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such as the famous Jensen inequality, Wirtinger-based integral inequality, Peng-Park’s integral inequality,
etc. A novel delay-dependent criterion is established to ensure the exponential passivity of the systems
considered. Moreover, the exponential passivity criterion is presented in terms of linear matrix inequalities
(LMIs). Finally, numerical examples are given to show the superiority of the proposed method and
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1. INTRODUCTION

Since neural networks (NNs) appered. NNs have received extensive attention and have
been applied successfully in many areas such as signal processing, pattern recognition,

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright © 2020 by TJM. All rights reserved.



880 Thai J. Math. Vol. 18 (2020) /P. Singkibud et al.

associative memory and optimization problems [I]. Many scholars have paid their at-
tentions to NNs which possess many advantages, including paralel computation, learning
ability, function approximation, fault tolerance, etc. Most of these applications require
that the equilibrium points of the designed network should be stable. So, it is important
to study the stability of NNs. In reality, time-delay systems are frequently encountered
in NNs, where a time delay is often a source of instability and oscillations. During the
past few decades, both delay-independent and delay-dependent sufficient conditions have
been proposed to verify the asymptotical or exponential stability of delay NNs and the
references cited therein. Consequently, NNs with time delay has an important issue in
control theory and has been extensively studied [1-10]. Moreover, the NNs containing
the information of past state derivatives are called neutral-type [11-13] neural networks
(NTNNs). Futhermore, neutral-type time-delay in the system models are usually encoun-
tered in many practical applications, such as population ecology, heat exchangers, water
pipes, chemical reactors and robots in contact with rigid environments [14]. The existing
work on the state estimator of NTNNs with mixed delays are only [15, 16] at present.
Recently, study of NTNNs with delays has become one of impressive research topics and
has been widely studied by many researchers. Therefore, it is necessary and important
to investigate the NTNNs with delays.

The passivity theory plays an important role in the analysis of the stability of dynam-
ical system, complexity [17], signal processing [18], chaos control, design of linear and
nonlinear systems, especially for high-order systems [19]. In the first place, many systems
need to be passive in order to attenuate noises effectively. In the second place, the robust-
ness measure(such as robust stability or robust performace) of a system often reduces to
a subsystem or a modified system that is passive. The essence of the passivity theory is
that the passive properties of a system can keep the system internal stability. Thus, the
passivity analysis approach has attracted a lot of research attentions [1-10, 20-24] and
the references cited therein. Recently, the exponential passivity of NNs with time-varying
delays has been studied in [2, 5, 6]. In the present, the passivity analysis have been stud-
ied several researchers [2, 25-27]. Moreover, The exponentially passivity condition for
delayed NNs was obtained in [2]. In [26], the issue of robust passivity conditions for NNs
with distributed and discrete delays has been extensively studied. Then, improved result
on passivity analysis of NTNNs with time-varying delays [10] is presented. However, no
result has been obtained for exponentially passive condition of NTNNs with discrete and
distributed time-varying delays

Motivated by the above discussions, this paper involved with the analysis problem for
the exponential passivity of NTNNs with discrete and distributed time-varying delays.
By constructing novel augments Lyapunov-Krasovskii functional, using various inequali-
ties, such as Jensen’s inequality, Wirtinger-based integral inequality, Peng-Park’s integral
inequality, etc. Moreover, applying descriptor model transformation, Leibniz-Newton
formula and application of zero equations. Then, a novel delay-dependent exponential
passivity criterion for NTNNs with discrete and distributed time-varying delays is pre-
sented. As a result, a novel delay-dependent criterion is established in term of LMIs.
Finally, three numerical examples are illustrated to show the usefulness of the proposed
criteria.
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2. PROBLEM FORMULATION AND PRELIMINARIES

We introduce some notations and lemmas that will be used throughout the paper. RT
denotes the set of all real non-negative numbers; R™ denotes the n-dimensional space with
the vector norm || - ||; ||z|| denotes the Euclidean vector norm of € R"™; R™*" denotes
the set n x r real matrices; AT denotes the transpose of the matrix A; A is symmetric
if A = AT; I denotes the identity matrix; A(A) denotes the set of all eigenvalues of
A; Mpax(4) = max{Re A : A € AM(4)}; Ain(4A) = min{Re A : A € A(4)}; matrix A is
called semi-positive definite (A > 0) if 27 Az > 0, for all z € R"; A is positive definite
(A > 0) if 27 Az > 0 for all z # 0; matrix B is called semi-negative definite (B < 0) if
2TBx <0, for all z € R™; B is negative definite (B < 0) if 27 Bz < 0 for all x # 0;
A > Bmeans A—B >0(B—-—A<0); A>Bmeans A—B >0 (B—-A < 0);
C([—h,0], R™) denotes the space of all continuous vector functions mapping [—h, 0] into
R"™ when h = max{dys, par, "}, dor, par, 7 € R 20 = x(t+s), s € [~h, 0]; * represents
the elements below the main diagonal of a symmetric matrix.

