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Abstract In this paper, we solve the following additive s-functional inequality
£((k+ D)z —y) = f(kx —y) — f(@)] < [Is(f(z +y) — flx) — F)Il (0.1)
and

1f(z+y) = f@) = fFI < s(f((k+ Dz —y) - fkz —y) — f(2))] (0.2)

where k is an integer greater than 1 and s is acomplex number with |s| < 1. Furthermore, we prove the

Hyers-Ulam stability of the additive s-functional inequalities (0.1) and (0.2) in complex Banach spaces.
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1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. The functional equation f(z + y) =
f(@) + f(y) is called the Cauchy equation. In particular, every solution of the Cauchy
equation is said to be an additive mapping. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by
Gavruta [5] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach.
Gilanyi [6] showed that if f satisfies the functional inequality

12f(x) +2f(y) = fz =) < |[f (= + )l (L.1)
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then f satisfies the Jordan-von Neumann functional equation

2f(x) +2f(y) = f(z +y) + f(z —y).
Fechner [7] and Gildnyi [8] proved the Hyers-Ulam stability of the functional inequality
(1.1).

Park [9, 10] defined additive p-functional inequalities and proved the Hyers-Ulam sta-
bility of the additive p-functional inequalities in Banach spaces and non-Archimedean
Banach spaces. The stability problems of various functional equations and functional
inequalities have been extensively investigated by a number of authors (see [11-18]).

This paper is organized as follows: In Section 2, we solve the additive s-functional
inequality (0.1) and prove the Hyers-Ulam stability of the additive s-functional inequality
(0.1) in complex Banach spaces. In Section 3, we solve the additive s-functional inequality
(0.2) and prove the Hyers-Ulam stability of the additive s-functional inequality (0.2) in
complex Banach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is a real
or complex normed space with norm || - || and that Y is a complex Banach space with
norm || - ||.

2. ADDITIVE s-FUNCTIONAL INEQUALITY (0.1)

Throughout this section, assume that s is a fixed complex number with |s| < 1.
In this section, we solve and investigate the additive s-functional inequality (0.1) in
complex Banach spaces.

Lemma 2.1. If k € N and a mapping f : G — Y satisfies

1f((k+ Dz —y) = f(kx —y) = f(2)l| < [[s(f(z+y) — f(=) = F»)I (2.1)
forall x,y € G, then f: G =Y is additive.
Proof. Assume that f: G — Y satisfies (2.1).
Letting = 0 and y = 0 in (2.1), we get ||f(0)] <
|s| < 1.
Letting = p and y = kp — ¢ in (2.1), we get
1f(p+a) = flg) = FDI < lls (f((k+1)p—q) — f(p) — f(kp — q))l (2.2)

for all p,q € G.
It follows from (2.1) and (2.2) that

1f(@+y) = fly) = f@)ll < ls(F((k+ 1)z —y) = f(kz —y) — f(2))]
< s*(flz+y) = fy) = f@))]
and so f(z+y) = f(y) + f(z) for all z,y € G. "

Is(f(0))|| and so f(0) = 0, since

We prove the Hyers-Ulam stability of the additive s-functional inequality (2.1) in com-
plex Banach spaces.

Theorem 2.2. Letr > 1 and 0 be nonnegative real numbers, k be an integer greater than
1Tand f: X =Y be a mapping such that

[F((k+ Dz —y) = f(ke —y) — f(2)]] (2.3)
< ls(f (@ +y) = f@) = F@)I + 0 l=l" +[lyll")
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for all x,y € X. Then there exists a unique additive mapping h : X — Y such that

92? 11 (t"+1)

1f(2) = h(z)| < WH z||” (2.4)
forallx € X.
Proof. Letting z =y =0 in (2.3), we get ||£(0)| < [[sf(0)]]. So f(0) =
Letting y = 0 in (2.3), we get
1F((k + D) = f(kx) = fz)]] < 0fl=[]" (2.5)
for all x € X.
For t € N, letting y = tx in (2.3), we get
1f((k =t + 1)) = f((k = t)x) = fz)] (2.6)
< ls(F((E+ D) — f(tz) — f@)]| + 00" + D)=
for all x,y € X.
From (2.5) and (2.6), we get
lef —t+ 1)) = f((k—t)x) = fz)] (2.7)

