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Abstract In this paper, we solve the following additive s-functional inequality

‖f((k + 1)x− y)− f(kx− y)− f(x)‖ ≤ ‖s(f(x+ y)− f(x)− f(y))‖ (0.1)

and

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖s(f((k + 1)x− y)− f(kx− y)− f(x))‖ (0.2)

where k is an integer greater than 1 and s is acomplex number with |s| < 1. Furthermore, we prove the

Hyers-Ulam stability of the additive s-functional inequalities (0.1) and (0.2) in complex Banach spaces.
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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. The functional equation f(x + y) =
f(x) + f(y) is called the Cauchy equation. In particular, every solution of the Cauchy
equation is said to be an additive mapping. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by
Găvruta [5] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach.

Gilányi [6] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x+ y)‖ (1.1)
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then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x+ y) + f(x− y).

Fechner [7] and Gilányi [8] proved the Hyers-Ulam stability of the functional inequality
(1.1).

Park [9, 10] defined additive ρ-functional inequalities and proved the Hyers-Ulam sta-
bility of the additive ρ-functional inequalities in Banach spaces and non-Archimedean
Banach spaces. The stability problems of various functional equations and functional
inequalities have been extensively investigated by a number of authors (see [11–18]).

This paper is organized as follows: In Section 2, we solve the additive s-functional
inequality (0.1) and prove the Hyers-Ulam stability of the additive s-functional inequality
(0.1) in complex Banach spaces. In Section 3, we solve the additive s-functional inequality
(0.2) and prove the Hyers-Ulam stability of the additive s-functional inequality (0.2) in
complex Banach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is a real
or complex normed space with norm ‖ · ‖ and that Y is a complex Banach space with
norm ‖ · ‖.

2. Additive s-Functional Inequality (0.1)

Throughout this section, assume that s is a fixed complex number with |s| < 1.
In this section, we solve and investigate the additive s-functional inequality (0.1) in

complex Banach spaces.

Lemma 2.1. If k ∈ N and a mapping f : G→ Y satisfies

‖f((k + 1)x− y)− f(kx− y)− f(x)‖ ≤ ‖s(f(x+ y)− f(x)− f(y))‖ (2.1)

for all x, y ∈ G, then f : G→ Y is additive.

Proof. Assume that f : G→ Y satisfies (2.1).
Letting x = 0 and y = 0 in (2.1), we get ‖f(0)‖ ≤ ‖s(f(0))‖ and so f(0) = 0, since

|s| < 1.
Letting x = p and y = kp− q in (2.1), we get

‖f(p+ q)− f(q)− f(p)‖ ≤ ‖s (f((k + 1)p− q)− f(p)− f(kp− q))‖ (2.2)

for all p, q ∈ G.
It follows from (2.1) and (2.2) that

‖f(x+ y)− f(y)− f(x)‖ ≤ ‖s(f((k + 1)x− y)− f(kx− y)− f(x))‖
≤ ‖s2(f(x+ y)− f(y)− f(x))‖

and so f(x+ y) = f(y) + f(x) for all x, y ∈ G.

We prove the Hyers-Ulam stability of the additive s-functional inequality (2.1) in com-
plex Banach spaces.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, k be an integer greater than
1 and f : X → Y be a mapping such that

‖f((k + 1)x− y)− f(kx− y)− f(x)‖ (2.3)

≤ ‖s(f(x+ y)− f(x)− f(y))‖+ θ (‖x‖r + ‖y‖r)
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for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤
θ
∑k−1

t=1 (tr + 1)

(1− |s|)(kr − k)
‖x‖r (2.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.3), we get ‖f(0)‖ ≤ ‖sf(0)‖. So f(0) = 0.
Letting y = 0 in (2.3), we get

‖f((k + 1)x)− f(kx)− f(x)‖ ≤ θ‖x‖r (2.5)

for all x ∈ X.
For t ∈ N, letting y = tx in (2.3), we get

‖f((k − t+ 1)x)− f((k − t)x)− f(x)‖ (2.6)

