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1. Introduction

Throughout this article, let N and R be the set of positive integers and real numbers,
respectively. The notion of attractive points for nonlinear mappings was introduced by
Takahashi and Takeuchi [1] in Hilbert spaces. Let H be a real Hilbert space and C be a
nonempty subset of H. For a mappings T from C into H, we denoted by F (T ) and A(T )
the set of all fixed points and attractive points, respectively, i.e.,

(1) F (T ) = {x ∈ C : Tx = x};
(2) A(T ) = {z ∈ H : ‖Tx− z‖ ≤ ‖x− z‖,∀x ∈ C}.

The authors also proved an existence theorem for attractive points without convexity in
Hilbert spaces. Since then, attracive point theorems have been studied widely by many
authors; see [2–5] for instance and references therein. A mapping T : C → H is called
generalized hybrid [6] if there exist α, β ∈ R such that

α‖Tx− Ty‖2 + (1− α)‖Ty − x‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2
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for all x, y ∈ C. In 2013, Kawasaki and Takahashi [7] defined a class of widely more
generalized hybrid mappings. A mapping T : C → H is called widely more generalized
hybrid if there exist α, β, γ, δ, ε, ξ, η ∈ R such that

α‖Tx− Ty‖2 + β‖x− Ty‖2 + γ‖Tx− y‖2 + δ‖x− y‖2 + ε‖x− Tx‖2

+ ξ‖y − Ty‖2 + η‖(x− Tx)− (y − Ty)‖2 ≤ 0, ∀x, y ∈ C. (1.1)

We call such mapping an (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mapping. See
[8, 9] for more results for the class of generalized hybrid mappings.

In the same time, Guu and Takahashi [10] proved the following existence theorem.

Theorem 1.1. Let H be a real Hilbert space, and let C be a nonempty subset of H.
Let T : C → C be an (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mapping satisfying
either the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0.

Then A(T ) 6= ∅ if and only if there exists z ∈ C such that {Tnz, n = 0, 1, 2, . . .} is
bounded.

A mapping T : C → H is called quasi-nonexpansive if ‖Tx−z‖ ≤ ‖x−z‖ for all x ∈ C
and z ∈ F (T ). In 2014, Kawasaki and Kobayashi [11] proved that if C is a nonempty
closed and convex subset of a real Hilbert space H and T : C → H is an (α, β, γ, δ, ε, ξ, η)-
widely more generalized hybrid mapping such that F (T ) 6= ∅ and suppose that one of the
following holds:

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0,

then T is a quasi-nonexpansive mapping.
In 2018, the concept of further generalized hybrid mappings was presented by Khan

[12]. A mapping T : C → H is called further generalized hybrid if there exist α, β, γ, δ, ε ∈
R such that

α‖Tx− Ty‖2 + β‖x− Ty‖2 + γ‖Tx− y‖2 + δ‖x− y‖2 + ε‖x− Tx‖2 ≤ 0, ∀x, y ∈ C.

Obviously, this is a spacial case of widely more generalized hybrid mappings when ξ =
η = 0 in (1.1). Moreover, the author introduced the notion of common attractive point
for two nonlinear mappings. For two mappings S, T : C → H, denoted by CAP (S, T ) the
set of common attractive points of S and T , i.e.,

CAP (S, T ) = {z ∈ H : max(‖Sx− z‖, ‖Tx− z‖) ≤ ‖x− z‖, ∀x ∈ C}.

The author also proved the following theorem.

Theorem 1.2 ([12]). Let H be a real Hilbert space, and let C be a nonempty subset of H.
Let S, T : C → C be two further generalized hybrid mappings which satisfy α+β+γ+δ ≥
0, ε ≥ 0 and either α + β > 0 or α + γ > 0. Then CAP (S, T ) 6= ∅ if and only if there
exists z ∈ C such that both {Snz : n = 0, 1, 2, . . .} and {Tnz : n = 0, 1, 2, . . .} are bounded.

To study convergence theorems, the well-known iterative process was defined in 1974
by Ishikawa [13] to prove fixed point theorems for a continuous self mapping T , called
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Ishikawa iterative process:
x1 ∈ C
xn+1 = (1− βn)xn + βnTyn

yn = (1− αn)xn + αnTxn,

where {αn} and {βn} are sequence in (0, 1). We can study more details about iteration
algorithms in [14–16] and references therein.