k—1
<ZH ((t+D)z) = fltz) — f@)]| + 00 (" + 1)]|")
t=1

for all x € X. By (2.6) and (2.7) and the triangle inequality, we get
(L= s f (k) = kf (@)

k—1
= (L) | D (f(t+D)z) = fte) — f(2))

k—1
< Z(l — DI+ D) — f(t) = ()]l

<ZII (t+ 1)z II—ZII ((t+1)z) = f(tz) — f(2))]]
k—1

<O (" +1)|=]")
t=1

for all z € X, since

k—1
ZHf —t+1)z) - f((k—t)x) = f(@)l| = Y _[IF((t+ D)z) = f(tz) — f(2)].
t=1
Since |s| < 1, the mapping f satisfies the inequality

o) (7 + D)
1 s

1f (kz) — kf(z)]] <
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forall z € X. So
k—1
x —, "+ 1)
— — < Lut=1 \" ' “/ A .
|7 =t ()| = St el 28)
for all x € X. Thus

J#ts () =71 ()l

IA

m—1
S o (2) -4 (50|

k—1 m—1 :
Ml ey i g
< S Y gt (2.9)

J=l

for all nonnegative integers m,! with m > [ and all z € X. It follows from (2.9) that
the sequence {k” f (k%)} is a Cauchy sequence for all x € X. Since Y is complete, the
sequence {k”f (k%)} converges. So it is possible to define the mapping h: X — Y as

— 1im kf (2
be) = Jim 11 (57)
for all x € X. Also, letting [ = 0 and passing to the limit m — oo in (2.9), we get (2.4).
It follows from (2.3) that
[((k + Dz +y) = h(kz —y) — h(z)]|

= () o (55 - G|
< lim k" s{f (x,:;y> _f(k%> _f(ky”)}H

+Iim gl + ) = [sllhGe -+ ) — he) b))
for all x,y € X. So
[h((k + Dz +y) — h(kz —y) — h(@)]| < |s||h(z +y) — h(z) = h(y)]]

for all z,y € X. By Lemma 2.1, the mapping h : X — Y is additive.
Now, let u: X — Y be another additive mapping satisfying (2.4). Then we have

@) —u@l = K n () ~u ()]

x x x x
e ([l ) =1 G+l ) =+ ())
2k 0% ) (¢ + 1)
(L= shRmr (kT — k)
which tends to 0 when n — oo for all z € X. So it means that h(z) = u(z) for all z € X.

This proves the uniqueness of h. Thus the mapping A : X — Y is a unique additive
mapping satisfying (2.4). n

IN

[l]]”

Theorem 2.3. Letr < 1 and 6 be nonnegative real numbers, k be an integer greater than
land f: X =Y be a mapping satisfying f(0) = 0 and (2.3). Then there exists a unique
additive mapping h : X — 'Y such that

O s 7D

1f(x) = k()] < 0Dk =) (2.10)
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forallxz € X.
Proof. Tt follows from (2.8) that

e B

0=l

forall z € X. So

1 1 m=ly ‘ ) |
‘ ﬁf (Kz) - Wf(kmx) < Z:l Ef (K z) — Wf Canry
=
k=lgr 1y ed g
= W > 77 Ol (2.11)
=i

for all nonnegative integers m,l with m > [ and all z € X. It follows from (2.11) that
the sequence {k%f (k"x)} is a Cauchy sequence for all z € X. Since Y is complete, the
sequence {kl f (k”x)} converges. So it is possible to define the mapping h: X — Y as

h(z) = lim — f (k")

n—oo kM
for all x € X. Also, letting [ = 0 and passing to the limit m — oo in (2.11), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.2. [

Remark 2.4. If s is a real number such that —1 < s <1 and Y is a real Banach space,
then all the assertions in this section remain valid.

3. ADDITIVE s-FUNCTIONAL INEQUALITY (0.2)

Throughout this section, assume that s is a fixed complex number with |s| < 1.
In this section, we solve and investigate the additive s-functional inequality (0.2) in
complex Banach spaces.

