processing [18], chaos control, design of linear and nonlinear systems, especially for high-order systems [19]. In the first place, many systems need to be passive in order to attenuate noises effectively. In the second place, the robustness measure(such as robust stability or robust performace) of a system often reduces to a subsystem or a modified system that is passive. The essence of the passivity theory is that the passive properties of a system can keep the system internal stability. Thus, the passivity analysis approach has attracted a lot of research attentions [4-10, 20-24] and the references cited therein. Recently, the exponential passivity of NNs with time-varying delays has been studied in $[2,5,6]$. In the present, the passivity analysis have been studied several researchers [2, 25-27]. Moreover, The exponentially passivity condition for delayed NNs was obtained in [2]. In [26], the issue of robust passivity conditions for NNs with distributed and discrete delays has been extensively studied. Then, improved result on passivity analysis of NTNNs with time-varying delays [10] is presented. However, no result has been obtained for exponentially passive condition of NTNNs with discrete and distributed time-varying delays

Motivated by the above discussions, this paper involved with the analysis problem for the exponential passivity of NTNNs with discrete and distributed time-varying delays. By constructing novel augments Lyapunov-Krasovskii functional, using various inequalities, such as Jensen's inequality, Wirtinger-based integral inequality, Peng-Park's integral inequality, etc. Moreover, applying descriptor model transformation, Leibniz-Newton formula and application of zero equations. Then, a novel delay-dependent exponential passivity criterion for NTNNs with discrete and distributed time-varying delays is presented. As a result, a novel delay-dependent criterion is established in term of LMIs. Finally, three numerical examples are illustrated to show the usefulness of the proposed criteria.

2. Problem Formulation and Preliminaries

We introduce some notations and lemmas that will be used throughout the paper. R^{+} denotes the set of all real non-negative numbers; R^{n} denotes the n-dimensional space with the vector norm $\|\cdot\| ;\|x\|$ denotes the Euclidean vector norm of $x \in R^{n} ; R^{n \times r}$ denotes the set $n \times r$ real matrices; A^{T} denotes the transpose of the matrix A; A is symmetric if $A=A^{T} ; I$ denotes the identity matrix; $\lambda(A)$ denotes the set of all eigenvalues of $A ; \lambda_{\max }(A)=\max \{\operatorname{Re} \lambda: \lambda \in \lambda(A)\} ; \lambda_{\min }(A)=\min \{\operatorname{Re} \lambda: \lambda \in \lambda(A)\} ;$ matrix A is called semi-positive definite $(A \geq 0)$ if $x^{T} A x \geq 0$, for all $x \in R^{n} ; A$ is positive definite $(A>0)$ if $x^{T} A x>0$ for all $x \neq 0$; matrix B is called semi-negative definite $(B \leq 0)$ if $x^{T} B x \leq 0$, for all $x \in R^{n} ; B$ is negative definite $(B<0)$ if $x^{T} B x<0$ for all $x \neq 0$; $A>B$ means $A-B>0(B-A<0) ; A \geq B$ means $A-B \geq 0(B-A \leq 0)$; $C\left([-\bar{h}, 0], R^{n}\right)$ denotes the space of all continuous vector functions mapping $[-\bar{h}, 0]$ into R^{n} when $\bar{h}=\max \left\{d_{M}, \rho_{M}, r_{M}\right\}, d_{M}, \rho_{M}, r_{M} \in R^{+} ; x_{t}=x(t+s), s \in[-\bar{h}, 0] ; *$ represents the elements below the main diagonal of a symmetric matrix.

Consider the following continuous NTNNs with mixed time-varying delays:

$$
\left\{\begin{align*}
\dot{\xi}(t)= & -A \xi(t)+W f(\xi(t))+W_{1} f(\xi(t-d(t)))+W_{2} \int_{t-\rho(t)}^{t} f(\xi(s)) d s \tag{2.1}\\
& +W_{3} \dot{\xi}(t-r(t))+u(t), \\
z(t)= & f(\xi(t))+f(\xi(t-d(t)))+\dot{\xi}(t-r(t))+u(t) \\
\xi(t)= & \phi(t), t \in\left[-\tau_{\max }, 0\right], \tau_{\max }=\max \left\{d_{M}, \rho_{M}, r_{M}\right\}
\end{align*}\right.
$$

where $\xi(t)=\left[\xi_{1}(t), \xi_{2}(t), \ldots, \xi_{n}(t)\right] \in \mathcal{R}^{n}$ is the neural state vector. The diagonal matrix A is a self-feedback connection weight matrix. W, W_{1}, W_{2} and W_{3} are are the connection weight matrices between neurons with appropriate dimensions. $f(\cdot)=\left(f_{1}(\cdot), f_{2}(\cdot), \ldots\right.$, $\left.f_{n}(\cdot)\right)^{T}$ represent the activation functions. $u(t)$ and $z(t)$ represent the input and output vectors, respectively; $\phi(t)$ is an initial condition. The variables $d(t)$ is the discrete timevarying delay, $\rho(t)$ is the distributed time-varying delay and $r(t)$ is the neutral timevarying delay are satisfying

$$
\begin{gather*}
0 \leq d(t) \leq d_{M}, \quad 0 \leq \dot{d}(t) \leq d_{d} \tag{2.2}\\
0 \leq \rho(t) \leq \rho_{M} \tag{2.3}\\
0 \leq r(t) \leq r_{M}, \quad 0 \leq \dot{r}(t) \leq r_{d} \tag{2.4}
\end{gather*}
$$

where d_{M}, ρ_{M} and r_{M} are positive real constants. The neural activation functions $f_{k}(\cdot), k=1,2, \cdots, n$ satisfy $f_{k}(0)=0$ and for $s_{1}, s_{2} \in \mathcal{R}, s_{1} \neq s_{2}$,

$$
\begin{equation*}
l_{k}^{-} \leq \frac{f_{k}\left(s_{1}\right)-f_{k}\left(s_{2}\right)}{s_{1}-s_{2}} \leq l_{k}^{+} \tag{2.5}
\end{equation*}
$$

where l_{k}^{-}, l_{k}^{+}, are known real scalars. Moreover, we denote $L^{+}=\operatorname{diag}\left(l_{1}^{+}, l_{2}^{+}, \cdots, l_{n}^{+}\right)$, $L^{-}=\operatorname{diag}\left(l_{1}^{-}, l_{2}^{-}, \cdots, l_{n}^{-}\right)$.

Definition 2.1. [2] The neural networks are said to be exponential passive from input $u(t)$ to output $z(t)$, if there exist an exponential Lyapunov function (or, called the exponential storage function) V defined on R^{n}, and a constant $\beta>0$ such that for all $u(t)$, all initial conditions $\xi(0)$, all $t \geq t_{0}$, the following inequality holds:

$$
\begin{equation*}
\dot{V}(t)+\beta V(t) \leq 2 z^{T}(t) u(t), \quad t \geq 0 \tag{2.6}
\end{equation*}
$$

where $\dot{V}(t)$ denotes the total derivative of $V(t)$ along the state trajectories $\xi(t), t \geq 0$, of (2.1).

Lemma 2.2. (Jensen's inequality) For any symmetric positive definite matrix Q, positive real number h, and vector function $\dot{x}:[-h, 0] \rightarrow R^{n}$ such that the following integral is well defined, then

$$
-h \int_{-h}^{0} \dot{x}^{T}(s+t) Q \dot{x}(s+t) d s \leq-\left(\int_{-h}^{0} \dot{x}(s+t) d s\right)^{T} Q\left(\int_{-h}^{0} \dot{x}(s+t) d s\right) .
$$

Lemma 2.3. (Wirtinger-based integral inequality) [28] For any matrix $Z>0$, the following inequality holds for all continuously differentiable function $\dot{x}:[\alpha, \beta] \rightarrow R^{n}$

$$
-(\beta-\alpha) \int_{\alpha}^{\beta} \dot{x}^{T}(s) Z \dot{x}(s) d s \leq \omega^{T} \Phi \omega
$$

where $\quad \omega=\left[x^{T}(\beta), x^{T}(\alpha), \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} x^{T}(s) d s\right]^{T} \quad$ and $\quad \Phi=\left[\begin{array}{ccc}-4 Z & -2 Z & 6 Z \\ * & -4 Z & 6 Z \\ * & * & -12 Z\end{array}\right]$.

Lemma 2.4. (Peng-Park's integral inequality) [29, 30] For any matrix $\left[\begin{array}{ll}Z & S \\ * & Z\end{array}\right] \geq 0$, positive scalars τ and $\tau(t)$ satisfying $0<\tau(t)<\tau$, vector function $\dot{x}:[-\tau, 0] \rightarrow R^{n}$ such that the concerned integrations are well defined, then

$$
-\tau \int_{t-\tau}^{t} \dot{x}^{T}(s) Z \dot{x}(s) d s \leq \xi^{T} \Theta \xi
$$

where $\quad \xi=\left[x^{T}(t), x^{T}(t-\tau(t)), x^{T}(t-\tau)\right]^{T} \quad$ and $\quad \Theta=\left[\begin{array}{ccc}-Z & Z-S & S \\ * & -2 Z+S+S^{T} & Z-S \\ * & * & -Z\end{array}\right]$.
Lemma 2.5. [31] For a positive matrix M, the following inequality holds:

$$
-\frac{(\alpha-\beta)^{2}}{2} \int_{\beta}^{\alpha} \int_{s}^{\alpha} x^{T}(u) M x(u) d u d s \leq-\left(\int_{\beta}^{\alpha} \int_{s}^{\alpha} x(u) d u d s\right)^{T} M\left(\int_{\beta}^{\alpha} \int_{s}^{\alpha} x(u) d u d s\right) .
$$

Lemma 2.6. [32] For any constant symmetric positive definite matrix $Q \in R^{n \times n}, h(t)$ is discrete time-varying delays with (2.3), vector function $\omega:\left[-h_{M}, 0\right] \rightarrow R^{n}$ such that the integrations concerned are well defined, then

$$
\begin{aligned}
& -h_{M} \int_{-h_{M}}^{0} \omega^{T}(s) Q \omega(s) d s \\
\leq & -\int_{-h(t)}^{0} \omega^{T}(s) d s Q \int_{-h(t)}^{0} \omega(s) d s-\int_{-h_{M}}^{-h(t)} \omega^{T}(s) d s Q \int_{-h_{M}}^{-h(t)} \omega(s) d s
\end{aligned}
$$