Motivated by [10] and [12], in this paper, we use the Ishikawa iteration to prove exis-
tence and weak convergence theorems for common attractive points of two widely more
generalized hybrid mappings without assuming the closedness of the domain. Moreover,
our main result can be apply to a common fixed point theorem for such two mappings.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a
nonempty subset of H. Then there exists a smallest convex set in H containing C, called

a convex hull of C, denoted by co(C) = {
k∑

i=1

λixi : xi ∈ C,
∑
i

λi = 1, λi ≥ 0}. Let {xn}

be a sequence in H, we denote the strong convergence and the weak convergence of {xn}
to x ∈ H by xn → x and xn ⇀ x, respectively. In a Hilbert space H, it is known that

‖αx+ (1− α)‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2

for all x, y ∈ H and α ∈ R. Furthermore, we have

2〈x− y, z − w〉 = ‖x− w‖2 + ‖y − z‖2 − ‖x− z‖2 − ‖y − w‖2 (2.1)

for all x, y, z, w ∈ H. For every closed and convex subset C of H and x ∈ H, we know
that there exists a unique nearest point y ∈ C such that ‖x− y‖ ≤ ‖x− z‖ for all z ∈ C.
We denote such a correspondence by PCx = y. The mapping PC : H → C is called metric
projection of H onto C. It is known that

〈x− PCx, PCx− z〉 ≥ 0

for all x ∈ H and z ∈ C. For proving our main theorem, we need the following lemma
due to Takahashi and Toyoda [17]

Lemma 2.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
PC : H → C be a metric projection. Let {xn} be a sequence in H. If ‖xn+1−u‖ ≤ ‖xn−u‖
for all u ∈ C and n ∈ N, then {PCxn} converges strongly to some u0 ∈ C.

The next result is useful for proving our main theorem.

Theorem 2.2 ([18]). Let H be a Hilbert space and {xn} be a bounded sequence of H.
Then {xn} is weakly convergent if and only if each weakly convergent subsequence of {xn}
has the same weak limit, that is, for x ∈ H,

xn ⇀ x⇔ (xni ⇀ y ⇒ x = y).

We also know the following lemmas from Khan [12].

Lemma 2.3. Let C be a nonempty closed and convex subset of H and let S, T be two
mappings from C into itself. If CAP (S, T ) 6= ∅, then F (S) ∩ F (T ) 6= ∅. In particular, if
z ∈ CAP (S, T ), then PCz ∈ F (S) ∩ F (T ).
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Lemma 2.4. Let C be a nonempty subset of H and let S, T be two mappings from C
into H. Then CAP (S, T ) is a closed and convex subset of H.

To prove our main result, we also need the following result of Guu and Takahashi [10].

Lemma 2.5. Let H be a Hilbert space and let C be a nonempty subset of H. Let T : C →
H be an (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mapping satisfying either of the
conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0.

If xn ⇀ z and xn − Txn → 0, then z ∈ A(T ).

Furthermore, we also know the following lemma from Takahashi et al. [3] for quasi-
nonexpansive mappings.

Lemma 2.6. Let C be a nonempty subset of H and let T be a quasi-nonexpansive mapping
from C into H. Then A(T ) ∩ C = F (T ).

3. Main Results

We first prove an existence theorem of common attractive points for two widely more
generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, and let C be a nonempty subset of H. Let
S, T : C → C be two (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mappings satisfying
either of the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0.

Then CAP (S, T ) 6= ∅ if and only if there exists z ∈ C such that both {Snz, n = 0, 1, 2, . . .}
and {Tnz, n = 0, 1, 2, . . .} are bounded.

Proof. Let z ∈ CAP (S, T ). Then max(‖Sx − z‖, ‖Tx − z‖) ≤ ‖x − z‖ for all x ∈ C. It
follows that

‖Sn+1x− z‖ ≤ ‖Snx− z‖ and ‖Tn+1x− z‖ ≤ ‖Tnx− z‖
for all x ∈ C and n = 0, 1, 2, . . .. This implies that {Snx, n = 0, 1, 2, . . .} and {Tnx, n =
0, 1, 2, . . .} are bounded.

In the other hand, suppose that there exists z ∈ C such that both {Snz, n = 0, 1, 2, . . .}
and {Tnz, n = 0, 1, 2, . . .} are bounded. Suppose that

max(‖Sx− z‖, ‖Tx− z‖) = ‖Tx− z‖.
As in the proof of Theorems 1.1 and T is a self-mapping, we have a unique point p ∈
c̄o{Tnz : n = 0, 1, 2, . . .} ⊆ C ⊆ H such that ‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ C, that is,
p ∈ A(T ). Using supposition on maximum, we get

‖Sx− p‖ ≤ ‖x− p‖.
This means that p ∈ A(S). Hence p ∈ CAP (S, T ). In the case of max(‖Sx − z‖, ‖Tx −
z‖) = ‖Sx − z‖, by interchanging the roles of S and T and use the same argument to
conclude that CAP (S, T ) 6= ∅.

As the direct consequnce of Theorem 3.1, we have the following results.
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Theorem 3.2 ([10]). Let H be a real Hilbert space, and let C be a nonempty subset of H.
Let T : C → C be an (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mapping satisfying
either of the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0.

