Thai Journal of Mathematics Volume 18 Number 3 (2020)
Pages 871-878
http://thaijmath.in.cmu.ac.th

Dedicated to Prof. Suthep Suantai on the occasion of his $60^{t h}$ anniversary

Additive s-Functional Inequalities

Seongbin Jeon ${ }^{1}$, Sunghee Park ${ }^{1}$, Hojin Yang ${ }^{1}$, Kijoon Shin ${ }^{1}$ and Choonkil Park ${ }^{2, *}$
${ }^{1}$ Mathematics Branch, Seoul Science High School, Seoul 03066, Korea
e-mail : jeusson@naver.com (S. Jeon); sungheeboy@naver.com (S. Park); jinyang2676@naver.com (H. Yang); benedict02@naver.com (K. Shin)
${ }^{2}$ Department of Mathematics, Research Institute for Natural Sciences Hanyang University, Seoul 04763, Korea
e-mail : baak@hanyang.ac.kr (C. Park)

Abstract In this paper, we solve the following additive s-functional inequality

$$
\begin{equation*}
\|f((k+1) x-y)-f(k x-y)-f(x)\| \leq\|s(f(x+y)-f(x)-f(y))\| \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq\|s(f((k+1) x-y)-f(k x-y)-f(x))\| \tag{0.2}
\end{equation*}
$$

where k is an integer greater than 1 and s is acomplex number with $|s|<1$. Furthermore, we prove the Hyers-Ulam stability of the additive s-functional inequalities (0.1) and (0.2) in complex Banach spaces.

MSC: 39B62; 39B72; 39B52
Keywords: Hyers-Ulam stability; Banach space; additive s-functional inequality

Submission date: 03.02.2020 / Acceptance date: 23.06.2020

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. The functional equation $f(x+y)=$ $f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

Gilányi [6] showed that if f satisfies the functional inequality

$$
\begin{equation*}
\|2 f(x)+2 f(y)-f(x-y)\| \leq\|f(x+y)\| \tag{1.1}
\end{equation*}
$$

[^0]then f satisfies the Jordan-von Neumann functional equation
$$
2 f(x)+2 f(y)=f(x+y)+f(x-y) .
$$

Fechner [7] and Gilányi [8] proved the Hyers-Ulam stability of the functional inequality (1.1).

Park $[9,10]$ defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability problems of various functional equations and functional inequalities have been extensively investigated by a number of authors (see [11-18]).

This paper is organized as follows: In Section 2, we solve the additive s-functional inequality (0.1) and prove the Hyers-Ulam stability of the additive s-functional inequality (0.1) in complex Banach spaces. In Section 3, we solve the additive s-functional inequality (0.2) and prove the Hyers-Ulam stability of the additive s-functional inequality (0.2) in complex Banach spaces.

Throughout this paper, let G be a 2 -divisible abelian group. Assume that X is a real or complex normed space with norm $\|\cdot\|$ and that Y is a complex Banach space with norm $\|\cdot\|$.

2. Additive s-Functional Inequality (0.1)

Throughout this section, assume that s is a fixed complex number with $|s|<1$.
In this section, we solve and investigate the additive s-functional inequality (0.1) in complex Banach spaces.
Lemma 2.1. If $k \in \mathbb{N}$ and a mapping $f: G \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f((k+1) x-y)-f(k x-y)-f(x)\| \leq\|s(f(x+y)-f(x)-f(y))\| \tag{2.1}
\end{equation*}
$$

for all $x, y \in G$, then $f: G \rightarrow Y$ is additive.
Proof. Assume that $f: G \rightarrow Y$ satisfies (2.1).
Letting $x=0$ and $y=0$ in (2.1), we get $\|f(0)\| \leq\|s(f(0))\|$ and so $f(0)=0$, since $|s|<1$.

Letting $x=p$ and $y=k p-q$ in (2.1), we get

$$
\begin{equation*}
\|f(p+q)-f(q)-f(p)\| \leq\|s(f((k+1) p-q)-f(p)-f(k p-q))\| \tag{2.2}
\end{equation*}
$$

for all $p, q \in G$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
\|f(x+y)-f(y)-f(x)\| & \leq\|s(f((k+1) x-y)-f(k x-y)-f(x))\| \\
& \leq\left\|s^{2}(f(x+y)-f(y)-f(x))\right\|
\end{aligned}
$$

and so $f(x+y)=f(y)+f(x)$ for all $x, y \in G$.
We prove the Hyers-Ulam stability of the additive s-functional inequality (2.1) in complex Banach spaces.