Consider the following continuous NTNNs with mixed time-varying delays:

E(1) = —AE() + W F(E()) + Wi F((t — d(1))) + Wa f[_ ) F(E(s))ds

+Ws(t —r(t) +ult), (2.1)
2(8) = F(E®) + FIE(E — D)) + €t — 7(2)) + u(t),
f(t) = ¢(t)v te [_Tmaxv 0}7 Tmax = max{dM; PMaTM}a

where £(t) = [£1(),&2(t), ..., €n(f)] € R™ is the neural state vector. The diagonal matrix
A is a self-feedback connection weight matrix. W, W1, Wy and W3 are are the connection
weight matrices between neurons with appropriate dimensions. f(-) = (f1(-), f2(-),. .-,
Fa()T represent the activation functions. u(t) and z(t) represent the input and output
vectors, respectively; ¢(t) is an initial condition. The variables d(¢) is the discrete time-
varying delay, p(t) is the distributed time-varying delay and r(t) is the neutral time-
varying delay are satisfying

0<dt)<dy, 0<dt)<dg, (2.2)
0<p(t) < pu, (2.3)
0<r(t)<ry, 0<7r(t)<ry, (2.4)

where dps, ppr and rp; are positive real constants. The neural activation functions
fe(), k=1,2,--- nsatisfy fi(0) =0 and for s1,s2 € R, s1 # 2,

fr(s1) — fr(s2)

. <
k= S1 — 89

<If, (2.5)
where [;, [}, are known real scalars. Moreover, we denote LT = diag(l{, 15, -+, }}),
L~ = dlag(l;7 l;a e 7l7:)

Definition 2.1. [2] The neural networks are said to be exponential passive from input w(¢)
to output z(t), if there exist an exponential Lyapunov function (or, called the exponential
storage function) V defined on R™, and a constant 5 > 0 such that for all u(¢), all initial
conditions £(0), all ¢ > tg, the following inequality holds:

V(t)+ BV (1) < 27 (u(t), =0, (2.6)

where V(t) denotes the total derivative of V (t) along the state trajectories &(t), t > 0, of
(2.1).
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Lemma 2.2. (Jensen’s inequality) For any symmetric positive definite matriz Q, positive
real number h, and vector function & : [—h,0] — R"™ such that the following integral is
well defined, then

0

h/oh (s 4 1)Qi(s + t)ds < (/hgb(s+t)ds)TQ(/0h:t(s+t)ds).

Lemma 2.3. (Wirtinger-based integral inequality) [28] For any matriz Z > 0, the fol-
lowing inequality holds for all continuously differentiable function & : (o, B] — R™

B
_(ﬁ—a)/ i7(s)Zi(s)ds < W Dw,

—-47Z =27 6Z
where  w = [z7(8), 2T (), ﬂ%a ff 2T(s)ds]t and ®=| x —4Z 6Z
* * —-127

Lemma 2.4. (Peng-Park’s integral inequality) [29, 30] For any matriz [f ; >0,
positive scalars T and T(t) satisfying 0 < 7(t) < T , vector function & : [—7,0] = R™ such
that the concerned integrations are well defined, then
t
—7'/ il(s)Zi(s)ds < €10,
t—1
-7 A S
where & = [2T(t), 2T (t—7(t)),2T(t-7)]T and ©=| x —2Z+S+5T Z-S]|.
* * -7
Lemma 2.5. | For a positive matriz M, the following inequality holds:
(a—
/ / u)duds < / / duds / / duds
Lemma 2.6. [32] For any constant symmetric positive definite matriz QQ € R™™ ™, h(t)
is discrete time-varying delays with (2.3), vector function w : [—hpr,0] — R™ such that

the integrations concerned are well defined, then

th/ w(s)ds
hM

—h(t) h(t)
< —/ sdsQ/ ds—/ dsQ/
h(t) h(t) —hnm

Lemma 2.7. [32] For any constant matrices Q1,Q2,Q3 € R"*", Q1 > 0,Q3 > 0,
|:Q1 Q2
* Qs

} > 0, h(t) is discrete time-varying delays with (2.3) and vector function & :
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[—har, 0] = R™ such that the following integration is well defined, then

—hy ' F(S)r |:Q1 QQ] [m(S)] ds

b ha LE(8) * Qs |Z(s)
T
() Qs Q0 QF 0 (1)
2

2t — h(t)) fo-Q-QF Qs QF —QF|| lt-h()