Lemma 2.7. [32] For any constant matrices $Q_{1}, Q_{2}, Q_{3} \in R^{n \times n}, Q_{1} \geq 0, Q_{3}>0$, $\left[\begin{array}{cc}Q_{1} & Q_{2} \\ * & Q_{3}\end{array}\right] \geq 0, h(t)$ is discrete time-varying delays with (2.3) and vector function $\dot{x}:$
$\left[-h_{M}, 0\right] \rightarrow R^{n}$ such that the following integration is well defined, then

$$
\begin{aligned}
& -h_{M} \int_{t-h_{M}}^{t}\left[\begin{array}{l}
x(s) \\
\dot{x}(s)
\end{array}\right]^{T}\left[\begin{array}{cc}
Q_{1} & Q_{2} \\
* & Q_{3}
\end{array}\right]\left[\begin{array}{l}
x(s) \\
\dot{x}(s)
\end{array}\right] d s \\
& \leq\left[\begin{array}{c}
x(t) \\
x(t-h(t)) \\
x\left(t-h_{M}\right) \\
\int_{t-h(t)}^{t} x(s) d s \\
\int_{t-h_{M}(t)}^{t-h} x(s) d s
\end{array}\right]^{T}\left[\begin{array}{ccccc}
-Q_{3} & Q_{3} & 0 & -Q_{2}^{T} & 0 \\
* & -Q_{3}-Q_{3}^{T} & Q_{3} & Q_{2}^{T} & -Q_{2}^{T} \\
* & * & -Q_{3} & 0 & Q_{2}^{T} \\
* & * & * & -Q_{1} & 0 \\
* & * & * & * & -Q_{1}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
x(t-h(t)) \\
x\left(t-h_{M}\right) \\
\int_{t-h(t)}^{t} x(s) d s \\
\int_{t-h-h}^{t-h} x(s) d s
\end{array}\right] .
\end{aligned}
$$

Lemma 2.8. [32] Let $x(t) \in R^{n}$ be a vector-valued function with first-order continuousderivative entries. Then, the following integral inequality holds for any constant matrices $X, M_{i} \in R^{n \times n}, i=1,2, \ldots, 5$ and $h(t)$ is discrete time-varying delays with (2.3),

$$
\begin{aligned}
& -\int_{t-h_{M}}^{t} \dot{x}^{T}(s) X \dot{x}(s) d s \\
\leq & {\left[\begin{array}{c}
x(t) \\
x(t-h(t)) \\
x\left(t-h_{M}\right)
\end{array}\right]^{T}\left[\begin{array}{ccc}
M_{1}+M_{1}^{T} & -M_{1}^{T}+M_{2} & 0 \\
* & M_{1}+M_{1}^{T}-M_{2}-M_{2}^{T} & -M_{1}^{T}+M_{2} \\
* & * & -M_{2}-M_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
x(t-h(t)) \\
x\left(t-h_{M}\right)
\end{array}\right] } \\
& +h_{M}\left[\begin{array}{c}
x(t) \\
x(t-h(t)) \\
x\left(t-h_{M}\right)
\end{array}\right]^{T}\left[\begin{array}{ccc}
M_{3} & M_{4} & 0 \\
* & M_{3}+M_{5} & M_{4} \\
* & * & M_{5}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
x(t-h(t)) \\
x\left(t-h_{M}\right)
\end{array}\right],
\end{aligned}
$$

where

$$
\left[\begin{array}{ccc}
X & M_{1} & M_{2} \\
* & M_{3} & M_{4} \\
* & * & M_{5}
\end{array}\right] \geq 0 .
$$

3. Main Results

In this section, we display our main results. We introduce the following notations for later use:

$$
\begin{equation*}
\sum=\left[\Omega_{(i, j)}\right]_{18 \times 18} \tag{3.1}
\end{equation*}
$$

$$
\begin{aligned}
\Omega_{(1,1)}= & \alpha P_{1}+\alpha P_{1}^{T}-Q_{2}^{T} A-A^{T} Q_{2}+Q_{3}+Q_{3}^{T}+\alpha P_{2}+\alpha P_{2}^{T}+P_{3}+R_{1}+R_{4} \\
& +e^{-2 \alpha d_{M}}\left(M_{1}+M_{1}^{T}\right)+d_{M} e^{-2 \alpha d_{M}} M_{3}-4 e^{-2 \alpha d_{M}} P_{6}-e^{-2 \alpha d_{M}} P_{7}+d_{M}^{2} R_{4} \\
& -e^{-2 \alpha d_{M}} R_{6}+\frac{d_{M}^{4}}{4} P_{9}-2 d_{M}^{2} e^{-2 \alpha d_{M}} P_{10}+d_{M}^{2} P_{4}, \quad \Omega_{(1,2)}=P_{1}, \\
\Omega_{(1,3)}= & -A^{T} Q_{5}-Q_{3}^{T}+Q_{6}+Q_{4}^{T}+e^{-2 \alpha d_{M}}\left(-M_{1}^{T}+M_{2}\right)+d_{M} e^{-2 \alpha d_{M}} M_{4} \\
& +e^{-2 \alpha d_{M}} P_{7}-e^{-2 \alpha d_{M}} S+e^{-2 \alpha d_{M}} R_{6}, \\
\Omega_{(1,4)}= & -A^{T} Q_{11}+Q_{12}-Q_{4}^{T}-2 e^{-2 \alpha d_{M}} P_{6}+e^{-2 \alpha d_{M}} S, \quad \Omega_{(1,5)}=Q_{2}^{T} W_{3}, \\
\Omega_{(1,5)}= & Q_{2}^{T} W_{3}, \quad \Omega_{(1,6)}=-\sqrt{2} d_{M} e^{-2 \alpha d_{M}} P_{10}, \quad \Omega_{(1,7)}=-A^{T} Q_{8}+Q_{9}-e^{-2 \alpha d_{M}} R_{5}^{T},
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{(1,8)}=Q_{1}-Q_{2}^{T}-A^{T} Q_{14}+Q_{15}+d_{M}^{2} R_{5}, \quad \Omega_{(1,10)}=-Q_{3}^{T}, \\
& \Omega_{(1,11)}=2 \alpha C^{T}+Q_{2}^{T} W+R_{2}+R_{5}+A^{T}, \quad \Omega_{(1,12)}=Q_{2}^{T} W_{1}+2 \alpha C^{T}, \\
& \Omega_{(1,14)}=Q_{2}^{T} W_{2}+A^{T}, \quad \Omega_{(1,15)}=\frac{6}{d_{M}} e^{-2 \alpha d_{M}} P_{6}, \quad \Omega_{(1,17)}=Q_{2}^{T}, \quad \Omega_{(1,18)}=-Q_{4}^{T}, \\
& \Omega_{(2,2)}=-Q_{1}-Q_{1}^{T}+P_{12}+2 K_{1}, \quad \Omega_{(2,8)}=Q_{1}-Q_{17}^{T}+K_{2}-K_{1}^{T}, \\
& \Omega_{(2,11)}=C^{T}+I, \quad \Omega_{(2,14)}=I, \\
& \Omega_{(3,3)}=-Q_{6}^{T}-Q_{6}+Q_{7}^{T}+Q_{7}-e^{-2 \alpha d_{M}}\left(1-d_{d}\right) R_{1}+e^{-2 \alpha d_{M}}\left(M_{1}+M_{1}^{T}-M_{2}-M_{2}^{T}\right) \\
& +d_{M} e^{-2 \alpha d_{M}}\left(M_{3}+M_{5}\right)-2 e^{-2 \alpha d_{M}} P_{7}+e^{-2 \alpha d_{M}}\left(S+S^{T}\right)-e^{-2 \alpha d_{M}}\left(R_{6}+R_{6}^{T}\right), \\
& \Omega_{(3,4)}=-Q_{12}-Q_{7}^{T}+Q_{13}+e^{-2 \alpha d_{M}}\left(-M_{1}^{T}+M_{2}\right)+d_{M} e^{-2 \alpha d_{M}} M_{4} \\
& +e^{-2 \alpha d_{M}} P_{7}-e^{-2 \alpha d_{M}} S+e^{-2 \alpha d_{M}} R_{6}, \\
& \Omega_{(3,5)}=Q_{5}^{T} W_{3}, \quad \Omega_{(3,7)}=-Q_{9}+Q_{10}+e^{-2 \alpha d_{M}} R_{5}^{T}, \quad \Omega_{(3,8)}=-Q_{5}^{T}-Q_{15}+Q_{16}, \\
& \Omega_{(3,9)}=-e^{-2 \alpha d_{M}} R_{5}^{T}, \quad \Omega_{(3,10)}=-Q_{6}^{T}, \quad \Omega_{(3,11)}=Q_{5}^{T} W, \\
& \Omega_{(3,12)}=Q_{5}^{T} W_{1}-e^{-2 \alpha d_{M}}\left(1-d_{d}\right) R_{2}, \quad \Omega_{(3,14)}=Q_{5}^{T} W_{2} \text {, } \\
& \Omega_{(3,17)}=Q_{5}^{T}, \quad \Omega_{(3,18)}=-Q_{7}^{T} \text {, } \\
& \Omega_{(4,4)}=-Q_{13}^{T}-Q_{13}-e^{-2 \alpha d_{M}} P_{3}-e^{-2 \alpha d_{M}} R_{4}+e^{-2 \alpha d_{M}}\left(-M_{2}-M_{2}^{T}\right) \\
& +d_{M} e^{-2 \alpha d_{M}} M_{5}-4 e^{-2 \alpha d_{M}} P_{6}-e^{-2 \alpha d_{M}} P_{7}-e^{-2 \alpha d_{M}} R_{6} \text {, } \\
& \Omega_{(4,5)}=Q_{11}^{T} W_{3}, \quad \Omega_{(4,7)}=-Q_{10}, \quad \Omega_{(4,8)}=-Q_{11}^{T}-Q_{16}, \quad \Omega_{(4,9)}=e^{-2 \alpha d_{M}} R_{5}^{T}, \\
& \Omega_{(4,10)}=-Q_{12}^{T}, \quad \Omega_{(4,11)}=-Q_{11} W, \quad \Omega_{(4,12)}=Q_{11}^{T} W_{1}, \quad \Omega_{(4,13)}=-e^{-2 \alpha d_{M}} R_{5}, \\
& \Omega_{(4,14)}=Q_{11}^{T} W_{2}, \quad \Omega_{(4,15)}=\frac{6}{d_{M}} e^{-2 \alpha d_{M}} P_{6}, \quad \Omega_{(4,17)}=Q_{11}^{T}, \quad \Omega_{(4,18)}=-Q_{13}^{T}, \\
& \Omega_{(5,5)}=-e^{-2 \alpha r_{M}} P_{12}+r_{d} P_{12}, \quad \Omega_{(5,7)}=W_{3}^{T} Q_{8}, \quad \Omega_{(5,8)}=W_{3}^{T} Q_{14}, \\
& \Omega_{(5,11)}=-W_{3}^{T}, \Omega_{(5,14)}=-W_{3}^{T}, \quad \Omega_{(5,17)}=-I, \quad \Omega_{(6,6)}=-e^{-2 \alpha d_{M}} P_{10}, \\
& \Omega_{(7,7)}=-d_{M} e^{-2 \alpha d_{M}} P_{4}-e^{-2 \alpha d_{M}} R_{4}, \quad \Omega_{(7,8)}=Q_{8}^{T}, \quad \Omega_{(7,10)}=-Q_{9}^{T}, \\
& \Omega_{(7,11)}=Q_{8} W, \quad \Omega_{(7,12)}=Q_{8}^{T} W_{1}, \quad \Omega_{(7,14)}=Q_{8}^{T} W_{2}, \\
& \Omega_{(7,17)}=Q_{8}^{T}, \quad \Omega_{(7,18)}=-Q_{10}^{T}, \quad \Omega_{(8,8)}=-Q_{14}^{T}+Q_{14}+Q_{17}+Q_{17}^{T}+d_{M} P_{5} \\
& +d_{M}^{2} P_{6}+d_{M}^{2} P_{7}+d_{M}^{2} R_{6}+d_{M}^{2} P_{8}+\frac{d_{M}^{4}}{2} P_{10}-2 K_{2}, \\
& \Omega_{(8,10)}=-Q_{15}^{T}, \quad \Omega_{(8,11)}=Q_{14}^{T} W, \quad \Omega_{(8,12)}=Q_{14}^{T} W_{1}, \quad \Omega_{(8,14)}=Q_{14}^{T} W_{2}, \\
& \Omega_{(8,17)}=Q_{14}^{T}, \quad \Omega_{(8,18)}=-Q_{16}^{T}, \\
& \Omega_{(9,9)}=-d_{M} e^{-2 \alpha d_{M}} P_{4}-e^{-2 \alpha d_{M}} R_{4}, \quad \Omega_{(10,10)}=-e^{-2 \alpha d_{M}} P_{8}, \\
& \Omega_{(10,18)}=-e^{-2 \alpha d_{M}} P_{8}, \quad \Omega_{(11,11)}=R_{3}+R_{6}-2 W+\rho_{M}^{2} P_{11}, \quad \Omega_{(11,12)}=-W_{1}, \\
& \Omega_{(11,14)}=-W_{2}-W^{T}, \quad \Omega_{(11,17)}=-2 I, \quad \Omega_{(12,12)}=-e^{-2 \alpha d_{M}} R_{3}\left(1-d_{d}\right) \text {, } \\
& \Omega_{(12,14)}=-W_{1}^{T}, \quad \Omega_{(12,17)}=-I, \quad \Omega_{(13,13)}=-e^{-2 \alpha d_{M}} R_{6}, \\
& \Omega_{(14,14)}=-2 W_{2}-e^{-2 \alpha \rho_{M}} P_{11}, \quad \Omega_{(14,17)}=-I \text {, } \\
& \Omega_{(15,15)}=-\frac{12}{d_{M}^{2}} e^{-2 \alpha d_{M}} P_{6}, \quad \Omega_{(16,16)}=-e^{-2 \alpha d_{M}} P_{9}, \\
& \Omega_{(17,17)}=-2 I, \quad \Omega_{(18,18)}=-e^{-2 \alpha d_{M}} P_{8},
\end{aligned}
$$