Theorem 2.2. Let $r>1$ and θ be nonnegative real numbers, k be an integer greater than 1 and $f: X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \|f((k+1) x-y)-f(k x-y)-f(x)\| \tag{2.3}\\
& \leq\|s(f(x+y)-f(x)-f(y))\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{\theta \sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|)\left(k^{r}-k\right)}\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=0$ in (2.3), we get $\|f(0)\| \leq\|s f(0)\|$. So $f(0)=0$.
Letting $y=0$ in (2.3), we get

$$
\begin{equation*}
\|f((k+1) x)-f(k x)-f(x)\| \leq \theta\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$.
For $t \in \mathbb{N}$, letting $y=t x$ in (2.3), we get

$$
\begin{align*}
& \|f((k-t+1) x)-f((k-t) x)-f(x)\| \tag{2.6}\\
& \leq\|s(f((t+1) x)-f(t x)-f(x))\|+\theta\left(\left(t^{r}+1\right)\|x\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$.
From (2.5) and (2.6), we get

$$
\begin{align*}
& \sum_{t=1}^{k-1}\|f((k-t+1) x)-f((k-t) x)-f(x)\| \tag{2.7}\\
& \leq \sum_{t=1}^{k-1}\|s(f((t+1) x)-f(t x)-f(x))\|+\theta\left(\sum_{t=1}^{k-1}\left(t^{r}+1\right)\|x\|^{r}\right)
\end{align*}
$$

for all $x \in X$. By (2.6) and (2.7) and the triangle inequality, we get

$$
\begin{aligned}
& (1-|s|)\|f(k x)-k f(x)\| \\
& =(1-|s|)\left\|\sum_{t=1}^{k-1}(f((t+1) x)-f(t x)-f(x))\right\| \\
& \leq \sum_{t=1}^{k-1}(1-|s|)\|(f((t+1) x)-f(t x)-f(x))\| \\
& \leq \sum_{t=1}^{k-1}\|(f((t+1) x)-f(t x)-f(x))\|-\sum_{t=1}^{k}\|s(f((t+1) x)-f(t x)-f(x))\| \\
& \leq \theta\left(\sum_{t=1}^{k-1}\left(t^{r}+1\right)\|x\|^{r}\right)
\end{aligned}
$$

for all $x \in X$, since

$$
\sum_{t=1}^{k-1}\|f((k-t+1) x)-f((k-t) x)-f(x)\|=\sum_{t=1}^{k-1}\|f((t+1) x)-f(t x)-f(x)\|
$$

Since $|s|<1$, the mapping f satisfies the inequality

$$
\|f(k x)-k f(x)\| \leq \frac{\theta\left(\sum_{t=1}^{k-1}\left(t^{r}+1\right)\|x\|^{r}\right)}{1-|s|}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-k f\left(\frac{x}{k}\right)\right\| \leq \frac{\sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k^{r}} \theta\|x\|^{r} \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Thus

$$
\begin{align*}
\left\|k^{l} f\left(\frac{x}{k^{l}}\right)-k^{m} f\left(\frac{x}{k^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|k^{j} f\left(\frac{x}{k^{j}}\right)-k^{j+1} f\left(\frac{x}{k^{j+1}}\right)\right\| \\
& \leq \frac{\sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k^{r}} \sum_{j=l}^{m-1} \frac{k^{j}}{k^{r j}} \theta\|x\|^{r} \tag{2.9}
\end{align*}
$$

for all nonnegative integers m, l with $m>l$ and all $x \in X$. It follows from (2.9) that the sequence $\left\{k^{n} f\left(\frac{x}{k^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{k^{n} f\left(\frac{x}{k^{n}}\right)\right\}$ converges. So it is possible to define the mapping $h: X \rightarrow Y$ as

$$
h(x):=\lim _{n \rightarrow \infty} k^{n} f\left(\frac{x}{k^{n}}\right)
$$

for all $x \in X$. Also, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (2.9), we get (2.4). It follows from (2.3) that