< f(t ~ har) * * -Q3 0 QF tx(t — hu)
ft—h(t) a(s)ds * * x =@ 0 ft_h(t) x(s)ds
tt__;?]g) z(s)ds * * * o =@ :__:N(f) x(s)ds

Lemma 2.8. [32] Let z(t) € R™ be a vector-valued function with first-order continuous-

derivative entries. Then, the following integral inequality holds for any constant matrices
X, M; € R"™ i =1,2,...,5 and h(t) is discrete time-varying delays with (2.3),

—/t75 7 (s) X i (s)ds

—hm
z@t) 17 [My+ MT —MT + M, 0 z(t)
< |zt —h(?) * My + ML — My — ME  —M] + M| [z(t — h(t))
x(t— har) * * —My — MI| | 2(t — har)
oty 17 Mz My 0 2(t)
dhor 2t —n@)| | % Myt My M| |2t —n)],
x(t — har) * * Ms| | z(t — har)
where
X My M,
* Ms My| >0
* M5

3. MAIN RESULTS

In this section, we display our main results. We introduce the following notations for
later use:

Z = [Q(i,j)]wms’ (3.1)

Qa1 = aPi+aPl —QFA-ATQs+ Q3+ QY +aPs+aP) + Py + Ry + Ry
e 2N (My + M) + dpge” 2% My — de 24 Py — 722 P+ d3 Ry
d4
—672adMR6 + TMPQ - 2d%4672adh4p10 =+ d?MPLL’ Q(LQ) =P,
Quz = —ATQs —QF + Qs+ QF + e M (=M + My) + dpe>* M M,y
+e*20¢d}up7 _ efQOLd]WS+ e*20¢d1\4R67
Quay = —ATQu+ Q12— Q] —2e 2P+ e 2GS Q5 = Q3 W,

Qus = QIWs, Qug = —V2dye 2Py, Quq=-ATQs + Qg — e 2 RL,
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Qs
Qi1

Q1,14

Q2,2)
Q2,11)
Q3,3

Q3,4

Q3,5
Q3,9
Q3,12
Qs,17)
Q4,0

Qa,5)
Q4,10

Q4,14

Q6.5
Qs,11)
Q7.7
Q7,11
Q717

28,10
Q17
Q9,9
Q10,18
Q(11,14)
Q(12,14)
Q14,14

Q15,15)

Q7,17)

Q1 —QF —ATQui+ Q15+ d3Rs, Qq10) = —QF,

20CT + QIW + Ro+ Rs + AT, Qq1.19) = Q3 Wi + 2aC7,

QiWa+ AT, Qs = %szadMPﬁ, Quin =Q3, Qus =—Q1,
Q1 — Q1 + P2 +2K1, Qg =Q1— Q7 + Ko — KT,

cT+1, Q2,14) = 1,

Qi — Qo+ Q7 + Q7 — e XM (1 —dy)Ry + €™M (My + M{ — Mz — M)
Fdare M (My 4 Ms) — 22N P 2% (5 4 §T) — ¢ (R + RY),
—Q12 — Q7 + Qs + e 2 (—M1T + Ms) + dyre” 2 My

te2dM p, _ om20dm gy o=20dn B

Q5Ws, Qur =-Qo+Quo+e "Ry, Qus =-QF — Qs+ Qus,

—e MR QG = —Qa, Q@i = QE W,

QEWr — e ™M (1 —dg)Ra,  Qz10y = Q1 Wo,

Qr, Qais) = —Qr,

—Qls — Quz —e 2Py — PR, 4T (LM, — MY

+dye M pfo g2 py _ T2 p_ om2edM R

QTiWs, Qumn=-Qio, Qus =-Q11 —Qis, Qo =e “*“MRE,
—Qay Qainy = —QuW, Qi =QLiW1, Quiz =—e MRy,

6 24
QITIWQv Q(4v15) = Ee 2 dMPG: Q(4,17) = Q1T17 Q(4,18) = *Q1T3a

—e M Py 4 1 Pra, Q7 = Wi Qs, Q.8 = W3 Qu,
_W3TyQ(5,l4) = —W:«;T, Q(5,17) = -1, Q(G,e) = —eigadMPIOa
—dye MNP — e MRy Qg = Q8 Qraoy = —Q8
QsW, Q12 = Qa Wi, Qs = Q8 W,