≤ ‖s(f((t+ 1)x)− f(tx)− f(x))‖+ θ((tr + 1)‖x‖r)

for all x, y ∈ X.
From (2.5) and (2.6), we get

k−1∑
t=1

‖f((k − t+ 1)x)− f((k − t)x)− f(x)‖ (2.7)

≤
k−1∑
t=1

‖s(f((t+ 1)x)− f(tx)− f(x))‖+ θ(

k−1∑
t=1

(tr + 1)‖x‖r)

for all x ∈ X. By (2.6) and (2.7) and the triangle inequality, we get

(1− |s|)‖f(kx)− kf(x)‖

= (1− |s|)

∥∥∥∥∥
k−1∑
t=1

(f((t+ 1)x)− f(tx)− f(x))

∥∥∥∥∥
≤

k−1∑
t=1

(1− |s|)‖(f((t+ 1)x)− f(tx)− f(x))‖

≤
k−1∑
t=1

‖(f((t+ 1)x)− f(tx)− f(x))‖ −
k∑

t=1

‖s(f((t+ 1)x)− f(tx)− f(x))‖

≤ θ(
k−1∑
t=1

(tr + 1)‖x‖r)

for all x ∈ X, since

k−1∑
t=1

‖f((k − t+ 1)x)− f((k − t)x)− f(x)‖ =

k−1∑
t=1

‖f((t+ 1)x)− f(tx)− f(x)‖.

Since |s| < 1, the mapping f satisfies the inequality

‖f(kx)− kf(x)‖ ≤
θ(
∑k−1

t=1 (tr + 1)‖x‖r)

1− |s|
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for all x ∈ X. So ∥∥∥f(x)− kf
(x
k

)∥∥∥ ≤ ∑k−1
t=1 (tr + 1)

(1− |s|)kr
θ‖x‖r (2.8)

for all x ∈ X. Thus∥∥∥klf ( x
kl

)
− kmf

( x

km

)∥∥∥ ≤
m−1∑
j=l

∥∥∥kjf ( x
kj

)
− kj+1f

( x

kj+1

)∥∥∥
≤

∑k−1
t=1 (tr + 1)

(1− |s|)kr
m−1∑
j=l

kj

krj
θ‖x‖r (2.9)

for all nonnegative integers m, l with m > l and all x ∈ X. It follows from (2.9) that
the sequence

{
knf

(
x
kn

)}
is a Cauchy sequence for all x ∈ X. Since Y is complete, the

sequence
{
knf

(
x
kn

)}
converges. So it is possible to define the mapping h : X → Y as

h(x) := lim
n→∞

knf
( x
kn

)
for all x ∈ X. Also, letting l = 0 and passing to the limit m→∞ in (2.9), we get (2.4).
It follows from (2.3) that

‖h((k + 1)x+ y)− h(kx− y)− h(x)‖

= lim
n→∞

kn
∥∥∥∥f ( (k + 1)x+ y

kn

)
− f

(
kx+ y

kn

)
− f

( x
kn

)∥∥∥∥
≤ lim

n→∞
kn
∥∥∥∥s{f (x+ y

kn

)
− f

( x
kn

)
− f

( y
kn

)}∥∥∥∥
+ lim

n→∞

kn

knr
θ(‖x‖r + ‖y‖r) = |s|‖h(x+ y)− h(x)− h(y)‖

for all x, y ∈ X. So

‖h((k + 1)x+ y)− h(kx− y)− h(x)‖ ≤ |s|‖h(x+ y)− h(x)− h(y)‖
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is additive.

Now, let u : X → Y be another additive mapping satisfying (2.4). Then we have

‖h(x)− u(x)‖ = kn
∥∥∥h( x

kn

)
− u

( x
kn

)∥∥∥
≤ kn

(∥∥∥h( x
kn

)
− f

( x
kn

)∥∥∥+
∥∥∥u( x

kn

)
− f

( x
kn

)∥∥∥)
≤

2kn · θ
∑k−1

t=1 (tr + 1)

(1− |s|)knr(kr − k)
‖x‖r

which tends to 0 when n→∞ for all x ∈ X. So it means that h(x) = u(x) for all x ∈ X.
This proves the uniqueness of h. Thus the mapping h : X → Y is a unique additive
mapping satisfying (2.4).