$$
\begin{aligned}
& \|h((k+1) x+y)-h(k x-y)-h(x)\| \\
& =\lim _{n \rightarrow \infty} k^{n}\left\|f\left(\frac{(k+1) x+y}{k^{n}}\right)-f\left(\frac{k x+y}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} k^{n}\left\|s\left\{f\left(\frac{x+y}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)-f\left(\frac{y}{k^{n}}\right)\right\}\right\| \\
& +\lim _{n \rightarrow \infty} \frac{k^{n}}{k^{n r}} \theta\left(\|x\|^{r}+\|y\|^{r}\right)=|s|\|h(x+y)-h(x)-h(y)\|
\end{aligned}
$$

for all $x, y \in X$. So

$$
\|h((k+1) x+y)-h(k x-y)-h(x)\| \leq|s|\|h(x+y)-h(x)-h(y)\|
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $h: X \rightarrow Y$ is additive.
Now, let $u: X \rightarrow Y$ be another additive mapping satisfying (2.4). Then we have

$$
\begin{aligned}
\|h(x)-u(x)\| & =k^{n}\left\|h\left(\frac{x}{k^{n}}\right)-u\left(\frac{x}{k^{n}}\right)\right\| \\
& \leq k^{n}\left(\left\|h\left(\frac{x}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\|+\left\|u\left(\frac{x}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\|\right) \\
& \leq \frac{2 k^{n} \cdot \theta \sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k^{n r}\left(k^{r}-k\right)}\|x\|^{r}
\end{aligned}
$$

which tends to 0 when $n \rightarrow \infty$ for all $x \in X$. So it means that $h(x)=u(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \rightarrow Y$ is a unique additive mapping satisfying (2.4).
Theorem 2.3. Let $r<1$ and θ be nonnegative real numbers, k be an integer greater than 1 and $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.3). Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{\theta \sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|)\left(k-k^{r}\right)}\|x\|^{r} \tag{2.10}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.8) that

$$
\left\|\frac{f(k x)}{k}-f(x)\right\| \leq \frac{\sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k} \theta\|x\|^{r}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|\frac{1}{k^{l}} f\left(k^{l} x\right)-\frac{1}{k^{m}} f\left(k^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{k^{j}} f\left(k^{j} x\right)-\frac{1}{k^{j+1}} f\left(k^{j+1} x\right)\right\| \\
& \leq \frac{\sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k} \sum_{j=l}^{m-1} \frac{k^{j r}}{k^{j}} \theta\|x\|^{r} \tag{2.11}
\end{align*}
$$

for all nonnegative integers m, l with $m>l$ and all $x \in X$. It follows from (2.11) that the sequence $\left\{\frac{1}{k^{n}} f\left(k^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{k^{n}} f\left(k^{n} x\right)\right\}$ converges. So it is possible to define the mapping $h: X \rightarrow Y$ as

$$
h(x):=\lim _{n \rightarrow \infty} \frac{1}{k^{n}} f\left(k^{n} x\right)
$$

for all $x \in X$. Also, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (2.11), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.2.
Remark 2.4. If s is a real number such that $-1<s<1$ and Y is a real Banach space, then all the assertions in this section remain valid.

3. Additive s-Functional Inequality (0.2)

Throughout this section, assume that s is a fixed complex number with $|s|<1$.
In this section, we solve and investigate the additive s-functional inequality (0.2) in complex Banach spaces.

Lemma 3.1. If $k \in \mathbb{N}$ and a mapping $f: G \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq\|s(f((k+1) x-y)-f(k x-y)-f(x))\| \tag{3.1}
\end{equation*}
$$

for all $x, y \in G$, then $f: G \rightarrow Y$ is additive.
Proof. Assume that $f: G \rightarrow Y$ satisfies (3.1).
Letting $x=0$ and $y=0$ in (3.1), we get $\|f(0)\| \leq\|s(f(0))\|$ and so $f(0)=0$, since $|s|<1$.