Qs Qi) = —Qlo, Qss) = —Qla+ Qua+ Q17 + Q17 + du Ps

4

dir
+d3 Ps + d3; Pr 4 d3;Re + d3 Ps + PlO — 2K,

—Qfs, Qs =QLW, Qg2 = Q14W1, Qs 10y = Q1aWo,

Qs Qsas) = —Qls,

—dpre M py g 2dn Ry, Qo0 = —e M Py,

—e 2edm p Qa1,11) = R3 + Re — 2W + parPit, Q1,12 = —Wh,

Wy — WT, Q(11,17) = 21, Q(12,12) = —€_2adM R3(1 - dd)7

—W1T, Q(12,17) =1, Q(13,13) = —e_QadMR&

—2W,y — e 2 PM Py Qra1my = —1,

_12
d3,

=21, Qusi8) = —6_2adMP87

—2ad —2ad
€ aMPG, (& aMP97

Qi6,16) = —

and the other terms are 0.
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Theorem 3.1. The delayed NTNNs (2.1) are exponentially passive, if there exist positive
definite matrices Q1, Ry, Rg Py, i € {1,2,...,12}, any appropriate dimensional matrices
Qm and m =1,2,....17 such that the following symmetric linear matriz inequalities hold

R1 R2 R4 RE’) R’? RS
P My M
[]:7 jg} >0, |* My M| >0, (3.3)
T * *  Ms

> <o. (3.4)

Proof. From model transformation method, we rewrite the system (2.1) in the following
system

€ = ), (3.5)
0 = —y(t) — AE(t) + WFE®) + Wi F(E(t — d(1))
e / | JEOs + Wt = (o) + utt). (3.6)

Construct a Lyapunov-Krasovskii functional candidate for the system (3.5)-(3.6) of the
form

10
Vi(t) =3 Vilt), (3.7)
where

N &i(t)

WO = COPEn 2w [ s
_N &i(t)

() = TOERO+2Y e [ fs)ds
i=1 0

i = [ eneogigngs s [ e [fféii»r LR

—dar t—d(t)
< sceiom] =+ /d e [fé(fs)))r R L)
Vi(t) = du /_Od /t;eQa(g‘t)fT(G)P4§(9)d9ds

0 t
[ [ eyt paye)asas,
—dp Jt+s
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Vs(t) = du / / 0=ty T(9) Psy(0)d0ds
dy Jt+s
+dM/ / e20=94T(9) Py (0)dbds,
dy Jt+s
0 t T
- 0)|" [Rr Rs| [£(0)
Ve (t - d 2a(0—t) |:€( :| |: :| |: dod ,
0 M/dM /Hf y@)] | * Rl ly@®)] "
0 t
Va(t) = dur / d / €200y T () Py (0)dBds,
M +s
d2 0 0 t
Va(t) = % / ) / / 2050 T () Pyg (0)dOdsdA
—anp +s
0 0 t
—Hﬁw/ // 2=y T(0) Proy(0)dfdsd),
dnm t+s
Vo(t) = —pM/ / 0= £(£(0))T Py f(£(0))dOds,
pm Jt+s

Violt) = / | U ) Prd(s)ds

with
I 000 &(t)
0000 Q 0 0 0 0 §(t—d(t))
E=0 0 0 0|, P= 82 85 gs 8“ 814 LSO = | E)ds | -
000 0 86 K0 KIZ LS E(t — da)
00 0 0 Qs Q7 Qo Qiz Qs y(t)

The time derivative of V (¢) along the trajectory of system (3.5)-(3.6) is given by

0
=> Vi(t). (3.8)
i=1
The time derivative of Vi (t) is calculated as

Vi(t) < 267 ()PE(t) + 21T (E(1))CE(L) + dafT(E(1)CE(E) + 2067 (1) Pr&(2)
—2a Vi (t). (3.9)

It is noted that (T (¢)EPy((t) is really €T (t)Q1£(t). Then the time derivative of Va(t) is
calculated as

Va(t) = 26T()QuE(t) + 26T (1)1 [ — £(8) +y(D)] + daf T (E(1))CE(t) + 2067 (8) Pot (1)

~2aV3(t)
40
= TR | |+ 2T (O]~ 1) + y(0)] + 4o T(EO)CEW)
0
+2a" (t) Po&(t) — 2aVa(t) (3.10)
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T

£(t) Q1 @ QF Qi ¢
ge-dn) | |0 @f of of| V) .
= 2 fttfd(t)f(s)ds 0 Qf g Qi 0 +267(1)Q1[ — &(t) + y(1)]
§(t—dur) 0 L Ql Qf 0
y(t) 0 h Qf Qf

+Aaf(£(0))TCE(t) + 2T (£) Paé(t) — 2aVa(t)
= 27 (0)Quy(t) + 26T (1)Q1 [ — £(t) + y(1)]

t

2T 0QF + €7 - d®)Q + ([ e(ds)"QF +€7 (¢~ dan)Ql

t—d(t)

T OQT] * [~ ) - A& + WHE®) + Wi (elt - d(0)
W [ fes))ds +Waé(e — r(0) +u(t)|
t—p(t)

P2ATOQF +€" - d)E + [ &))" Q] + €7 )l
Q] g0 —g—am)— [ o)