and the other terms are 0 .

Theorem 3.1. The delayed NTNNs (2.1) are exponentially passive, if there exist positive definite matrices $Q_{1}, R_{4}, R_{6} P_{i}, i \in\{1,2, \ldots, 12\}$, any appropriate dimensional matrices Q_{m} and $m=1,2, \ldots, 17$ such that the following symmetric linear matrix inequalities hold

$$
\begin{align*}
& {\left[\begin{array}{cc}
R_{1} & R_{2} \\
* & R_{3}
\end{array}\right] \geq 0, \quad\left[\begin{array}{cc}
R_{4} & R_{5} \\
* & R_{6}
\end{array}\right] \geq 0, \quad\left[\begin{array}{cc}
R_{7} & R_{8} \\
* & R_{9}
\end{array}\right] \geq 0} \tag{3.2}\\
& {\left[\begin{array}{cc}
P_{7} & S \\
* & P_{7}
\end{array}\right] \geq 0, \quad\left[\begin{array}{ccc}
P_{5} & M_{1} & M_{2} \\
* & M_{3} & M_{4} \\
* & * & M_{5}
\end{array}\right] \geq 0} \tag{3.3}\\
& \sum<0 \tag{3.4}
\end{align*}
$$

Proof. From model transformation method, we rewrite the system (2.1) in the following system

$$
\begin{align*}
\dot{\xi}(t)= & y(t), \tag{3.5}\\
0= & -y(t)-A \xi(t)+W f(\xi(t))+W_{1} f(\xi(t-d(t))) \\
& +W_{2} \int_{t-\rho(t)}^{t} f(\xi(s)) d s+W_{3} \dot{\xi}(t-r(t))+u(t) \tag{3.6}
\end{align*}
$$

Construct a Lyapunov-Krasovskii functional candidate for the system (3.5)-(3.6) of the form

$$
\begin{equation*}
V(t)=\sum_{i=1}^{10} V_{i}(t) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{1}(t)= & \xi^{T}(t) P_{1} \xi(t)+2 \sum_{i=1}^{N} c_{i} \int_{0}^{\xi_{i}(t)} f(s) d s \\
V_{2}(t)= & \zeta^{T}(t) E P_{2} \zeta(t)+2 \sum_{i=1}^{N} c_{i} \int_{0}^{\xi_{i}(t)} f(s) d s \\
V_{3}(t)= & \int_{t-d_{M}}^{t} e^{2 \alpha(s-t)} \xi^{T}(s) P_{3} \xi(s) d s+\int_{t-d(t)}^{t} e^{2 \alpha(s-t)}\left[\begin{array}{c}
\xi(s) \\
f(\xi(s))
\end{array}\right]^{T}\left[\begin{array}{cc}
R_{1} & R_{2} \\
* & R_{3}
\end{array}\right] \\
& \times\left[\begin{array}{c}
\xi(s) \\
f(\xi(s))
\end{array}\right] d s+\int_{t-d_{M}}^{t} e^{2 \alpha(s-t)}\left[\begin{array}{c}
\xi(s) \\
f(\xi(s))
\end{array}\right]^{T}\left[\begin{array}{cc}
R_{4} & R_{5} \\
* & R_{6}
\end{array}\right]\left[\begin{array}{c}
\xi(s) \\
f(\xi(s))
\end{array}\right] d s \\
V_{4}(t)= & d_{M} \int_{-d_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)} \xi^{T}(\theta) P_{4} \xi(\theta) d \theta d s \\
& +\int_{-d_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)} y^{T}(\theta) P_{5} y(\theta) d \theta d s
\end{aligned}
$$

$$
\begin{aligned}
V_{5}(t)= & d_{M} \int_{-d_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)} y^{T}(\theta) P_{6} y(\theta) d \theta d s \\
& +d_{M} \int_{-d_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)} y^{T}(\theta) P_{7} y(\theta) d \theta d s \\
V_{6}(t)= & d_{M} \int_{-d_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)}\left[\begin{array}{l}
\xi(\theta) \\
y(\theta)
\end{array}\right]^{T}\left[\begin{array}{cc}
R_{7} & R_{8} \\
* & R_{9}
\end{array}\right]\left[\begin{array}{l}
\xi(\theta) \\
y(\theta)
\end{array}\right] d \theta d s, \\
V_{7}(t)= & d_{M} \int_{-d_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)} y^{T}(\theta) P_{8} y(\theta) d \theta d s, \\
V_{8}(t)= & \frac{d_{M}^{2}}{2} \int_{-d_{M}}^{0} \int_{\theta}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta+s-t)} \xi^{T}(\theta) P_{9} \xi(\theta) d \theta d s d \lambda \\
& +d_{M}^{2} \int_{-d_{M}}^{0} \int_{\theta}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta+s-t)} y^{T}(\theta) P_{10} y(\theta) d \theta d s d \lambda, \\
V_{9}(t)= & -\rho_{M} \int_{-\rho_{M}}^{0} \int_{t+s}^{t} e^{2 \alpha(\theta-t)} f(\xi(\theta))^{T} P_{11} f(\xi(\theta)) d \theta d s, \\
V_{10}(t)= & \int_{t-r(t)}^{t} e^{2 \alpha(s-t)} \dot{\xi}^{T}(s) P_{12} \dot{\xi}(s) d s,
\end{aligned}
$$

with

$$
E=\left[\begin{array}{llll}
I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad P_{2}=\left[\begin{array}{ccccc}
Q_{1} & 0 & 0 & 0 & 0 \\
Q_{2} & Q_{5} & Q_{8} & Q_{11} & Q_{14} \\
Q_{3} & Q_{6} & Q_{9} & Q_{12} & Q_{15} \\
Q_{4} & Q_{7} & Q_{10} & Q_{13} & Q_{16}
\end{array}\right], \quad \zeta(t)=\left[\begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\int_{t-d(t)}^{t} \xi(s) d s \\
\xi\left(t-d_{M}\right) \\
y(t)
\end{array}\right] .
$$

The time derivative of $V(t)$ along the trajectory of system (3.5)-(3.6) is given by

$$
\begin{equation*}
\dot{V}(t)=\sum_{i=1}^{10} \dot{V}_{i}(t) \tag{3.8}
\end{equation*}
$$

The time derivative of $V_{1}(t)$ is calculated as

$$
\begin{align*}
\dot{V}_{1}(t) \leq & 2 \xi^{T}(t) P_{1} \dot{\xi}(t)+2 f^{T}(\xi(t)) C \dot{\xi}(t)+4 \alpha f^{T}(\xi(t)) C \xi(t)+2 \alpha \xi^{T}(t) P_{1} \xi(t) \\
& -2 \alpha V_{1}(t) \tag{3.9}
\end{align*}
$$

It is noted that $\zeta^{T}(t) E P_{2} \zeta(t)$ is really $\xi^{T}(t) Q_{1} \xi(t)$. Then the time derivative of $V_{2}(t)$ is calculated as

$$
\begin{align*}
\dot{V}_{2}(t)= & 2 \xi^{T}(t) Q_{1} \dot{\xi}(t)+2 \dot{\xi}^{T}(t) Q_{1}[-\dot{\xi}(t)+y(t)]+4 \alpha f^{T}(\xi(t)) C \xi(t)+2 \alpha \xi^{T}(t) P_{2} \xi(t) \\
& -2 \alpha V_{2}(t) \\
= & 2 \zeta^{T}(t) P_{2}^{T}\left[\begin{array}{c}
\dot{\xi}(t) \\
0 \\
0 \\
0
\end{array}\right]+2 \dot{\xi}^{T}(t) Q_{1}[-\dot{\xi}(t)+y(t)]+4 \alpha f^{T}(\xi(\theta)) C \xi(t) \\
& +2 \alpha \xi^{T}(t) P_{2} \xi(t)-2 \alpha V_{2}(t) \tag{3.10}
\end{align*}
$$