Theorem 2.3. Let r < 1 and θ be nonnegative real numbers, k be an integer greater than
1 and f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exists a unique
additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤
θ
∑k−1

t=1 (tr + 1)

(1− |s|)(k − kr)
‖x‖r (2.10)
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for all x ∈ X.

Proof. It follows from (2.8) that∥∥∥∥f(kx)

k
− f (x)

∥∥∥∥ ≤ ∑k−1
t=1 (tr + 1)

(1− |s|)k
θ‖x‖r

for all x ∈ X. So∥∥∥∥ 1

kl
f
(
klx
)
− 1

km
f (kmx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

kj
f
(
kjx
)
− 1

kj+1
f
(
kj+1x

)∥∥∥∥
≤

∑k−1
t=1 (tr + 1)

(1− |s|)k

m−1∑
j=l

kjr

kj
θ‖x‖r (2.11)

for all nonnegative integers m, l with m > l and all x ∈ X. It follows from (2.11) that
the sequence

{
1
kn f (knx)

}
is a Cauchy sequence for all x ∈ X. Since Y is complete, the

sequence
{

1
kn f (knx)

}
converges. So it is possible to define the mapping h : X → Y as

h(x) := lim
n→∞

1

kn
f (knx)

for all x ∈ X. Also, letting l = 0 and passing to the limit m→∞ in (2.11), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.2.

Remark 2.4. If s is a real number such that −1 < s < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.

3. Additive s-Functional Inequality (0.2)

Throughout this section, assume that s is a fixed complex number with |s| < 1.
In this section, we solve and investigate the additive s-functional inequality (0.2) in

complex Banach spaces.

Lemma 3.1. If k ∈ N and a mapping f : G→ Y satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖s(f((k + 1)x− y)− f(kx− y)− f(x))‖ (3.1)

for all x, y ∈ G, then f : G→ Y is additive.

Proof. Assume that f : G→ Y satisfies (3.1).
Letting x = 0 and y = 0 in (3.1), we get ‖f(0)‖ ≤ ‖s(f(0))‖ and so f(0) = 0, since

|s| < 1.
Letting x = p and y = kp− q in (3.1), we get

‖f((k + 1)p− q)− f(kp− q)− f(p)‖ ≤ ‖s(f(p+ q)− f(p)− f(q))‖ (3.2)

for all p, q ∈ G.
It follows from (3.1) and (3.2) that

‖f(p+ q)− f(p)− f(q)‖ ≤ ‖s(f((k + 1)p− q)− f(kp− q)− f(p))‖
≤ ‖s2(f(p+ q)− f(p)− f(q))‖

and so f(x+ y) = f(x) + f(y) for all x, y ∈ G. Thus f : G→ Y is additive.
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Theorem 3.2. Let r > 1 and θ be nonnegative real numbers, k be an integer greater than
1 and f : X → Y be a mapping such that

‖f(x+ y)− f(x)− f(y)‖ (3.3)

≤ ‖s(f((k + 1)x− y)− f(kx− y)− f(x))‖+ θ (‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤
θ
∑k−1

t=1 (tr + 1)

(1− |s|)(kr − k)
‖x‖r (3.4)

for all x ∈ X.

Proof. Letting x = y = 0, in (3.3), we get ‖f(0)‖ ≤ ‖sf(0)‖. So f(0) = 0.
Letting y = kx in (3.3), we get

‖f((k + 1)x)− f(kx)− f(x)‖ ≤ θ|k|r‖x‖r (3.5)

for all x ∈ X.
For t ∈ N, letting y = tx in (3.3), we get

‖f((t+ 1)x)− f(tx)− f(x)‖ (3.6)

≤ ‖s(f((k − t+ 1)x)− f((k − t)x)− f(x))‖+ θ((tr + 1)‖x‖r)

for all x, y ∈ X.
From (3.5) and (3.6), we get

k−1∑
t=1

‖f((t+ 1)x)− f(tx)− f(x)‖ (3.7)