#2[67 Q] + €7~ d0)QF + ([ )" Qhy +" 4~ ),
t—d(t)
T OQT] x [ - ) et —du) = [ yls)as]
257 (0)Qur [ — (1) + y(1)] + 24T (€(0)CE(H) + dafT(E(1)CEW)
+2a€T (1) Po&(t) — 2aVa(t). (3.11)
Differentiating V3(t), we have

Va(t) = €T(t)PsE(t) — e 2T (¢ — dpg) Psé(t — du)

* {fé(z))r [% gj {f(gﬁ(g))}
—eeivii—ag | (G0 B R e oy)

il B R

o ] B R[] e s

Using Lemma 2.6 and Lemma 2.8, V4 (¢) is calculated as
0
V) = du / (€7 (P (t) — 207t + )PAc(t + 5) ) ds
—dr

0
+ / (T OPw) - T Pyt 9))ds —20Va(0) (313
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IN

dy / (t)Ps&(t)ds — day / 25 eT (t 4 ) Pyé(t + s)ds
dar

dm

0
+/dMy (t)Ps ()ds—/ e25yT (t + 5) Psy(t + s)ds — 2aVy(t)

—dum
t
0,7 (D PAE(t) — dage 20 / €7 () Pat(s)ds
t—dns
t
iy (8) Py (t) — -2 / €7 (3) Py (s)ds — 2aVi(t)
t—dn
d3 & () PAE(E) + dary™ (8) Psy(t)
2ad K T d P K d
_d —ZQapnr
et [ sk [ e
t—d(t) t—d(t)
—dMe_Q("dM/ §T(s)dsP4/ &(s)ds
t

—dnr t—dy
: ey 17
e 20 / [g(t - d(t»]
t=d(t) | £(t — day)
M, +M1T —MlT“rMQ 0 f(t)
—My + ME My + ME — My — MF —MT + M| |£(t—d(t))
0 —M; +M2T — M, —MQT (t—dM)

’ &y 1Mz My 0 £(t)
e / ct—dw)| |MI MMy M| |l d(r)

t=d®) | £(t —dur) 0 M Ms| | &t —dm)
—2aV4(t). (3.14)

Using Lemma 2.3 (Wirtinger-base integral inequality) and Lemma 2.4 (Peng-Park’s inte-
gral inequality), an upper bound of V5(t) can be obtained as

Vs(t)

IN

t
diry” () Pey(t) — dur e20(=VET () Psé (s)ds — 2aVis(t)

t—dps
t
+diry” (8) Pry(t) — dM/ 2 =0ET (§)Pré(s)ds — 2aVs(t)
t—dy

d3y" () Poy(t) + digy” (8) Pry(t)
_4Ps —2P; 6P,
—9PT 4P, 6P

—2ad
+e M [éT(t) ¢ (t —dur) dM ft dMgT ds]
6Py 6P{ —12P;

£(t)
X é(f — d]%) + e—20dum [gT(t) ET(t _ d(t)) fT(t B dM)]
_ﬁ ft—dM £(s)ds
(P PS8 [ e
x |PT—8T 9P, + S5+ 8T P, —S| |&(t—d®)| —2aVs(t). (3.15)
| st PPesT P ] 6 du)
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It is from Lemma 2.7 that we have

Vslt) = dM/ du { t} {RT 22] [%;]

s [ &)l

- [ [ ] ]
a [ [80

o) & ][]

< di
T

£(t) —Rg Rg 0 —-RT o
£t —d(t)) RY —R¢—RY R; RY —RT
te2odr | E(t—dur) 0 Rf  -R; 0 RY

S & )ds —Rs R; 0 —-R, O
f: dd]f;) f 0 —R;5 R5 0 —Ry

&(t)
(t—d(t))
x| SE=dum) | _2avg(). (3.16)

ft aee) §(3 )ds
t—h(t)
ft dym 5

Using Lemma 2.2 (Jensen’s mequality) that we have

t t
Vi) < BT OPw(o) - [y (edsh [ y(s)as - 2ava(e)
t—das t—dn
< diyt () Psy(t)
t t—d(t) t
7[/ yT(s)ds+/ yT(s)ds} 672adMP8[/ y(s)ds
t—d(t) t—das t—d(t)
t—d(t)
+/ y(s)ds] — 2aV4(t) (3.17)
t—dnr

By Lemma 2.5, we can obtain Vg( ) as follows

2
d M

2
Vs(t) = = (dMé“T( t)Po&(t) /td / 20 =0T () P& (N)dAdu)
2
-Hﬁ\/l(dT (t) Proy(t) /t dM/u p20(0+s— t)g (A )Plof( )d)\du) — 2aVi(t)
_ d%/[gT( )Pé. d?\/[\/fj ) / 20(0+s— t)gT( )ng( )d/\du

4
+d7MyT(t)Ploy(t) - dM/ / 20T ET (X) Pyo&(N)dAdu — 2aVs(t)
t dM u
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IN

h]v[ u

—2aVs(t)
4

+Ly (t)Proy(t) — 2e” 2OwlM/t

5 gT( Yd\duPy /

d]yj u

d4 di
= S ORE®) + =y () Poy(t)
t t t t
_e—20dnm T(\)d\duP, A)dAd
¢ /t dy Ju S ( ) ! 9~/t—dM u 5( ) !