$$
\begin{align*}
= & 2\left[\begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\int_{t-d(t)}^{t} \xi(s) d s \\
\xi\left(t-d_{M}\right) \\
y(t)
\end{array}\right]^{T}\left[\begin{array}{cccc}
Q_{1} & Q_{2}^{T} & Q_{3}^{T} & Q_{4}^{T} \\
0 & Q_{5}^{T} & Q_{6}^{T} & Q_{7}^{T} \\
0 & Q_{8}^{T} & Q_{9}^{T} & Q_{10}^{T} \\
0 & Q_{11}^{T} & Q_{12}^{T} & Q_{13}^{T} \\
0 & Q_{14}^{T} & Q_{15}^{T} & Q_{16}^{T}
\end{array}\right]\left[\begin{array}{c}
\dot{\xi}(t) \\
0 \\
0 \\
0
\end{array}\right]+2 \dot{\xi}^{T}(t) Q_{1}[-\dot{\xi}(t)+y(t)] \\
= & +4 \alpha f(\xi(\theta))^{T} C \xi(t)+2 \alpha \xi^{T}(t) P_{2} \xi(t)-2 \alpha V_{2}(t) \\
& +2\left[\xi^{T}(t) Q_{1} y(t)+2 \dot{\xi}^{T}(t) Q_{1}[-\dot{\xi}(t)+y(t)]\right. \\
& \left.+y^{T}(t) Q_{14}^{T}\right] \times\left[-y(t)-A \xi(t)+W f(\xi(t))+W_{1}^{T} f(\xi(t-d(t)))\right. \\
& +\xi^{T}(t-d(t)) Q_{5}^{T}+\left(\int_{t-d(t)}^{t} \xi(s) d s\right)^{T} Q_{8}^{T}+\xi^{T}\left(t-d_{M}\right) Q_{11}^{T} \\
& +2\left[\xi^{T}(t) Q_{3}^{T}+\xi^{T}(t-d(t)) Q_{6}^{T}+\int_{t-d(t)}^{t} \xi(s) d s\right)^{T} Q_{9}^{T}+\xi^{T}\left(t-d_{M}\right) Q_{12}^{T} \\
& \left.+y^{T}(t) Q_{15}^{T}\right] \times\left[\xi(t)-\xi(t-d(t))-\int_{t-d(t)}^{t} y(s) d s\right] \\
& +2\left[\xi^{T}(t) Q_{4}^{T}+\xi^{T}(t-d(t)) Q_{7}^{T}+\left(\int_{t-d(t)}^{t} \xi(s) d s\right)^{T} Q_{10}^{T}+\xi^{T}\left(t-d_{M}\right) Q_{13}^{T}\right. \\
& \left.+y^{T}(t) Q_{16}^{T}\right] \times\left[\xi(t-d(t))-\xi\left(t-d_{M}\right)-\int_{t-d_{M}}^{t-d(t)} y(s) d s\right] \\
& +2 y^{T}(t) Q_{17}[-\dot{\xi}(t)+y(t)]+2 f^{T}(\xi(t)) C \dot{\xi}(t)+4 \alpha f^{T}(\xi(t)) C \xi(t) \\
& +2 \alpha \xi^{T}(t) P_{2} \xi(t)-2 \alpha V_{2}(t) .
\end{align*}
$$

Differentiating $V_{3}(t)$, we have

$$
\begin{align*}
\dot{V}_{3}(t)= & \xi^{T}(t) P_{3} \xi(t)-e^{-2 \alpha d_{M}} \xi^{T}\left(t-d_{M}\right) P_{3} \xi\left(t-d_{M}\right) \\
& +\left[\begin{array}{c}
\xi(t) \\
f(\xi(t))
\end{array}\right]^{T}\left[\begin{array}{cc}
R_{1} & R_{2} \\
R_{2}^{T} & R_{3}
\end{array}\right]\left[\begin{array}{c}
\xi(t) \\
f(\xi(t))
\end{array}\right] \\
& -e^{-2 \alpha d_{M}}\left(1-d_{d}\right)\left[\begin{array}{c}
\xi(t-d(t)) \\
f(\xi(t-d(t)))
\end{array}\right]^{T}\left[\begin{array}{ll}
R_{1} & R_{2} \\
R_{2}^{T} & R_{3}
\end{array}\right]\left[\begin{array}{c}
\xi(t-d(t)) \\
f(\xi(t-d(t)))
\end{array}\right] \\
& +\left[\begin{array}{c}
\xi(t) \\
f(\xi(t))
\end{array}\right]^{T}\left[\begin{array}{cc}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{c}
\xi(t) \\
f(\xi(t))
\end{array}\right] \\
& -e^{-2 \alpha d_{M}}\left[\begin{array}{c}
\xi\left(t-d_{M}\right) \\
f\left(\xi\left(t-d_{M}\right)\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{c}
\xi\left(t-d_{M}\right) \\
f\left(\xi\left(t-d_{M}\right)\right)
\end{array}\right]-2 \alpha V_{3}(t) . \tag{3.12}
\end{align*}
$$

Using Lemma 2.6 and Lemma 2.8, $V_{4}(t)$ is calculated as

$$
\begin{align*}
\dot{V}_{4}(t)= & d_{M} \int_{-d_{M}}^{0}\left(\xi^{T}(t) P_{4} \xi(t)-e^{2 \alpha s} \xi^{T}(t+s) P_{4} \xi(t+s)\right) d s \\
& +\int_{-d_{M}}^{0}\left(y^{T}(t) P_{5} y(t)-e^{2 \alpha s} y^{T}(t+s) P_{5} y(t+s)\right) d s-2 \alpha V_{4}(t) \tag{3.13}
\end{align*}
$$

$$
\begin{align*}
& =d_{M} \int_{-d_{M}}^{0} \xi^{T}(t) P_{4} \xi(t) d s-d_{M} \int_{-d_{M}}^{0} e^{2 \alpha s} \xi^{T}(t+s) P_{4} \xi(t+s) d s \\
& +\int_{-d_{M}}^{0} y^{T}(t) P_{5} y(t) d s-\int_{-d_{M}}^{0} e^{2 \alpha s} y^{T}(t+s) P_{5} y(t+s) d s-2 \alpha V_{4}(t) \\
& =d_{M}^{2} \xi^{T}(t) P_{4} \xi(t)-d_{M} e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t} \xi^{T}(s) P_{4} \xi(s) d s \\
& +d_{M} y^{T}(t) P_{5} y(t)-e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t} \dot{\xi}^{T}(s) P_{5} \dot{\xi}(s) d s-2 \alpha V_{4}(t) \\
& \leq d_{M}^{2} \xi^{T}(t) P_{4} \xi(t)+d_{M} y^{T}(t) P_{5} y(t) \\
& -d_{M} e^{-2 \alpha d_{M}} \int_{t-d(t)}^{t} \xi^{T}(s) d s P_{4} \int_{t-d(t)}^{t} \xi(s) d s \\
& -d_{M} e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t-d(t)} \xi^{T}(s) d s P_{4} \int_{t-d_{M}}^{t-d(t)} \xi(s) d s \\
& +e^{-2 \alpha d_{M}} \int_{t-d(t)}^{t}\left[\begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right)
\end{array}\right]^{T} \\
& \times\left[\begin{array}{ccc}
M_{1}+M_{1}^{T} & -M_{1}^{T}+M_{2} & 0 \\
-M_{1}+M_{2}^{T} & M_{1}+M_{1}^{T}-M_{2}-M_{2}^{T} & -M_{1}^{T}+M_{2} \\
0 & -M_{1}+M_{2}^{T} & -M_{2}-M_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right)
\end{array}\right] \\
& +d_{M} e^{-2 \alpha d_{M}} \int_{t-d(t)}^{t}\left[\begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right)
\end{array}\right]^{T}\left[\begin{array}{ccc}
M_{3} & M_{4} & 0 \\
M_{4}^{T} & M_{3}+M_{5} & M_{4} \\
0 & M_{4}^{T} & M_{5}
\end{array}\right]\left[\begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right)
\end{array}\right] \\
& -2 \alpha V_{4}(t) . \tag{3.14}
\end{align*}
$$

Using Lemma 2.3 (Wirtinger-base integral inequality) and Lemma 2.4 (Peng-Park's integral inequality), an upper bound of $V_{5}(t)$ can be obtained as

$$
\begin{align*}
\dot{V}_{5}(t)= & d_{M}^{2} y^{T}(t) P_{6} y(t)-d_{M} \int_{t-d_{M}}^{t} e^{2 \alpha(s-t)} \dot{\xi}^{T}(s) P_{6} \dot{\xi}(s) d s-2 \alpha V_{5}(t) \\
& +d_{M}^{2} y^{T}(t) P_{7} y(t)-d_{M} \int_{t-d_{M}}^{t} e^{2 \alpha(s-t)} \dot{\xi}^{T}(s) P_{7} \dot{\xi}(s) d s-2 \alpha V_{5}(t) \\
\leq & d_{M}^{2} y^{T}(t) P_{6} y(t)+d_{M}^{2} y^{T}(t) P_{7} y(t) \\
& +e^{-2 \alpha d_{M}}\left[\begin{array}{lll}
\xi^{T}(t) & \xi^{T}\left(t-d_{M}\right) & \frac{1}{d_{M}} \int_{t-d_{M}}^{t} \xi^{T}(s) d s
\end{array}\right]\left[\begin{array}{ccc}
-4 P_{6} & -2 P_{6} & 6 P_{6} \\
-2 P_{6}^{T} & -4 P_{6} & 6 P_{6} \\
6 P_{6}^{T} & 6 P_{6}^{T} & -12 P_{6}
\end{array}\right] \\
& \times\left[\begin{array}{cc}
\xi\left(t-d_{M}\right) \\
\frac{1}{d_{M}} \int_{t-d_{M}}^{t} \xi(s) d s
\end{array}\right]+e^{-2 \alpha d_{M}}\left[\begin{array}{ll}
\xi^{T}(t) & \xi^{T}(t-d(t)) \\
\left.\xi^{T}\left(t-d_{M}\right)\right]
\end{array}\right. \\
& \times\left[\begin{array}{cc}
-P_{7} & P_{7}-S \\
P_{7}^{T}-S^{T} & -2 P_{7}+S+S^{T} \\
S^{T} & P_{7}^{T}-S \\
& P_{7}^{T}-S^{T} \\
& -P_{7}
\end{array}\right]\left[\begin{array}{cc}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right)
\end{array}\right]-2 \alpha V_{5}(t) . \tag{3.15}
\end{align*}
$$

It is from Lemma 2.7 that we have

$$
\begin{align*}
\dot{V}_{6}(t)= & d_{M} \int_{-d_{M}}^{0}\left(\left[\begin{array}{l}
\xi(t) \\
y(t)
\end{array}\right]^{T}\left[\begin{array}{ll}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{l}
\xi(t) \\
y(t)
\end{array}\right]\right. \\
& \left.-e^{2 \alpha s}\left[\begin{array}{l}
\xi(t+s) \\
y(t+s)
\end{array}\right]^{T}\left[\begin{array}{ll}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{l}
\xi(t+s) \\
y(t+s)
\end{array}\right]\right) d s-2 \alpha V_{6}(t) \\
= & d_{M}^{2}\left[\begin{array}{l}
\xi(t) \\
y(t)
\end{array}\right]^{T}\left[\begin{array}{ll}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{l}
\xi(t) \\
y(t)
\end{array}\right] \\
& -d_{M} \int_{t-d_{M}}^{t} e^{2 \alpha(s-t)}\left[\begin{array}{l}
\xi(s) \\
y(s)
\end{array}\right]^{T}\left[\begin{array}{ll}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{l}
\xi(s) \\
y(s)
\end{array}\right] d s-2 \alpha V_{6}(t) \\
\leq & \left.d_{M}^{2}\left[\begin{array}{ll}
\xi(t) \\
y(t)
\end{array}\right]^{T}\left[\begin{array}{ll}
R_{4} & R_{5} \\
R_{5}^{T} & R_{6}
\end{array}\right]\left[\begin{array}{l}
\xi(t) \\
y(t)
\end{array}\right] \quad \begin{array}{c}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right) \\
\int_{t-d(t)}^{t} \xi(s) d s \\
\int_{t-d_{M}}^{t-(t)} \xi(s) d s
\end{array}\right]^{T}\left[\begin{array}{ccccc}
-R_{6} & R_{6} & 0 & -R_{5}^{T} & 0 \\
R_{6}^{T} & -R_{6}-R_{6}^{T} & R_{6} & R_{5}^{T} & -R_{5}^{T} \\
0 & R_{6}^{T} & -R_{6} & 0 & R_{5}^{T} \\
-R_{5} & R_{5} & 0 & -R_{4} & 0 \\
0 & -R_{5} & R_{5} & 0 & -R_{4}
\end{array}\right] \\
& \left.+e^{-2 \alpha d_{M}} \begin{array}{l}
\xi(t) \\
\xi(t-d(t)) \\
\xi\left(t-d_{M}\right) \\
\int_{t-d(t)}^{t} \xi(s) d s \\
\int_{t-h(t)}^{t-h(s) d s}
\end{array}\right]-2 \alpha V_{6}(t) .
\end{align*}
$$