Letting $x=p$ and $y=k p-q$ in (3.1), we get

$$
\begin{equation*}
\|f((k+1) p-q)-f(k p-q)-f(p)\| \leq\|s(f(p+q)-f(p)-f(q))\| \tag{3.2}
\end{equation*}
$$

for all $p, q \in G$.
It follows from (3.1) and (3.2) that

$$
\begin{aligned}
\|f(p+q)-f(p)-f(q)\| & \leq\|s(f((k+1) p-q)-f(k p-q)-f(p))\| \\
& \leq\left\|s^{2}(f(p+q)-f(p)-f(q))\right\|
\end{aligned}
$$

and so $f(x+y)=f(x)+f(y)$ for all $x, y \in G$. Thus $f: G \rightarrow Y$ is additive.

Theorem 3.2. Let $r>1$ and θ be nonnegative real numbers, k be an integer greater than 1 and $f: X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \|f(x+y)-f(x)-f(y)\| \tag{3.3}\\
& \leq\|s(f((k+1) x-y)-f(k x-y)-f(x))\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{\theta \sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|)\left(k^{r}-k\right)}\|x\|^{r} \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=0$, in (3.3), we get $\|f(0)\| \leq\|s f(0)\|$. So $f(0)=0$.
Letting $y=k x$ in (3.3), we get

$$
\begin{equation*}
\|f((k+1) x)-f(k x)-f(x)\| \leq \theta|k|^{r}\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
For $t \in \mathbb{N}$, letting $y=t x$ in (3.3), we get

$$
\begin{align*}
& \|f((t+1) x)-f(t x)-f(x)\| \tag{3.6}\\
& \leq\|s(f((k-t+1) x)-f((k-t) x)-f(x))\|+\theta\left(\left(t^{r}+1\right)\|x\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$.
From (3.5) and (3.6), we get

$$
\begin{align*}
& \sum_{t=1}^{k-1}\|f((t+1) x)-f(t x)-f(x)\| \tag{3.7}\\
& \leq \sum_{t=1}^{k-1}\|s(f((k-t+1) x)-f((k-t) x)-f(x))\|+\theta\left(\sum_{t=1}^{k-1}\left(t^{r}+1\right)\|x\|^{r}\right)
\end{align*}
$$

for all $x \in X$. By (3.6) and (3.7) and the triangle inequality, (Summation Order) and the triangle inequality of norm $\|\cdot\|$, we get

$$
\begin{aligned}
& (1-|s|)\|f(k x)-k f(x)\| \\
& =(1-|s|)\left\|\sum_{t=1}^{k-1}(f((t+1) x)-f(t x)-f(x))\right\| \\
& \leq \sum_{t=1}^{k-1}(1-|s|)\|(f((t+1) x)-f(t x)-f(x))\| \\
& \leq \sum_{t=1}^{k-1}\|(f((t+1) x)-f(t x)-f(x))\|-\sum_{t=1}^{k-1}\|s(f((t+1) x)-f(t x)-f(x))\| \\
& \leq \theta\left(\sum_{t=1}^{k-1}\left(t^{r}+1\right)\|x\|^{r}\right)
\end{aligned}
$$

for all $x \in X$, since

$$
\sum_{t=1}^{k-1}\|s(f((k-t+1) x)-f((k-t) x)-f(x))\|=\sum_{t=1}^{k-1}\|s(f((t+1) x)-f(t x)-f(x))\|
$$

Since $|s|<1$, the mapping f satisfies the inequality

$$
\|f(k x)-k f(x)\| \leq \frac{\theta\left(\sum_{t=1}^{k-1}\left(t^{r}+1\right)\|x\|^{r}\right)}{1-|s|}
$$

for all $x \in X$. So

$$
\left\|f(x)-k f\left(\frac{x}{k}\right)\right\| \leq \frac{\sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k^{r}} \theta\|x\|^{r}
$$

for all $x \in X$. Thus

$$
\begin{align*}
\left\|k^{l} f\left(\frac{x}{k^{l}}\right)-k^{m} f\left(\frac{x}{k^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|k^{j} f\left(\frac{x}{k^{j}}\right)-k^{j+1} f\left(\frac{x}{k^{j+1}}\right)\right\| \\
& \leq \frac{\sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k^{r}} \sum_{j=l}^{m-1} \frac{k^{j}}{k^{r j}} \theta\|x\|^{r} \tag{3.8}
\end{align*}
$$