—e2adm |:\/§dM£T(t) _ \/5 !

t—dnr

§T(U)du} Py [\/ide(t)

[ f(u)du}—?aVs(t).

t—dn

Calculating Vo (t) leads to

Volt) < pirf(E€T () PufE(t))

4 t
dTMgT(t)ng(t)—e*%‘dM / gT( YdAduPy / E(N)dMdu
t—dy Ju t

t—hy Ju

g( )dAdu

(3.18)

_o-2ap / FET(5))dsPry / F(€(s))ds — 2aVa(t).  (3.19)
t—p(t) t—p(t)

Taking the time derivative of Vio(t), we obtain

Vio(t)

IA I

€T () Praé(t) — e 20T (¢ — r(t)) Prok(t — r(t))
+rg€T (t — r(t)) Prob(t — r(t)) — 2aVip(t).

From (2.5), we obtain for any positive real constants €¢; and e,

] [ ] )=
€

£(t)
t
o) T Sl ) =0

From (2.1), we have

[E(t) — yT (1)) x [2K1€(t) + 2Kay(t)]) = 0,

ET () Po(t) — (1 —7())e 2T (t — 1 (1)) Praé(t — (1)) — 2aVio(1)

(3.20)

(3.21)

(3.22)

(3.23)

21 (&(1)) x [E(t) + AE(t) = WF(E()) = Wi f(§(t — d(1))) — Wa /tt o f(&(s))ds

—Waé(t — (1)) — u(t)] =0,
2 / |, € x 400+ A0) = W)~ Wase(e ()

W / F(E())ds — W (t — r(t)) — u(t)] = 0.
t—p(t)

(3.24)

(3.25)
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By utilization of zero equation, the following equations are true for any real constant
matrices K;, i = 3,4 with appropriate dimensions

2KsfT(£(t)) + 2K4u” ()| ¥

[—E(8) = AE() + W F(E() + Wi f(E(E = d(1))) + We /t f(&(s))ds

—p(t)
+WsE(t — r(t)) + u(t)] = 0. (3.26)

According to (3.9)-(3.26) with (2.1), it is straightforward to see that

V(t) +2aV(t) — 22T (t)u(t) < nT(t) Zn(t) (3.27)

where

—dm

. . t—d(t)
77(t) = COZ {g(t)a f(t), E(t - d(t))v f(t - dM)a f(t - r(t))ﬂ \/§/t f(u)du,
t t—d(t) t
/t £(s)ds, y(t), / £(s)ds, / y(s)ds, FED), FEE—d(B)),

—d(t) —dn —d(t)

flete—a). [ seonas, [ s, [ [ eyinan uo,
t—d(t)
/ y(s)du} .
t—dng
Since Y is negative definite and the conditions (3.2)-(3.3) hold, then
V(t) 4+ 2aV (t) < 22T (t)u(t), Vt € R, (3.28)

Therefore, system (2.1) is exponentially passive from Definition (2.1). The proof of the-
orem is complete. L]

Now the system (2.1) when u(t) = 0 and z(t) = 0 are presented. We define a new
parameter

—

> = %] irsar (3.29)
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Quyy = aPi+aPf —QITA-ATQy+ Qs+ QY +aP, +aP] + Ps+ Ry + Ry
e 2ed (M 4 MY + dpre™229 My — 4o 200 Py — e=20dm pr 4 G2 Ry

d4
7672adMR6 + 7MP9 — 2d?w672adMP10 —+ d?WP‘l’

4
Quay = P, Qua=-A4TQ5 - Qf + Qs+ Q + e M (=M + My)
+dyre 2 £, 4 e72du p_ m2ad gy pm2adu B

Quay = —ATQu +Qu2 — Qf —2e7 W Py 72208, O 5 = Q3 W3,

Que = —V2due PPy, Qup=—A"Qs+Qy—e **™R],

Qug = Q1 —QF —ATQuu+Qis +d%Rs, Qa0 =—QF,

Quiy = 2007 + QYW + Ry + Rs + AT, Q1.19) = QI Wi + 2207,
Q(1,14) = QiWr+ AT, Q(1,15) = %G_MdMPGv Q (17 = —Qi,
Qoo = —Q1—Qf +Pia+2K1, Qug =Q1—Qf; + Ko — KT,
Q(2,11) = C"+1, fz(2,14) =1,
Qss) = —QF— Qo+ QF + Qr— e720M (1 — dy) Ry + e~ 20 (M + MY — Mp— MT)
Fdpre 2 (Mg + M) — 2¢ 29 P4 g 20dum (§ 4 §Ty — ¢ 20dm (R + RT),
Qpay = —Q12—QF + Qs+ e ™M (=M + M) + dpge 2> My + e Py
_em20dug 4 g—20du