Using Lemma 2.2 (Jensen's inequality) that we have

$$
\begin{align*}
\dot{V}_{7}(t) \leq & d_{M}^{2} y^{T}(t) P_{8} y(t)-e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t} y^{T}(s) d s P_{8} \int_{t-d_{M}}^{t} y(s) d s-2 \alpha V_{7}(t) \\
\leq & d_{M}^{2} y^{T}(t) P_{8} y(t) \\
& -\left[\int_{t-d(t)}^{t} y^{T}(s) d s+\int_{t-d_{M}}^{t-d(t)} y^{T}(s) d s\right] e^{-2 \alpha d_{M}} P_{8}\left[\int_{t-d(t)}^{t} y(s) d s\right. \\
& \left.+\int_{t-d_{M}}^{t-d(t)} y(s) d s\right]-2 \alpha V_{7}(t) \tag{3.17}
\end{align*}
$$

By Lemma 2.5, we can obtain $\dot{V}_{8}(t)$ as follows

$$
\begin{aligned}
\dot{V}_{8}(t)= & \frac{d_{M}^{2}}{2}\left(\frac{d_{M}^{2}}{2} \xi^{T}(t) P_{9} \xi(t)-\int_{t-d_{M}}^{t} \int_{u}^{t} e^{2 \alpha(\theta+s-t)} \xi^{T}(\lambda) P_{9} \xi(\lambda) d \lambda d u\right) \\
& +d_{M}^{2}\left(\frac{d_{M}^{2}}{2} y^{T}(t) P_{10} y(t)-\int_{t-d_{M}}^{t} \int_{u}^{t} e^{2 \alpha(\theta+s-t)} \dot{\xi}^{T}(\lambda) P_{10} \dot{\xi}(\lambda) d \lambda d u\right)-2 \alpha V_{8}(t) \\
= & \frac{d_{M}^{4}}{4} \xi^{T}(t) P_{9} \xi(t)-\frac{d_{M}^{2}}{2} \int_{t-d_{M}}^{t} \int_{u}^{t} e^{2 \alpha(\theta+s-t)} \xi^{T}(\lambda) P_{9} \xi(\lambda) d \lambda d u \\
& +\frac{d_{M}^{4}}{2} y^{T}(t) P_{10} y(t)-d_{M}^{2} \int_{t-d_{M}}^{t} \int_{u}^{t} e^{2 \alpha(\theta+s-t)} \dot{\xi}^{T}(\lambda) P_{10} \dot{\xi}(\lambda) d \lambda d u-2 \alpha V_{8}(t)
\end{aligned}
$$

$$
\begin{align*}
\leq & \frac{d_{M}^{4}}{4} \xi^{T}(t) P_{9} \xi(t)-e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t} \int_{u}^{t} \xi^{T}(\lambda) d \lambda d u P_{9} \int_{t-h_{M}}^{t} \int_{u}^{t} \xi(\lambda) d \lambda d u \\
& -2 \alpha V_{8}(t) \\
& +\frac{d_{M}^{4}}{2} y^{T}(t) P_{10} y(t)-2 e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t} \int_{u}^{t} \dot{\xi}^{T}(\lambda) d \lambda d u P_{10} \int_{t-h_{M}}^{t} \int_{u}^{t} \dot{\xi}(\lambda) d \lambda d u \\
= & \frac{d_{M}^{4}}{4} \xi^{T}(t) P_{9} \xi(t)+\frac{d_{M}^{4}}{2} y^{T}(t) P_{10} y(t) \\
& -e^{-2 \alpha d_{M}} \int_{t-d_{M}}^{t} \int_{u}^{t} \xi^{T}(\lambda) d \lambda d u P_{9} \int_{t-d_{M}}^{t} \int_{u}^{t} \xi(\lambda) d \lambda d u \\
& -e^{-2 \alpha d_{M}}\left[\sqrt{2} d_{M} \xi^{T}(t)-\sqrt{2} \int_{t-d_{M}}^{t} \xi^{T}(u) d u\right] P_{10}\left[\sqrt{2} d_{M} \xi(t)\right. \\
& \left.-\sqrt{2} \int_{t-d_{M}}^{t} \xi(u) d u\right]-2 \alpha V_{8}(t) . \tag{3.18}
\end{align*}
$$

Calculating $\dot{V}_{9}(t)$ leads to

$$
\begin{align*}
\dot{V}_{9}(t) \leq & \rho_{M}^{2} f\left(\xi^{T}(t)\right) P_{11} f(\xi(t)) \\
& -e^{-2 \alpha \rho_{M}} \int_{t-\rho(t)}^{t} f\left(\xi^{T}(s)\right) d s P_{11} \int_{t-\rho(t)}^{t} f(\xi(s)) d s-2 \alpha V_{9}(t) \tag{3.19}
\end{align*}
$$

Taking the time derivative of $V_{10}(t)$, we obtain

$$
\begin{align*}
\dot{V}_{10}(t)= & \dot{\xi}^{T}(t) P_{12} \dot{\xi}(t)-(1-\dot{r}(t)) e^{-2 \alpha r(t)} \dot{\xi}^{T}(t-r(t)) P_{12} \dot{\xi}(t-r(t))-2 \alpha V_{10}(t) \\
\leq & \dot{\xi}^{T}(t) P_{12} \dot{\xi}(t)-e^{-2 \alpha r_{M}} \dot{\xi}^{T}(t-r(t)) P_{12} \dot{\xi}(t-r(t)) \\
& +r_{d} \dot{\xi}^{T}(t-r(t)) P_{12} \dot{\xi}(t-r(t))-2 \alpha V_{10}(t) \tag{3.20}
\end{align*}
$$

From (2.5), we obtain for any positive real constants ϵ_{1} and ϵ_{2},

$$
\begin{gather*}
{\left[\begin{array}{c}
\xi(t) \\
f(\xi(t))
\end{array}\right]^{T}\left[\begin{array}{cc}
-2 H_{1} \epsilon_{1} & H_{1} \epsilon_{2} \\
\epsilon_{2}^{T} H_{1}^{T} & -2 H_{1}
\end{array}\right]\left[\begin{array}{c}
\xi(t) \\
f(\xi(t))
\end{array}\right] \geq 0} \tag{3.21}\\
{\left[\begin{array}{c}
\xi(t-d(t)) \\
f(\xi(t-d(t)))
\end{array}\right]^{T}\left[\begin{array}{cc}
-2 H_{2} \epsilon_{1} & H_{2} \epsilon_{2} \\
\epsilon_{2}^{T} H_{2}^{T} & -2 H_{2}
\end{array}\right]\left[\begin{array}{c}
\xi(t-d(t)) \\
f(\xi(t-d(t)))
\end{array}\right] \geq 0} \tag{3.22}
\end{gather*}
$$

From (2.1), we have

$$
\begin{align*}
& \left.\left[\dot{\xi}(t)-y^{T}(t)\right] \times\left[2 K_{1} \dot{\xi}(t)+2 K_{2} y(t)\right]\right)=0 \tag{3.23}\\
& 2 f(\xi(t)) \times\left[\dot{\xi}(t)+A \xi(t)-W f(\xi(t))-W_{1} f(\xi(t-d(t)))-W_{2} \int_{t-\rho(t)}^{t} f(\xi(s)) d s\right. \\
& \left.-W_{3} \dot{\xi}(t-r(t))-u(t)\right]=0 \tag{3.24}\\
& 2 \int_{t-\rho(t)}^{t} f(\xi(s)) d s \times\left[\dot{\xi}(t)+A \xi(t)-W f(\xi(t))-W_{1} f(\xi(t-d(t)))\right. \\
& \left.-W_{2} \int_{t-\rho(t)}^{t} f(\xi(s)) d s-W_{3} \dot{\xi}(t-r(t))-u(t)\right]=0 \tag{3.25}
\end{align*}
$$

By utilization of zero equation, the following equations are true for any real constant matrices $K_{i}, i=3,4$ with appropriate dimensions

$$
\begin{align*}
& {\left[2 K_{3} f^{T}(\xi(t))+2 K_{4} u^{T}(t)\right] \times} \\
& {\left[-\dot{\xi}(t)-A \xi(t)+W f(\xi(t))+W_{1} f(\xi(t-d(t)))+W_{2} \int_{t-\rho(t)}^{t} f(\xi(s)) d s\right.} \\
& \left.+W_{3} \dot{\xi}(t-r(t))+u(t)\right]=0 \tag{3.26}
\end{align*}
$$

According to (3.9)-(3.26) with (2.1), it is straightforward to see that

$$
\begin{equation*}
\dot{V}(t)+2 \alpha V(t)-2 z^{T}(t) u(t) \leq \eta^{T}(t) \sum \eta(t) \tag{3.27}
\end{equation*}
$$

where

$$
\begin{aligned}
\eta(t)= & \operatorname{col}\left\{\xi(t), \dot{\xi}(t), \xi(t-d(t)), \xi\left(t-d_{M}\right), \dot{\xi}(t-r(t)), \sqrt{2} \int_{t-d_{M}}^{t-d(t)} \xi(u) d u,\right. \\
& \int_{t-d(t)}^{t} \xi(s) d s, y(t), \int_{t-d_{M}}^{t-d(t)} \xi(s) d s, \int_{t-d(t)}^{t} y(s) d s, f(\xi(t)), f(\xi(t-d(t))), \\
& f\left(\xi\left(t-d_{M}\right)\right), \int_{t-\rho(t)}^{t} f(\xi(s)) d s, \int_{t-d_{M}}^{t} \xi(s) d s, \int_{t-d_{M}}^{t} \int_{u}^{t} \xi(\lambda) d \lambda d u, u(t), \\
& \left.\int_{t-d_{M}}^{t-d(t)} y(s) d u\right\} .
\end{aligned}
$$

Since \sum is negative definite and the conditions (3.2)-(3.3) hold, then

$$
\begin{equation*}
\dot{V}(t)+2 \alpha V(t) \leq 2 z^{T}(t) u(t), \forall t \in \mathbb{R}^{+} \tag{3.28}
\end{equation*}
$$

Therefore, system (2.1) is exponentially passive from Definition (2.1). The proof of theorem is complete.