≤
k−1∑
t=1

‖s(f((k − t+ 1)x)− f((k − t)x)− f(x))‖+ θ(

k−1∑
t=1

(tr + 1)‖x‖r)

for all x ∈ X. By (3.6) and (3.7) and the triangle inequality, (Summation Order) and the
triangle inequality of norm ‖·‖, we get

(1− |s|)‖f(kx)− kf(x)‖

= (1− |s|)

∥∥∥∥∥
k−1∑
t=1

(f((t+ 1)x)− f(tx)− f(x))

∥∥∥∥∥
≤

k−1∑
t=1

(1− |s|)‖(f((t+ 1)x)− f(tx)− f(x))‖

≤
k−1∑
t=1

‖(f((t+ 1)x)− f(tx)− f(x))‖ −
k−1∑
t=1

‖s(f((t+ 1)x)− f(tx)− f(x))‖

≤ θ(
k−1∑
t=1

(tr + 1)‖x‖r)

for all x ∈ X, since

k−1∑
t=1

‖s(f((k − t+ 1)x)− f((k − t)x)− f(x))‖ =

k−1∑
t=1

‖s(f((t+ 1)x)− f(tx)− f(x))‖.
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Since |s| < 1, the mapping f satisfies the inequality

‖f(kx)− kf(x)‖ ≤
θ(
∑k−1

t=1 (tr + 1)‖x‖r)

1− |s|
for all x ∈ X. So ∥∥∥f(x)− kf

(x
k

)∥∥∥ ≤ ∑k−1
t=1 (tr + 1)

(1− |s|)kr
θ‖x‖r

for all x ∈ X. Thus∥∥∥klf ( x
kl

)
− kmf

( x

km

)∥∥∥ ≤
m−1∑
j=l

∥∥∥kjf ( x
kj

)
− kj+1f

( x

kj+1

)∥∥∥
≤

∑k−1
t=1 (tr + 1)

(1− |s|)kr
m−1∑
j=l

kj

krj
θ‖x‖r (3.8)

for all nonnegative integers m, l with m > l and all x ∈ X. It follows from (3.8) that
the sequence

{
knf

(
x
kn

)}
is a Cauchy sequence for all x ∈ X. Since Y is complete, the

sequence
{
knf

(
x
kn

)}
converges. So it is possible to define the mapping h : X → Y as

h(x) := lim
n→∞

knf
( x
kn

)
for all x ∈ X. Also, letting l = 0 and passing to the limit m→∞ in (3.8), we get (3.4).
It follows from (3.3) that

‖h(x+ y)− h(x)− h(y)‖

= lim
n→∞

kn
∥∥∥∥{f (x+ y

kn

)
− f

( x
kn

)
− f

( y
kn

)}∥∥∥∥+ lim
n→∞

kn

knr
θ(‖x‖r + ‖y‖r)

≤ lim
n→∞

kn|s|
∥∥∥∥f ( (k + 1)x+ y

kn

)
− f

(
kx+ y

kn

)
− f

( x
kn

)∥∥∥∥
= |s|‖h((k + 1)x+ y)− h(kx− y)− h(x)‖

for all x, y ∈ X. So

‖h(x+ y)− h(x)− h(y)‖ ≤ |s|‖h((k + 1)x+ y)− h(kx− y)− h(x)‖
for all x, y ∈ X. By Lemma 3.1, the mapping h : X → Y is additive.

Now, let u : X → Y be another additive mapping satisfying (3.4). Then we have

‖h(x)− u(x)‖ = kn
∥∥∥h( x

kn

)
− u

( x
kn

)∥∥∥
≤ kn

(∥∥∥h( x
kn

)
− f

( x
kn

)∥∥∥+
∥∥∥u( x

kn

)
− f

( x
kn

)∥∥∥)
≤

2kn · θ
∑k−1

t=1 (tr + 1)

(1− |s|)knr(kr − k)
‖x‖r

which tends to 0 when n→∞ for all x ∈ X. So it means that h(x) = u(x) for all x ∈ X.
This proves the uniqueness of h. Thus the mapping h : X → Y is a unique additive
mapping satisfying (3.4).

Remark 3.3. If s is a real number such that −1 < s < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.
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