Lemma 3.1. Ifk € N and a mapping f : G = Y satisfies

1f(@+y) = f(@) = fFI < Is(f((k+ Dz —y) = f(kz —y) — f(2))]| (3.1)
forall xz,y € G, then f: G =Y is additive.
Proof. Assume that f: G — Y satisfies (3.1).
Letting = 0 and y = 0 in (3.1), we get || f(0)|| < ||s(f(0))]| and so f(0) = 0, since
|s| < 1.
Letting x = p and y = kp — ¢ in (3.1), we get
1f((k+1)p—q) = f(kp—q) = f)| < l[s(f(p+ ) — f(p) = F(@))]l (3.2)

for all p,q € G.
It follows from (3.1) and (3.2) that

Ifp+a) = flp) = f@I < ls(f((k+1)p—q)— flkp—q)— f(P))Il
< IS(flo+a) — fp) = fF@)ll
and so f(zx +y) = f(z) + f(y) for all z,y € G. Thus f: G — Y is additive. n

A
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Theorem 3.2. Letr > 1 and 0 be nonnegative real numbers, k be an integer greater than
lTand f: X =Y be a mapping such that

[f(z+y) = flz)— )l (3:3)
<|s(f((k+ Dz —y) — flkz —y) — f@) + 0 (lzl" + [ly]")
for all x,y € X. Then there exists a unique additive mapping h : X — Y such that

z) — h(z 0, (1)
1f (@) = h(z)] < S =k )|| x| (3.4)

forallz € X.

Proof. Letting x =y =0, in (3.3), we get || f(0)|| < ||sf(0)]]. So f(0) =
Letting y = kx in (3.3), we get

1f((k + 1)z) — f(kz) — f(x)]] < Olk]"|[=]]" (3.5)
for all z € X.
For t € N, letting y = tx in (3.3), we get
1f((t+ D)z) — f(tz) — f(2)]] (3.6)

< ls(F((k =t 4+ 1)z) = f((k = t)x) = f2) || + 60" + D)j=[|")

for all x,y € X.
From (3.5) and (3.6), we get

k-1

Do+ D)) = f(t) - f(2)] (3.7)
k—1 k—1

SZIIS(f((k—Hl) )= f((k=t)z) — f(=z ))H+9(Z(F+l)llmllr)

for all z € X. By (3.6) and (3.7) and the triangle inequality, (Summation Order) and the
triangle inequality of norm ||-||, we get

(1 = [sDllf (kz) = kf(@)]]

k—1

= (1= |sD | D_(f((t+ D)a) = f(tx) - f(2)) ’

k—1

<Y (= [sDI(f((E+ 1)) = f(tx) = f(=2))]

t=1

k—1 k—1
<D NS+ D) = flte) = f@)] = D _lls(F(t+ D) = f(tz) = f(2))]

t_k—l -
<O (" + =]

for all z € X, since

k—1
Do lls(f((k —t+1)z) — f((k—¢ )|l —ZII ((t+ D) = f(tx) = ()]l
t=1
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Since |s| < 1, the mapping f satisfies the inequality

(k) — k()] < 20 @+ Dl
- L]

forall z € X. So

oy (2)] < B iy

for all x € X. Thus

J#s Ga) =1 (5

IN

m—1
Z s (5) =+ (=)

LT 4 1) /
< 0|z .
S ka & (3:8)

for all nonnegative integers m,! with m > [ and all z € X. It follows from (3.8) that
the sequence {k” f (k%)} is a Cauchy sequence for all x € X. Since Y is complete, the
sequence {k”f (k%)} converges. So it is possible to define the mapping h: X — Y as

o 1 ()

for all x € X. Also, letting I = 0 and passing to the limit m — oo in (3.8), we get (3.4).
It follows from (3.3) that

h(y)

1

kn

1h(z +y) — h(z) -
{ (= )= (o) |+ i, ottt i)
<(k+ )z+y) f(kxk:y) f(kin)
= |8|||h((k + Dz +y) — h(kz —y) — h(2)]|

for all x,y € X. So
17z +y) = h(z) = h(y)[| < |s||A((k + 1)z +y) — h(kx — y) — h(z)]]

for all z,y € X. By Lemma 3.1, the mapping h : X — Y is additive.
Now, let u: X — Y be another additive mapping satisfying (3.4). Then we have

Ih@) —u@l = K n () ~u ()]

n x x x x
(e Gr) = Gl + e () =7 ()l
2k” O 41y,
< Ao |k"T(kT— )II il
which tends to 0 when n — oo for all x € X. So it means that h(z) = u(z) for all z € X.

This proves the uniqueness of h. Thus the mapping h : X — Y is a unique additive
mapping satisfying (3.4). m

= lim k"
n— oo

| N

IN

Remark 3.3. If s is a real number such that —1 < s < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.
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