Now the system (2.1) when $u(t)=0$ and $z(t) \equiv 0$ are presented. We define a new parameter

$$
\begin{equation*}
\widehat{\sum}=\left[\hat{\Omega}_{(i, j)}\right]_{17 \times 17}, \tag{3.29}
\end{equation*}
$$

$$
\begin{aligned}
& \hat{\Omega}_{(1,1)}=\alpha P_{1}+\alpha P_{1}^{T}-Q_{2}^{T} A-A^{T} Q_{2}+Q_{3}+Q_{3}^{T}+\alpha P_{2}+\alpha P_{2}^{T}+P_{3}+R_{1}+R_{4} \\
& +e^{-2 \alpha d_{M}}\left(M_{1}+M_{1}^{T}\right)+d_{M} e^{-2 \alpha d_{M}} M_{3}-4 e^{-2 \alpha d_{M}} P_{6}-e^{-2 \alpha d_{M}} P_{7}+d_{M}^{2} R_{4} \\
& -e^{-2 \alpha d_{M}} R_{6}+\frac{d_{M}^{4}}{4} P_{9}-2 d_{M}^{2} e^{-2 \alpha d_{M}} P_{10}+d_{M}^{2} P_{4}, \\
& \hat{\Omega}_{(1,2)}=P_{1}, \quad \hat{\Omega}_{(1,3)}=-A^{T} Q_{5}-Q_{3}^{T}+Q_{6}+Q_{4}^{T}+e^{-2 \alpha d_{M}}\left(-M_{1}^{T}+M_{2}\right) \\
& +d_{M} e^{-2 \alpha d_{M}} M_{4}+e^{-2 \alpha d_{M}} P_{7}-e^{-2 \alpha d_{M}} S+e^{-2 \alpha d_{M}} R_{6}, \\
& \hat{\Omega}_{(1,4)}=-A^{T} Q_{11}+Q_{12}-Q_{4}^{T}-2 e^{-2 \alpha d_{M}} P_{6}+e^{-2 \alpha d_{M}} S, \quad \hat{\Omega}_{(1,5)}=Q_{2}^{T} W_{3}, \\
& \hat{\Omega}_{(1,6)}=-\sqrt{2} d_{M} e^{-2 \alpha d_{M}} P_{10}, \quad \hat{\Omega}_{(1,7)}=-A^{T} Q_{8}+Q_{9}-e^{-2 \alpha d_{M}} R_{5}^{T} \text {, } \\
& \hat{\Omega}_{(1,8)}=Q_{1}-Q_{2}^{T}-A^{T} Q_{14}+Q_{15}+d_{M}^{2} R_{5}, \quad \hat{\Omega}_{(1,10)}=-Q_{3}^{T} \text {, } \\
& \hat{\Omega}_{(1,11)}=2 \alpha C^{T}+Q_{2}^{T} W+R_{2}+R_{5}+A^{T}, \quad \hat{\Omega}_{(1,12)}=Q_{2}^{T} W_{1}+2 \alpha C^{T} \text {, } \\
& \hat{\Omega}_{(1,14)}=Q_{2}^{T} W_{2}+A^{T}, \quad \hat{\Omega}_{(1,15)}=\frac{6}{d_{M}} e^{-2 \alpha d_{M}} P_{6}, \quad \hat{\Omega}_{(1,17)}=-Q_{4}^{T}, \\
& \hat{\Omega}_{(2,2)}=-Q_{1}-Q_{1}^{T}+P_{12}+2 K_{1}, \quad \hat{\Omega}_{(2,8)}=Q_{1}-Q_{17}^{T}+K_{2}-K_{1}^{T}, \\
& \hat{\Omega}_{(2,11)}=C^{T}+I, \quad \hat{\Omega}_{(2,14)}=I \text {, } \\
& \hat{\Omega}_{(3,3)}=-Q_{6}^{T}-Q_{6}+Q_{7}^{T}+Q_{7}-e^{-2 \alpha d_{M}}\left(1-d_{d}\right) R_{1}+e^{-2 \alpha d_{M}}\left(M_{1}+M_{1}^{T}-M_{2}-M_{2}^{T}\right) \\
& +d_{M} e^{-2 \alpha d_{M}}\left(M_{3}+M_{5}\right)-2 e^{-2 \alpha d_{M}} P_{7}+e^{-2 \alpha d_{M}}\left(S+S^{T}\right)-e^{-2 \alpha d_{M}}\left(R_{6}+R_{6}^{T}\right), \\
& \hat{\Omega}_{(3,4)}=-Q_{12}-Q_{7}^{T}+Q_{13}+e^{-2 \alpha d_{M}}\left(-M_{1}^{T}+M_{2}\right)+d_{M} e^{-2 \alpha d_{M}} M_{4}+e^{-2 \alpha d_{M}} P_{7} \\
& -e^{-2 \alpha d_{M}} S+e^{-2 \alpha d_{M}} R_{6}, \\
& \hat{\Omega}_{(3,5)}=Q_{5}^{T} W_{3}, \quad \hat{\Omega}_{(3,7)}=-Q_{9}+Q_{10}+e^{-2 \alpha d_{M}} R_{5}^{T} \text {, } \\
& \hat{\Omega}_{(3,8)}=-Q_{5}^{T}-Q_{15}+Q_{16}, \quad \hat{\Omega}_{(3,9)}=-e^{-2 \alpha d_{M}} R_{5}^{T}, \quad \hat{\Omega}_{(3,10)}=-Q_{6}^{T}, \\
& \hat{\Omega}_{(3,11)}=Q_{5}^{T} W, \quad \hat{\Omega}_{(3,12)}=Q_{5}^{T} W_{1}-e^{-2 \alpha d_{M}}\left(1-d_{d}\right) R_{2} \text {, } \\
& \hat{\Omega}_{(3,14)}=Q_{5}^{T} W_{2}, \quad \hat{\Omega}_{(3,17)}=-Q_{7}^{T} \text {, } \\
& \hat{\Omega}_{(4,4)}=-Q_{13}^{T}-Q_{13}-e^{-2 \alpha d_{M}} P_{3}-e^{-2 \alpha d_{M}} R_{4}+e^{-2 \alpha d_{M}}\left(-M_{2}-M_{2}^{T}\right) \\
& +d_{M} e^{-2 \alpha d_{M}} M_{5}-4 e^{-2 \alpha d_{M}} P_{6}-e^{-2 \alpha d_{M}} P_{7}-e^{-2 \alpha d_{M}} R_{6}, \\
& \hat{\Omega}_{(4,5)}=Q_{11}^{T} W_{3}, \quad \hat{\Omega}_{(4,7)}=-Q_{10}, \quad \hat{\Omega}_{(4,8)}=-Q_{11}^{T}-Q_{16}, \quad \hat{\Omega}_{(4,9)}=e^{-2 \alpha d_{M}} R_{5}^{T}, \\
& \hat{\Omega}_{(4,10)}=-Q_{12}^{T}, \quad \hat{\Omega}_{(4,11)}=-Q_{11} W, \quad \hat{\Omega}_{(4,12)}=Q_{11}^{T} W_{1}, \quad \hat{\Omega}_{(4,13)}=-e^{-2 \alpha d_{M}} R_{5}, \\
& \hat{\Omega}_{(4,14)}=Q_{11}^{T} W_{2}, \quad \hat{\Omega}_{(4,15)}=\frac{6}{d_{M}} e^{-2 \alpha d_{M}} P_{6}, \quad \hat{\Omega}_{(4,17)}=-Q_{13}^{T} \text {, } \\
& \hat{\Omega}_{(5,5)}=-e^{-2 \alpha r_{M}} P_{12}+r_{d} P_{12}, \quad \hat{\Omega}_{(5,7)}=W_{3}^{T} Q_{8}, \quad \hat{\Omega}_{(5,8)}=W_{3}^{T} Q_{14}, \\
& \hat{\Omega}_{(5,11)}=-W_{3}^{T}, \quad \hat{\Omega}_{(5,14)}=-W_{3}^{T}, \quad \hat{\Omega}_{(6,6)}=-e^{-2 \alpha d_{M}} P_{10} \text {, } \\
& \hat{\Omega}_{(7,7)}=-d_{M} e^{-2 \alpha d_{M}} P_{4}-e^{-2 \alpha d_{M}} R_{4}, \\
& \hat{\Omega}_{(7,8)}=Q_{8}^{T}, \quad \hat{\Omega}_{(7,10)}=-Q_{9}^{T}, \quad \hat{\Omega}_{(7,11)}=Q_{8} W, \\
& \hat{\Omega}_{(7,12)}=Q_{8}^{T} W_{1}, \quad \hat{\Omega}_{(7,14)}=Q_{8}^{T} W_{2} \text {, } \\
& \hat{\Omega}_{(7,17)}=-Q_{10}^{T}, \quad \hat{\Omega}_{(8,8)}=-Q_{14}^{T}+Q_{14}+Q_{17}+Q_{17}^{T}+d_{M} P_{5}+d_{M}^{2} P_{6}+d_{M}^{2} P_{7} \\
& +d_{M}^{2} R_{6}+d_{M}^{2} P_{8}+\frac{d_{M}^{4}}{2} P_{10}-2 K_{2},
\end{aligned}
$$

$$
\begin{aligned}
\hat{\Omega}_{(8,10)} & =-Q_{15}^{T}, \quad \hat{\Omega}_{(8,11)}=Q_{14}^{T} W, \quad \hat{\Omega}_{(8,12)}=Q_{14}^{T} W_{1}, \quad \hat{\Omega}_{(8,14)}=Q_{14}^{T} W_{2}, \\
\hat{\Omega}_{(8,17)} & =-Q_{16}^{T}, \quad \hat{\Omega}_{(9,9)}=-d_{M} e^{-2 \alpha d_{M}} P_{4}-e^{-2 \alpha d_{M}} R_{4}, \quad \hat{\Omega}_{(10,10)}=-e^{-2 \alpha d_{M}} P_{8}, \\
\hat{\Omega}_{(10,17)} & =-e^{-2 \alpha d_{M}} P_{8}, \quad \hat{\Omega}_{(11,11)}=R_{3}+R_{6}-2 W+\rho_{M}^{2} P_{11}, \quad \hat{\Omega}_{(11,12)}=-W_{1}, \\
\hat{\Omega}_{(11,14)} & =-W_{2}-W^{T}, \quad \hat{\Omega}_{(12,12)}=-e^{-2 \alpha d_{M}} R_{3}\left(1-d_{d}\right), \quad \hat{\Omega}_{(12,14)}=-W_{1}^{T}, \\
\hat{\Omega}_{(13,13)} & =-e^{-2 \alpha d_{M}} R_{6}, \quad \hat{\Omega}_{(14,14)}=-2 W_{2}-e^{-2 \alpha \rho_{M}} P_{11}, \\
\hat{\Omega}_{(15,15)} & =-\frac{12}{d_{M}^{2}} e^{-2 \alpha d_{M}} P_{6}, \quad \hat{\Omega}_{(16,16)}=-e^{-2 \alpha d_{M}} P_{9}, \quad \hat{\Omega}_{(17,17)}=-e^{-2 \alpha d_{M}} P_{8},
\end{aligned}
$$

and the other terms are 0 .
Corollary 3.2. The delayed NTNNs (2.1) with $u(t)=0$ and $z(t) \equiv 0$ are exponential stability, if there exist positive definite matrices $Q_{1}, R_{4}, R_{6} P_{i}, i \in\{1,2, \ldots, 12\}$, any appropriate dimensional matrices Q_{m} and $m=1,2, \ldots, 17$ such that the following symmetric linear matrix inequalities hold

$$
\begin{align*}
& {\left[\begin{array}{cc}
R_{1} & R_{2} \\
* & R_{3}
\end{array}\right] \geq 0, \quad\left[\begin{array}{cc}
R_{4} & R_{5} \\
* & R_{6}
\end{array}\right] \geq 0, \quad\left[\begin{array}{cc}
R_{7} & R_{8} \\
* & R_{9}
\end{array}\right] \geq 0} \tag{3.30}\\
& {\left[\begin{array}{cc}
P_{7} & S \\
* & P_{7}
\end{array}\right] \geq 0, \quad\left[\begin{array}{ccc}
P_{5} & M_{1} & M_{2} \\
* & M_{3} & M_{4} \\
* & * & M_{5}
\end{array}\right] \geq 0} \tag{3.31}\\
& \widehat{\sum}<0 \tag{3.32}
\end{align*}
$$