for all nonnegative integers m, l with $m>l$ and all $x \in X$. It follows from (3.8) that the sequence $\left\{k^{n} f\left(\frac{x}{k^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{k^{n} f\left(\frac{x}{k^{n}}\right)\right\}$ converges. So it is possible to define the mapping $h: X \rightarrow Y$ as

$$
h(x):=\lim _{n \rightarrow \infty} k^{n} f\left(\frac{x}{k^{n}}\right)
$$

for all $x \in X$. Also, letting $l=0$ and passing to the limit $m \rightarrow \infty$ in (3.8), we get (3.4). It follows from (3.3) that

$$
\begin{aligned}
& \|h(x+y)-h(x)-h(y)\| \\
& =\lim _{n \rightarrow \infty} k^{n}\left\|\left\{f\left(\frac{x+y}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)-f\left(\frac{y}{k^{n}}\right)\right\}\right\|+\lim _{n \rightarrow \infty} \frac{k^{n}}{k^{n r}} \theta\left(\|x\|^{r}+\|y\|^{r}\right) \\
& \leq \lim _{n \rightarrow \infty} k^{n}|s|\left\|f\left(\frac{(k+1) x+y}{k^{n}}\right)-f\left(\frac{k x+y}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\| \\
& =|s|\|h((k+1) x+y)-h(k x-y)-h(x)\|
\end{aligned}
$$

for all $x, y \in X$. So

$$
\|h(x+y)-h(x)-h(y)\| \leq|s|\|h((k+1) x+y)-h(k x-y)-h(x)\|
$$

for all $x, y \in X$. By Lemma 3.1, the mapping $h: X \rightarrow Y$ is additive.
Now, let $u: X \rightarrow Y$ be another additive mapping satisfying (3.4). Then we have

$$
\begin{aligned}
\|h(x)-u(x)\| & =k^{n}\left\|h\left(\frac{x}{k^{n}}\right)-u\left(\frac{x}{k^{n}}\right)\right\| \\
& \leq k^{n}\left(\left\|h\left(\frac{x}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\|+\left\|u\left(\frac{x}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\|\right) \\
& \leq \frac{2 k^{n} \cdot \theta \sum_{t=1}^{k-1}\left(t^{r}+1\right)}{(1-|s|) k^{n r}\left(k^{r}-k\right)}\|x\|^{r}
\end{aligned}
$$

which tends to 0 when $n \rightarrow \infty$ for all $x \in X$. So it means that $h(x)=u(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \rightarrow Y$ is a unique additive mapping satisfying (3.4).
Remark 3.3. If s is a real number such that $-1<s<1$ and Y is a real Banach space, then all the assertions in this section remain valid.

Acknowledgements

This work was supported by the Seoul Science High School R\&E program in 2019.

References

[1] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941) 222-224.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[4] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[6] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001) 303-309.
[7] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006) 149-161.
[8] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002) 707-710.
[9] C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015) 17-26.
[10] C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015) 397-407.
[11] Y. Manar, E. Elqorachi, Th.M. Rassias, Hyers-Ulam stability of the Jensen functional equation in quasi-Banach spaces, Nonlinear Funct. Anal. Appl. 15 (2010) 581-603.
[12] M.R. Abdollahpour, M.T. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math. 93 (2019) 691-698.
[13] J. Gao, On the stability of functional equations in 2-normed spaces, Nonlinear Funct. Anal. Appl. 15 (2010) 635-645.
[14] S. Jung, D. Popa, M.T. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim. 59 (2014) 13-16.
[15] Y. Lee, S. Jung, M.T. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018) 43-61.
[16] Y. Manar, E. Elqorachi, Th.M. Rassias, On the Hyers-Ulam stability of the quadratic Jensen functional equations on a restricted domain, Nonlinear Funct. Anal. Appl. 15 (2010) 647-655.
[17] C. Park, M.T. Rassias, Additive functional equations and partial multipliers in C^{*} algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019) 2261-2275.
[18] K. Ravi, E. Thandapani, B.V. Senthil Kumar, Solution and stability of a reciprocal type functional equation in several variables, J. Nonlinear Sci. Appl. 7 (2014) 18-27.

[^0]: *Corresponding author.