Then A(T ) 6= ∅ if and only if there exists z ∈ C such that {Tnz, n = 0, 1, 2, . . .} is
bounded.

Proof. Let S = T in Theorem 3.1, we obtain the desired result.

Since a class of (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mappings contains
further generalized hybrid mappings, Theorem 3.1 extends the following theorem.

Theorem 3.3 ([12]). Let H be a real Hilbert space, and let C be a nonempty subset of
H. Let S, T : C → C be two further generalized hybrid mappings satisfying either the
conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0.

Then CAP (S, T ) 6= ∅ if and only if there exists z ∈ C such that both {Snz, n = 0, 1, 2, . . .}
and {Tnz, n = 0, 1, 2, . . .} are bounded.

Next, we prove a weak convergence theorem of a common attractive point for two widely
more generalized hybrid mappings in a Hilbert space without assuming the closedness of
the domain of such mappings.

Theorem 3.4. Let H be a real Hilbert space, and let C be a nonempty and convex subset
of H. Let S, T : C → C be two (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mappings
satisfying either the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0

with CAP (S, T ) 6= ∅ and {xn} be defined by
x1 ∈ C
xn+1 = (1− βn)xn + βnSyn

yn = (1− αn)xn + αnTxn,

(3.1)

where {αn} and {βn} are sequence in (0, 1). If lim inf
n→∞

αn(1− αn) > 0 and lim inf
n→∞

βn(1−
βn) > 0, then {xn} converges weakly to z ∈ CAP (S, T ). Moreover, z = lim

n→∞
Pxn, where

P is a projection of H onto CAP (S, T ).

Proof. Let z ∈ CAP (S, T ). Then by (3.1) and H is a Hilbert space, we have that

‖yn − z‖2 = |(1− αn)(xn − z) + αn(Txn − z)‖2

= (1− αn)‖xn − z‖2 + αn‖Txn − z‖2 − αn(1− αn)‖Txn − xn‖2

≤ (1− αn)‖xn − z‖2 + αn‖xn − z‖2 − αn(1− αn)‖Txn − xn‖2

= ‖xn − z‖2 − αn(1− αn)‖Txn − xn‖2 (3.2)

= ‖xn − z‖2
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and

‖xn+1 − z‖2 = ‖(1− βn)(xn − z) + βn(Syn − z)‖2

= (1− βn)‖xn − z‖2 + βn‖Syn − z‖2 − βn(1− βn)‖Syn − xn‖2

≤ (1− βn)‖xn − z‖2 + βn‖yn − z‖2 − βn(1− βn)‖Syn − xn‖2 (3.3)

≤ ‖xn − z‖2 − βn(1− βn)‖Syn − xn‖2 (3.4)

= ‖xn − z‖2. (3.5)

Thus, {‖xn− z‖} is nonincreasing which implies that lim
n→∞

‖xn− z‖ exists. So {‖xn− z‖}
is also bounded. That is, there exists M > 0 such that

‖xn − z‖ ≤M ∀n ∈ N.
This implies that

‖xn‖ ≤ ‖xn − z‖+ ‖z‖ ≤M + ‖z‖ ∀n ∈ N
and

‖yn‖ ≤ ‖yn − z‖+ ‖z‖ ≤ ‖xn − z‖+ ‖z‖ ≤M + ‖z‖ ∀n ∈ N.
This means that {xn} and {yn} are bounded. From (3.4), lim

n→∞
‖xn − z‖ exists and

lim inf
n→∞

βn(1− βn) > 0, we obtain that

lim
n→∞

‖Syn − xn‖ = 0. (3.6)

From (3.3), we have that

‖xn+1 − z‖2 ≤ (1− βn)‖xn − z‖2 + βn‖yn − z‖2

and hence

βn(‖xn − z‖2 − ‖yn − z‖2) ≤ ‖xn − z‖2 − ‖xn+1 − z‖2.
Since βn(1 − βn) < βn for all βn ∈ (0, 1), we get that lim inf

n→∞
βn > 0. This together with

the existence of lim
n→∞

‖xn − z‖, we have

lim
n→∞

(‖xn − z‖2 − ‖yn − z‖2) = 0. (3.7)

By lim inf
n→∞

αn(1− αn) > 0, (3.2), and (3.7) we obtain that

lim
n→∞

‖Txn − xn‖ = 0. (3.8)

Since ‖xn − yn‖ ≤ αn‖xn − Txn‖ and (3.8), lim
n→∞

‖xn − yn‖ = 0. Notice that

‖Syn − yn‖ ≤ ‖Syn − xn‖+ ‖xn − yn‖
and let n→∞, then

lim
n→∞

‖Syn − yn‖ = 0. (3.9)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ z0.
By Lemma 2.5 and (3.8), we have z0 ∈ A(T ). Using lim

n→∞
‖xn − yn‖ = 0 and xnk

⇀ z0,

by passing through a subsequence, if necessary, we can assume that there exists a weakly
convergent subsequence {ynk