4. Numerical Examples

Example 4.1. Consider the following NTNNs with discrete and distributed time-varying (2.1). We consider exponential passivity of system (2.1) by using Theorem 3.1. The system (2.1) is specified as follow:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 0 \\
0 & 3.5
\end{array}\right], \quad W=\left[\begin{array}{cc}
-1 & 0.5 \\
0.5 & -1
\end{array}\right], \quad W_{1}=\left[\begin{array}{cc}
-0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \\
W_{2}=\left[\begin{array}{cc}
-0.2 & 0 \\
0 & -0.2
\end{array}\right], \quad W_{3}=\left[\begin{array}{cc}
-0.1 & 0 \\
0 & -0.1
\end{array}\right], \quad I=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
\epsilon_{1}^{-}=\epsilon_{2}^{-}=-0.1, \quad \epsilon_{1}^{+}=\epsilon_{2}^{+}=0.5, \quad \epsilon_{1}=0.5, \quad \epsilon_{2}=0.6 \\
d(t)=|\cos (t)|, \quad \rho(t)=\cos ^{2}(0.5 t), \quad r(t)=\sin ^{2}(0.6 t), \quad \phi(t)=\left[\begin{array}{c}
0.5 \\
1
\end{array}\right], t \in[-1,0] .
\end{gathered}
$$

It can be seen that $\alpha=0.1, \quad d_{M}=0.5, \quad d_{d}=0.3, \quad \rho_{M}=0.1, \quad r_{M}=0.2$ and $r_{d}=0.6$. By using LMI Toolbox in MATLAB, we use (3.2)-(3.3) in Theorem 3.1. This example shows
that the solutions of LMIs are given as follows:

$$
\begin{aligned}
& P_{1}=10^{7} \times\left[\begin{array}{cc}
3.5519 & -0.1404 \\
-0.1404 & 3.9082
\end{array}\right], \quad P_{2}=10^{7} \times\left[\begin{array}{cc}
9.7581 & -0.2916 \\
-0.2916 & 9.9934
\end{array}\right], \\
& P_{3}=10^{7} \times\left[\begin{array}{cc}
9.1721 & -0.8127 \\
-0.8127 & 9.6510
\end{array}\right], \quad P_{4}=10^{7} \times\left[\begin{array}{cc}
8.5699 & -0.1276 \\
-0.1276 & 8.7457
\end{array}\right], \\
& P_{5}=10^{7} \times\left[\begin{array}{ll}
1.8712 & 0.1883 \\
0.1883 & 1.4839
\end{array}\right], \quad P_{6}=10^{6} \times\left[\begin{array}{cc}
4.6315 & -0.1781 \\
-0.1781 & 4.8429
\end{array}\right], \\
& P_{7}=10^{7} \times\left[\begin{array}{ll}
3.4789 & 0.2827 \\
0.2827 & 3.0053
\end{array}\right], \quad P_{8}=10^{7} \times\left[\begin{array}{cc}
2.70803 & 0.1675 \\
0.1675 & 1.8440
\end{array}\right], \\
& P_{9}=10^{8} \times\left[\begin{array}{cc}
1.0420 & -0.0013 \\
-0.0013 & 1.0430
\end{array}\right], \quad P_{10}=10^{7} \times\left[\begin{array}{cc}
6.7326 & 0.1965 \\
0.1965 & 6.3537
\end{array}\right], \\
& P_{11}=10^{8} \times\left[\begin{array}{ll}
1.0980 & 0.0135 \\
0.0135 & 1.0908
\end{array}\right], \quad P_{12}=10^{7} \times\left[\begin{array}{ll}
1.6175 & 0.1818 \\
0.1818 & 1.2890
\end{array}\right], \\
& R_{1}=10^{8} \times\left[\begin{array}{cc}
0.9724 & -0.0068 \\
-0.0068 & 1.2022
\end{array}\right], \quad R_{2}=10^{7} \times\left[\begin{array}{cc}
-3.7603 & -0.7745 \\
-0.7745 & -5.5326
\end{array}\right] \\
& R_{3}=10^{8} \times\left[\begin{array}{ll}
0.9709 & 0.0557 \\
0.0557 & 1.0034
\end{array}\right], \quad R_{4}=10^{7} \times\left[\begin{array}{cc}
8.5227 & -0.2556 \\
-0.2556 & 8.8240
\end{array}\right], \\
& R_{5}=10^{7} \times\left[\begin{array}{ll}
-1.0405 & -0.2097 \\
-0.2097 & -1.1793
\end{array}\right], \quad R_{6}=10^{7} \times\left[\begin{array}{ll}
3.5334 & 0.2353 \\
0.2353 & 3.0431
\end{array}\right], \\
& R_{7}=10^{7} \times\left[\begin{array}{cc}
9.8891 & 0 \\
0 & 9.8891
\end{array}\right], \quad R_{8}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad R_{9}=10^{7} \times\left[\begin{array}{cc}
9.8891 & 0 \\
0 & 9.98891
\end{array}\right], \\
& Q_{1}=10^{8} \times\left[\begin{array}{ll}
1.0165 & 0.1465 \\
0.1465 & 1.3396
\end{array}\right], \quad Q_{2}=10^{8} \times\left[\begin{array}{cc}
1.0718 & 0.0270 \\
0.0270 & 0.8474
\end{array}\right], \\
& Q_{3}=10^{6} \times\left[\begin{array}{cc}
4.6723 & -2.6712 \\
-2.6712 & 3.0289
\end{array}\right], Q_{4}=10^{6} \times\left[\begin{array}{cc}
4.6723 & -2.6712 \\
-2.6712 & 3.0289
\end{array}\right] \text {, } \\
& Q_{5}=10^{7} \times\left[\begin{array}{ll}
1.7435 & 0.2196 \\
0.2196 & 2.0436
\end{array}\right], \quad Q_{6}=10^{6} \times\left[\begin{array}{ll}
5.2395 & 0.0850 \\
0.0850 & 4.7565
\end{array}\right], \\
& Q_{7}=10^{6} \times\left[\begin{array}{ll}
5.2395 & 0.0850 \\
0.0850 & 4.7565
\end{array}\right], \quad Q_{8}=10^{6} \times\left[\begin{array}{ll}
2.0029 & 0.9240 \\
0.9240 & 2.2569
\end{array}\right], \\
& Q_{9}=10^{5} \times\left[\begin{array}{cc}
-6.3908 & 0.5473 \\
0.5473 & -1.7135
\end{array}\right], \quad Q_{10}=10^{5} \times\left[\begin{array}{cc}
-6.3908 & 0.5473 \\
0.5473 & -1.7135
\end{array}\right], \\
& Q_{11}=10^{6} \times\left[\begin{array}{cc}
7.1846 & 2.6367 \\
2.6367 & -5.2159
\end{array}\right], \quad Q_{12}=10^{6} \times\left[\begin{array}{cc}
-8.6050 & 0.5348 \\
0.5348 & 0.2678
\end{array}\right], \\
& Q_{13}=10^{6} \times\left[\begin{array}{cc}
-8.6050 & 0.5348 \\
0.5348 & -5.2159
\end{array}\right], \quad Q_{14}=10^{7} \times\left[\begin{array}{cc}
5.0385 & 0.3796 \\
0.3796 & 4.1523
\end{array}\right], \\
& Q_{15}=10^{5} \times\left[\begin{array}{cc}
-3.7693 & 1.5629 \\
1.5629 & 1.0577
\end{array}\right], \quad Q_{16}=10^{5} \times\left[\begin{array}{cc}
-3.7693 & 1.5629 \\
1.5629 & 1.0577
\end{array}\right], \\
& Q_{17}=10^{7} \times\left[\begin{array}{cc}
-2.8374 & 0.4131 \\
0.4131 & -2.4522
\end{array}\right], \quad M_{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad M_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \\
& M_{3}=10^{8} \times\left[\begin{array}{cc}
1.0212 & -0.0436 \\
-0.0436 & 1.0503
\end{array}\right], \quad M_{4}=10^{7} \times\left[\begin{array}{cc}
-2.4579 & -0.5579 \\
-0.5579 & -1.8902
\end{array}\right],
\end{aligned}
$$

$$
\begin{array}{rlrl}
M_{5} & =10^{8} \times\left[\begin{array}{cc}
1.0513 & -0.0061 \\
-0.0061 & 1.0638
\end{array}\right], & & S=10^{6} \times\left[\begin{array}{cc}
3.5607 & 1.4465 \\
1.4465 & 2.4570
\end{array}\right], \\
C & =10^{7} \times\left[\begin{array}{cc}
1.2510 & -2.9252 \\
-2.9252 & 0.1721
\end{array}\right], & & H_{1}=10^{8} \times\left[\begin{array}{cc}
3.2629 & -0.2210 \\
-0.2210 & 2.9761
\end{array}\right], \\
H_{2} & =10^{7} \times\left[\begin{array}{cc}
7.3534 & -1.1825 \\
-1.1825 & 8.6257
\end{array}\right], & K_{1}=10^{7} \times\left[\begin{array}{cc}
2.7519 & 2.1237 \\
2.1237 & 7.0642
\end{array}\right], \\
K_{2} & =10^{7} \times\left[\begin{array}{cc}
2.8374 & -0.4131 \\
-0.4131 & 2.4522
\end{array}\right], & K_{3}=10^{7} \times\left[\begin{array}{cc}
-9.0197 & -0.7793 \\
-0.7793 & -6.8279
\end{array}\right], \\
K_{4} & =10^{6} \times\left[\begin{array}{cc}
-4.5184 & 0.7955 \\
0.7955 & -1.8073
\end{array}\right], &
\end{array}
$$