Qas = QIWs, Qurn=-Qo+ Qo +e 2MRL
Q(3,8) = —QF — Q5+ Qus, Q(3,9) = —e 2Rl 0 3.10) = —QF,
Q(3,11) = QI'w, Q (312) = QE W1 — e 22 (1 — dy) Ry,

Q(3,14) = QiWs, Q(3 17y = —Q7,

Quay = —Qf —Quz—e 20py e 20dn R, 4 e=20dm (£, — M)

+dpre” 2 My — dem20M Py — e 720 pp — e m20dM Ry,

Qus = QWi Qur =-Qu, Qus)=-Ql —Qis, Qg =e 2*MRL
Q(4,10) = _Q{% Q(4,11) = —QnW Q(4,12) = QP{1W17 Q(4,13) = —6_2adMRs7
Q(4,14) = QU W, Q(4,15) = diMe—%de& Q(4,17) = —Q1s,

Qos = —e 2 MPiy+14Pra, Qer=WiQs, Qug = Wi Qua,

Q(5,11) = —-Wy, Q(5,14) =-Wy, Q(6,6) = —e 2 Py,

Qo = —dye 2mp, — e 20dup,,

Q(7,8) = Qf, Q(7 10) = —Qf Q(7,11) = QsW,

Q(7,12) = Q§Wh, Q(7,14) = Qi Wy,

Q(7,17) = —Q, Q(8,8) = —Ql4 + Qua + Qur + Q7 + daPs + d3, Ps + d3, Py

d4
d3;Re + d3; Ps + TMP10 — 2K,
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Qs = —Qf Qs =QLW, Qg2 = QLW1, Qeis) = QLWa,
Qs = —Qfs, Qg = —due P —e 2Ry Qpg10) = —e 22 Py,
Quoin = —e 2*™Pg Quiiy=Rs+ Re—2W + p3,Pr1, Qe = —Wa,
Quig = ~Wo=WT, Quotgy = —e " MRy(1-da), Quzag) = -W,
Q(13,13) = —e 2vdM PRy Q(14,14) — W, — e~ 20Pu Py

dasas) = _;%ie_Qad”’P& Qro,16) = —€ 22 Py, Qupiny = —e 22 Py,

and the other terms are 0.

Corollary 3.2. The delayed NTNNs (2.1) with u(t) = 0 and z(t) = 0 are exponential
stability, if there exist positive definite matrices Q1, Rs, Rg Py, i € {1,2,...,12}, any ap-
propriate dimensional matrices Q., and m = 1,2, ..., 17 such that the following symmetric

linear matriz inequalities hold

R1 R2 R4 R5 R? RS
Ps My Mo
[]:7 ﬁ} >0, | % My M| >0, (3.31)
7 * *  Ms

—

Y <o. (3.32)

4. NUMERICAL EXAMPLES

Example 4.1. Consider the following NTNNs with discrete and distributed time-varying
(2.1). We consider exponential passivity of system (2.1) by using Theorem 3.1. The
system (2.1) is specified as follow:

20 -1 05 0.5 0.5
A= {0 3.5}’ W_[O.S —1]’ Wl_{o.f) 0.5]’
—02 0 —01 0 10
Wa = {0 0.2}’ W3_[0 0.1}’ I‘[o 1]’
€ = € =-—01, efze;:0.5, €1 = 0.5, € =0.6,
dt) = |cos(t)l, plt) = cos>(0.51), r(t) = sin®(0.6t), qs(t)—{oﬂ,te[m].

It can be seen that a=0.1, dp;=0.5, d4q=0.3, pn=0.1, 7ry;=0.2 and r4=0.6. By
using LMI Toolbox in MATLAB, we use (3.2)-(3.3) in Theorem 3.1. This example shows
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that the solutions of LMIs are given as follows:
35519 —0.1404

Pro= 107 Th00 39082 } . Pp=107x [96?2598116 9(.)92)%116} !
o[ ] e[, 2]
N T T
R o |

[1.0420  —0.0013]
— 8 _ 7
Poo = 107 goo1s 10430 | Tr0= 107X [

[1.0080 0.0135]
_ 8 _ 7
Pu= 10710 0135 1.0008) 0 12 =10 X[

6.7326  0.1965
0.1965 6.3537|’