} of {yn} such that ynk
⇀ z0. By Lemma 2.5 and (3.9),

z0 ∈ A(S). Next, we prove that xn ⇀ z0 by supposing a subsequence {xnj
} of {xn} such

that xnj
⇀ z1. It follows from what we have just proved that z1 ∈ CAP (S, T ), and from
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the initial step of this proof we can put p = lim
n→∞

(‖xn− z0‖2−‖xn− z1‖2). Furthermore,

using (2.1) to get that

2〈xn, z1 − z0〉 = ‖xn − z0‖2 + ‖z1‖2 − ‖xn − z1‖2 − ‖z0‖2.

This yields

‖xn − z0‖2 − ‖xn − z1‖2 = 2〈xn, z1 − z0〉+ ‖z0‖2 − ‖z1‖2.

It follows that

‖xnj
− z0‖2 − ‖xnj

− z1‖2 = 2〈xnj
, z1 − z0〉+ ‖z0‖2 − ‖z1‖2 (3.10)

and

‖xnk
− z0‖2 − ‖xnk

− z1‖2 = 2〈xnk
, z1 − z0〉+ ‖z0‖2 − ‖z1‖2. (3.11)

Taking j →∞ in (3.10) and k →∞ in (3.11), we get

p = 2〈z0, z1 − z0〉+ ‖z0‖2 − ‖z1‖2,
p = 2〈z1, z1 − z0〉+ ‖z0‖2 − ‖z1‖2.

This implies that 2〈z1 − z0, z1 − z0〉 = 0 and hence z0 = z1. From Theorem 2.2, we can
conclude that xn ⇀ z0. Finally, to show that z0 = lim

n→∞
Pxn, where P is a projection

mapping from H onto CAP (S, T ). From (3.5), we have ‖xn+1 − z‖ ≤ ‖xn − z‖ for all
z ∈ CAP (S, T ) and n ∈ N. Using Lemma 2.4, we have CAP (S, T ) is closed and convex,
applying Lemma 2.1, we have

lim
n→∞

Pxn = q

for some q ∈ CAP (S, T ). Since P is a projection, for each z ∈ CAP (S, T ) and n ∈ N we
have

〈xn − Pxn, Pxn − z〉 ≥ 0.

Let n→∞, then for any z ∈ CAP (S, T ), we obtain that

〈z0 − q, q − z〉 ≥ 0.

Since z0 ∈ CAP (S, T ),

〈z0 − q, q − z0〉 ≥ 0

and hence

〈z0 − q, z0 − q〉 ≤ 0.

This means that

‖z0 − q‖2 ≤ 0.

Therefore, z0 = lim
n→∞

Pxn and the proof is complete.

We obtain the following result when βn = 1 and S is an identity mapping.

Corollary 3.5. Let H be a real Hilbert space, and let C be a nonempty and convex subset
of H. Let T : C → C be an (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid mapping
satisfying either the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0
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with A(T ) 6= ∅ and {xn} be defined by x1 ∈ C and

xn+1 = (1− αn)xn + αnTxn,

where {αn} and {βn} are sequence in (0, 1). If lim inf
n→∞

αn(1−αn) > 0, then {xn} converges

weakly to z ∈ A(T ). Moreover, z = lim
n→∞

Pxn, where P is a projection of H onto A(T ).

If the domain C in Theorem 3.4 is closed, then we have the following result.

Theorem 3.6. Let H be a real Hilbert space, and let C be a nonempty closed and convex
subset of H. Let S, T : C → C be two (α, β, γ, δ, ε, ξ, η)-widely more generalized hybrid
mappings satisfying either of the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ξ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0, ε+ η ≥ 0 and ξ + η ≥ 0

with CAP (S, T ) 6= ∅ and {xn} be defined by (3.1). If lim inf
n→∞

αn(1 − αn) > 0 and

lim inf
n→∞

βn(1− β) > 0, then {xn} converges weakly to z ∈ F (S) ∩ F (T ).

Proof. By Theorem 3.4, we have xn ⇀ z ∈ CAP (S, T ). Since C is closed and convex,
z ∈ C. By the quasi-nonexpansiveness of S and T and Lemma 2.6, we get that A(T )∩C =
F (T ) and A(S) ∩ C = F (S). It follows that

CAP (S, T ) ∩ C = [A(S) ∩A(T )] ∩ C = F (S) ∩ F (T ).

Therefore, z ∈ F (S) ∩ F (T ).
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