Example 4.2. We focus on system (2.1) with $W_{3}=0$, and $\dot{\xi}(t-r(t)) \equiv 0$, that means neural networks system with discrete and distributed time-varying delay:

$$
\left\{\begin{array}{l}
\dot{\xi}(t)=-A \xi(t)+W f(\xi(t))+W_{1} f(\xi(t-d(t)))+W_{2} \int_{t-\rho(t)}^{t} f(\xi(s)) d s+u(t) \tag{4.1}\\
z(t)=f(\xi(t))+f(\xi(t-d(t)))+u(t) \\
\xi(t)=\phi(t), t \in\left[-\tau_{\max }, 0\right], \tau_{\max }=\max \left\{d_{M}, \rho_{M}\right\}
\end{array}\right.
$$

with the parameters

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
2 & 0 \\
0 & 3.5
\end{array}\right], W=\left[\begin{array}{cc}
-1 & 0.5 \\
0.5 & -1
\end{array}\right], \quad W_{1}=\left[\begin{array}{cc}
-0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right], \\
W_{2} & =\left[\begin{array}{cc}
2 & 0 \\
0 & 3.5
\end{array}\right], \epsilon_{1}^{-}=\epsilon_{2}^{-}=-0.1, \quad \epsilon_{1}^{+}=\epsilon_{2}^{+}=0.5, \\
\text { for } d(t) & =0.1+\frac{\sin ^{2}(t)}{3}, \quad \rho(t)=0.3+\frac{|\cos (t)|}{3} .
\end{aligned}
$$

In this example, we interested in the exponential passivity for system (4.1). Table 1 provides the calculated allowable upper bound d_{M}.

Table 1. Calculated delay upper bound d_{M} for fixed $\rho_{M}=0.7$ and different d_{d} and α of Example 4.2.

d_{d}	$\alpha=0.1$	$\alpha=0.5$	$\alpha=0.7$	$\alpha=0.9$
0	0.1023	0.0050	0.2121	1.2020
0.1	1.0021	0.0211	1.0010	1.1010
0.3	0.0022	0.0201	0.0210	1.0201
0.5	0.0030	0.1110	0.1401	0.0230

Example 4.3. Consider the system (2.1) with $W_{2}=W_{3}=0$ and $u(t)=z(t) \equiv 0$, that means neural networks system with time-varying delay:

$$
\left\{\begin{array}{l}
\dot{\xi}(t)=-A \xi(t)+W f(\xi(t))+W_{1} f(\xi(t-d(t))), \tag{4.2}\\
\xi(t)=\phi(t), t \in\left[-d_{M}, 0\right]
\end{array}\right.
$$

with the parameters

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
2 & 0 \\
0 & 3.5
\end{array}\right], W_{1}=\left[\begin{array}{cc}
-1 & 0.5 \\
0.5 & -1
\end{array}\right], \quad W_{2}=\left[\begin{array}{cc}
-0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right], \\
\epsilon_{1}^{-} & =\epsilon_{2}^{-}=0, \quad \epsilon_{1}^{+}=\epsilon_{2}^{+}=1 .
\end{aligned}
$$

Table 2 lists the comparison of exponential convergence rates of system (4.2) by different methods. It is clear that our results are superior to those in [33-36].

TABLE 2. Allowable exponential convergence rate α for various d_{d} and $d_{m}=1$ of Example 4.3.

Method	$d_{d}=0.8$	$d_{d}=0.9$	Unknown d_{d}
$\mathrm{Wu}(2008)[33]$	0.8643	0.8344	0.8169
$\mathrm{Ji} \mathrm{(2014)} \mathrm{[34]}$	0.8696	0.8354	0.8169
$\mathrm{Ji}(2015)[35]$	0.8784	0.8484	0.8217
$\mathrm{He}(2016)[36]$	0.8841	0.8570	0.8260
Theorem 3.1	1.0214	1.2010	1.1011

5. Conclusions

In this paper, we propose the delay-dependent exponentially passive conditions for NTNNs with discrete and distributed time-varying delays by using descriptor model transformation, new class of augmented Lyapunov-Krasovskii functional, Leibniz-Newton formula, improved integral inequalities, utilization of zero equation, Wirtinger-based integral inequality, and Peng-Park's integral inequality. Then, we represented the delaydependent exponential passivity criterion for NTNNs with time-varying delays. Moreover, we obtained exponential stability criterion for considered system. Finally, three numerical results verified the improvement and effectiveness of the proposed exponential passivity criteria.

Acknowledgements

This research project was supported by Thailand Science Research and Innovation (TSRI). Contract No. FRB630010/0174-P6-03, and the Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan.

References

[1] T. Chen, Global exponential stability of delayed Hopfield neural networks, Neural Networks 14 (8) (2011) 977-980.
[2] S. Zhu, Y. Shen, G. Chen, Exponential passivity of neural networks with time-varying delay and uncertainty, Phys. Lett. A 375 (2010) 136-142.
[3] J.D. Cao, K. Yuan, H.X. Li, Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays, IEEE Trans. Neural Netw. 17 (6) (2006) 1646-1651.
[4] O.M. Kwon, J.H. Park, S.M. Lee and E.J. Cha, A new augmented LyapunovKrasovskii functional approach to exponential passivity for neural networks with time-varying delays, Appl. Math. Comput. 217 (2011) 10231-10238.
[5] Z.G. Wu, J.H. Park, H. Su, J. Chu, New results on exponential passivity of neural networks with time-varying delays, Nonlinear Anal. R. World Appl. 13 (4) (2012) 1593-1599.
[6] A. Wu, Z. Zeng, Exponential passivity of memristive neural networks with time delays, Neural Networks 49 (2014) 11-18.
[7] S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, Z. Yao, Exponential passivity analysis of stochastic neural networks with leakage distributed delays, Markovian jumping parameters, Neurocomputing 175 (2015) 401-410.
[8] M.V. Thuan, H. Trinh, L.V. Hien, New inequality-based approach to passivity analysis of neural networks with interval time-varying delay, Neurocomputing 194 (2016) 301-307.
[9] T. Botmart, N. Yotha, K. Mukdasai, W. Weera, Improved results on passivity analysis of neutral-type neural networks with mixed time-varying delays, WSEAS Transactions on Circuits and Systems 17 (2018).
[10] A. Klamnoi, N. Yotha, W. Weera, T. Botmart, Improved results on passivity analysis of neutral-type neural networks with time-varying delays, Int. J. Res. Mech. Eng. Tech. 6 (2) (2018).
[11] W. Chartbupapan, T. Botmart, K. Mukdasai, N. Kaewbanjak, Non-differentiable delay-interval-dependent exponentially passive conditions for neutral integrodifferential equations with time-varying delays, Thai J. Math 18 (2020) 232-250.
[12] W. Chartbupapan, O. Bagdasar, K. Mukdasai, A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation, MDPI. 82 (2020) doi:10.3390/math8010082.
[13] P. Singkibud, L.T. Hiep, P. Niamsup, T. Botmart, K. Mukdasai, Delay-dependent Robust H-infinity Performance for uncertain neutral systems with mixed timevarying delays and nonlinear perturbation, Math. Prob. in Eng. (2018) Article ID 5721695, 16 pages.
[14] S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer, Berlin, 2001.
[15] X. Liao, Y. Liu, H. Wang, T. Huang, Exponential estimates and exponential stability for neutral type neural networks with multiple delays, Neurocomputing, 149 (2015) 868-883.
[16] X. Zhang, X. Lin, Y. Wang , Robust fault detection filter design for a class of neutraltype neural networks with time-varying discrete and unbounded distributed delays, Optim. Contr. Appl. Meth. 34 (5) (2013) 590-607.
[17] L.O. Chua, Passivity and complexity, IEEE Trans. Circuits Syst. I. 46 (1999) 71-82.
[18] L. Xie, M. Fu, Passivity analysis and passification for uncertain signal processing systems, IEEE Trans. Signal Process. 46 (9) (1998) 2394-2403.
[19] J.C. Willems, The Analysis of Feedback Systems, MIT Press, Cambridge, MA, 1971.
[20] E. Fridman, U. Shaked, On delay-dependent passivity, IEEE Trans. Automat. Contr. 47 (4) (2002) 664-669.
[21] H. Gao, T. Chen, T. Chai, Passivity and pacification for networked control systems, SIAM J. Control Optim. 46 (4) (2007) 1299-1322.
[22] W. Lin, C.I. Byrnes, Passivity and absolute stabilization of a class of discrete-time nonlinear systems, Automatica. 31 (2) (1995) 263-267.
[23] J. Liang, Z. Wang, X. Liu, Robust passivity and passification of stochastic fuzzy time-delay systems, Inf. Sci. 180 (9) (2010) 1725-1737.
[24] J. Zhao, D.J. Hill, Passivity and stability of switched systems: A multiple storage function method, Syst. Contr. Lett. 57 (2) (2008) 158-164.
[25] Y. Li, S. Zhong, J. Cheng, K. Shi, J. Ren, New passivity criteria for uncertain neural networks with time-varying delay, Neurocomputing 171 (2016) 1003-1012.
[26] H.B. Zeng, J.H. Park, H. Shen, Robust passivity analysis of neural networks with discrete and distributed delays, Neurocomputing 149 (2015) 1092-1097.
[27] R. Samidurai, S. Rajavel, Q. Zhu, R. Raja, H. Zhou, Robust passivity analysis for neutral-type neural networks with mixed and leakage delays, Neurocomputing 175 (2016) 635-643.
[28] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to timedelay system, Automatica. 49 (9) (2013) 2860-2866.
[29] C. Peng, M.R. Fei, An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay, Fuzzy Set Syst. 212 (2013) 97-109.
[30] P.G. Park, J.W. Ko, C.K. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica. 47 (1) (2011) 235-238.
[31] O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, Analysis on robust H_{∞} performance and stability for linear systems with interval time-varying state delays via some new augmented Lyapunov-Krasovskii functional, Appl. Math. Comput. 224 (2013) 108-122.
[32] P. Singkibud, P. Niamsup and K. Mukdasai, Improved results on delay-ragedependent robust stability criteria of uncertain neutral systems with mixed interval time-varying delays, IAENG Int. J. Appl. Math. 47 (2) (2017) 209-222.
[33] M. Wu, F. Liu, R. Yokoyama, Exponential stability analysis for neural networks with time-varying delay, IEEE Trans. Syst. Man. Cybern B Cybern. 38 (4) (2008) 1152-1156.
[34] M.D. Ji, Y. He, M. Wu, C.K. Zhang, New exponential stability criterion for neural networks with time-varying delay, In proceeding of the 33rd Chinese control conference (2014) 6119-6123.
[35] M.D. Ji, Y. He, M. Wu, C.K. Zhang, Further results on exponential stability of neural networks with time-varying delay, Appl. Math. Comput. 256 (2015) 175-182.
[36] Y. He, M.D. Ji, C.K. Zhang, M. Wu, Global exponential stability of neural netorks with time-varying delay based on free-matrix-based integral inequality, Neural Networks 77 (2016) 80-86.

[^0]: *Corresponding author.