1.6175 0.1818
0.1818 1.2890] "’
[ 0.9724 —0.0068]

_ 8 _ 7
B =100 gooes 12020 | f2=10 X[

—3.7603 —0.7745
—0.7745 —5.5326

8.5227  —0.2556
—0.2556  8.8240 |’

3.5334 0.2353
0.2353 3.0431|°

o889 0 ] oo oo [o8891 0
Roo = 10010 gggo1)|r 8= (o o) Fo=10% 1 g gogsso1|

(1.0165 0.1465] [1.0718 0.0270]

— 108 =10°
Qu = 10 o765 13306 @2 =10 o.0270 0.8474]

~ s [0.9700 0.0557] o
Rs = 10710 0557 1.0034]> Ha=107x

o [~1.0405  —0.2097 .
Rs = 100X 9097 —1.1793)> Ho=10" %

o [46723  —26712] o [4.6723 —2.6712
@s = 1002 h6712 30280 '@ =10 | o6712 30289 |
Qs = 107 x [1.7435 0.2196] Qo = 10° x [5.2395 0.0850]

5 - ) 6 —

0.2196  2.0436]

6 [5.2395 0.0850] e
@r = 10" 00850 47565 ©@8=107x

10.0850 4.7565| "’

[2.0029 0.9240]
0.9240  2.2569 | °

@ = w0 [T O] - [T O
on = [T AT e [0 D0,
@ = b | R ORE]L u=io s e
@ = 0 [ ] w0 1R,
L v B VS i ST N

My = 10° 1.0212 —0.0436}7 M4:107X{

|—0.0436  1.0503 —0.5579 —1.8902

—2.4579 —0.5579]
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R e MR e
- e[ G e[ )
- ] e ]
o =[G B e [ 0]
k- [ o

Example 4.2. We focus on system (2.1) with W3=0, and &(t — 7(t)) = 0, that means
neural networks system with discrete and distributed time-varying delay:

5@)::*Afﬁ)+VVf@@D*FWGf@@‘*ﬂU)W+WGJZm@%ﬂ§@»dS+U@%
z(t) = f(E(1) + f(E(t —d(t))) + u(?), (4.1)
E(t) = d(t), t € [—Tmax, 0], Tmax = max{dar, par},

with the parameters

2 0 -1 05 —0.5 0.5
4 {0 3-5} = [0.5 —-1} W= { 0.5 0.5] ’
W2 = |:(2) 305:| , 61_ = 62_ = —017 Eii_ = 63— = 05’
: 2
t t
ford(t) = 0.1+ % o(t) = 03+ @

In this example, we interested in the exponential passivity for system (4.1). Table 1
provides the calculated allowable upper bound dj;.

TABLE 1. Calculated delay upper bound dj; for fixed pp; = 0.7 and
different dg and « of Example 4.2.

dg a=01 a=05 a=07 a=09
0 0.1023 0.0050 0.2121  1.2020
0.1 1.0021 0.0211 1.0010 1.1010
0.3 0.0022 0.0201 0.0210 1.0201
0.5 0.0030 0.1110 0.1401  0.0230

Example 4.3. Consider the system (2.1) with W5 = W3=0 and u(t) = 2(t) = 0, that
means neural networks system with time-varying delay:
{ (1) = —AE(t) + WF(E(L) + Waf(E(t — (1)), w2
£(t) = ¢(t), t € [—du, 0],
with the parameters

2 0 ~-1 05 —0.5 0.5
A‘[O%ym_b51y%_“5aJ

€ = € =0, € =€ =1.
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Table 2 lists the comparison of exponential convergence rates of system (4.2) by different
methods. It is clear that our results are superior to those in [33-30].

TABLE 2. Allowable exponential convergence rate « for various dg and
dmym = 1 of Example 4.3.

Method dg =08 d;=0.9 Unknown dg4

Wu (2008) [33]  0.8643  0.8344 0.8169
Ji (2014) [31]  0.8696  0.8354 0.8169
Ji (2015) [35]  0.8784  0.8484 0.8217
He (2016) [36]  0.8841  0.8570 0.8260
Theorem 3.1 1.0214  1.2010 1.1011

5. CONCLUSIONS

In this paper, we propose the delay-dependent exponentially passive conditions for
NTNNs with discrete and distributed time-varying delays by using descriptor model
transformation, new class of augmented Lyapunov-Krasovskii functional, Leibniz-Newton
formula, improved integral inequalities, utilization of zero equation, Wirtinger-based in-
tegral inequality, and Peng-Park’s integral inequality. Then, we represented the delay-
dependent exponential passivity criterion for NTNNs with time-varying delays. Moreover,
we obtained exponential stability criterion for considered system. Finally, three numerical
results verified the improvement and effectiveness of the proposed exponential passivity
criteria.
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