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Abstract The purpose of this paper is to consider the convex constraint multiobjective optimization

problem, as the constrained set is a fixed point set of nonexpansive mapping. By owing the concepts of

proximal method and Mann algorithm, we introduce the algorithm and aim to establish the convergence

results of the such proposed iterative algorithm to compute a solution point the considered constraint

convex multiobjective optimization problem.
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1. Introduction

For a natural number m, we will use the following notations: Im := {1, ...,m}, Rm+ =
{x ∈ Rm : xj ≥ 0, j ∈ I}, and Rm++ = {x ∈ Rm : xj > 0, j ∈ I}. For y, z ∈ Rm,
z � y(or y � z) means that z − y ∈ Rm+ , and z � y(or y ≺ z) means that z − y ∈ Rm++.
for the operator H : Rn → Rm, by using above relations, we consider the (unconstraint)
multiobjective minimization problem as

min
y∈Rn

H(y), (1.1)

where H(y) := (h1(y), ..., hm(y)), and hi : Rn → R are the components functions of H.
Observe that the multiobjective optimization is the process of simultaneously opti-

mizing two or more real-valued objective functions. It is really rare to find an optimal
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solution that satisfies all objectives from the mathematical point of view (i.e., there is
no ideal minimizer). So we consider the following concepts of solution: a point x∗ ∈ Rn
is called Pareto optimal point of H, if there exists no y ∈ Rn such that H(y) � H(x∗)
with H(y) 6= H(x∗), whereas x∗ ∈ Rn is said to be a weak Pareto optimal point if there
exists no y ∈ Rn such that H(y) ≺ H(x∗). It is clear that a Pareto optimal point is also
a weak Pareto optimal point but the converse is not true, see [1]. These types of solution
concepts have applications in the economy, industry, agriculture, and other fields, see
[2]. In order to find the optimal point, multiobjective optimization problems are usually
solved by scalarization. In general, scalarization means the replacement of a multiob-
jective optimization problem by a suitable single objective optimization problem which
is an optimization problem with a real-valued objective function. It is a fundamental
principle in multiobjective optimization that optimal solutions of these problems can be
characterized as solutions of certain single objective optimization problems. Moreover,
there are many algorithms for solving optimization problems, see [3–5] for more details.

Mean while the proximal point algorithm is a widely used tool for solving a variety
of (single objective) convex optimization problems such as finding zeros of maximally
monotone operators, fixed points of nonexpansive mappings, as well as minimizing convex
functions. The algorithm works by applying successively so-called resolvent operators
associated to the original object that one aims to optimize. The first instance of what came
later to be known as the proximal point algorithm can be found in a short communication
from 1970 of Martinet [6]. Starting with the pioneering paper of Rockafellar [7], which
clearly fix some existing ideas in the previous literature and gives much more insights
on the potential of the algorithm when applies to optimization problems, an important
literature has grown on possible extensions and generalizations of this algorithm (see, for
example the survey paper [8] and the references therein). Some attention was focused
also on the case of multiobjective optimization, see [3, 4, 9, 10]. Here, we provide some,
which are concerned to our work:

In 2004, Drummond et al. [10] introduced the projected gradient method for con-
vexly constrained vector optimization. After that, Gregorio and Oliveira [11] proved the
convergence of the proximal point method by using a logarithmic quadratic proximal
scalarization method. Later on, Bonnel et al. [4] have proposed an extension of the
proximal point method to vector optimization, i.e., when other underlying ordering cones
are used instead of the non-negative orthant Rm+ . If we restrict the analysis to the fi-
nite dimensional multiobjective setting, the method proposed in [4] generates a sequence
satisfying

xk+1 ∈ arg minw

{
H(y) +

λk
2
‖y − xk‖2ek|y ∈ Ωk

}
, (1.2)

where Ωk := {y ∈ Rn|H(y) � H(xk)}, {λk} is a bounded sequence, {ek} ⊂ Rm++ and and
argminw denotes the set of weak Pareto solutions. They used the following well-known
scalarization approach (see, e.g., [1]) for convergence analysis of the above iterate,

arg minw{H(y)|y ∈ S} =
⋃

z∈Rm
+ \{0}

arg min{〈H(y), z〉|y ∈ S}, (1.3)

where S ⊂ H is a convex set and S : Rn → Rm is a Rm+ -convex map, i.e., for every
x, y ∈ Rn, the following holds:

H((1− t)x+ ty) � (1− t)H(x) + tH(y), ∀t ∈ [0, 1].
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see [1]. Also, a function H : Rn → Rm is convex iff H is componentwise convex, see
Definition 6.2 ([1], pages 29).

As it is mentioned in ([4], Remark 5) and we can also see by the equality (1.3), the
difference between the presentation of the iterative step (1.2) and the following iterative
step

xk+1 ∈ arg min
{
〈H(y) +

λk
2
‖y − xk‖2ek, z〉 : y ∈ Ωk

}
(1.4)

is not substantial because every solution of the scalar subproblems (1.4) is a weak Pareto
solution of the subproblem (1.2).

Next, we will concern with the concept of fixed point of the nonlinear mapping. Recall
that a mapping T is said to be nonexpansive if

‖Ty − Tx‖ ≤ ‖y − x‖, ∀x, y ∈ Rn.

The set of fixed point of T is denoted by Fix(T ), that is, Fix(T ) = {x ∈ Rn : x = Tx}.
The fixed point theory is a fascinating subject, with an enormous number of applications
in various fields of mathematics. Fixed point theory concerns itself with a very simple and
basic mathematical setting. It is one of the most powerful and fruitful tools of modern
mathematics and may be considered as a core subject of nonlinear analysis.

Let T : Rn → Rn be a mapping. There have been many iterative schemes constructed
and proposed in order to approximate fixed points of a nonexpansive mapping, see [12, 13].
Mann invented iterative method, see [14], and used to obtain convergence to a fixed point
for nonexpansive mapping, which is defined as follows: x1 ∈ Rn and

xk+1 = (1− αk)xk + αkTx
k, k ∈ N,

where {αk} is real sequence in (0, 1). In fact, we would like to point out that the problem of
finding a common element of the set of solutions of single objective minimization problems
and the set of fixed points in the framework of Hilbert spaces and Banach spaces have
been intensively studied by many authors, for instance, (see [15, 16]) and the references
therein.

The main purpose of this paper is to consider the constraint multiobjective minimiza-
tion problem:

min
y∈Fix(T )

H(y), (1.5)

where H : Rn → Rm and T : Rn → Rn. We will construct the following modified
proximal point algorithm for multiobjective optimization involving Mann iterate in Rn:
Take a fixed vector z ∈ Rm+ \ {0}, {ek} ⊂ Rm++, and {αk} is a sequence in (0, 1). For a

starting point x1 ∈ Rn we generate the sequence {xk} in the following manner:x̃k = arg min
{
〈H(y) +

λk
2
‖y − xk‖2ek, z〉 : y ∈ Ωk

}
,

xk+1 = (1− αk)x̃k + αkT x̃
k,

(1.6)

where Ωk := {y ∈ Rn|H(y) � H(xk)}. We will show that, under some suitable conditions,
the introduced algorithm (1.6) converges to a weak Pareto optimal point of the constraint
multiobjective optimization problem (1.5).
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2. Preliminaries

In this section, we present some basic concepts and results that are fundamental
importance for the development of our work.

The domain of g : Rn → R∪ {+∞}, denoted by dom g, is the subset of Rn on which g
has a finite valued. A function g is said to be proper when dom g 6= ∅. We say that a real
valued function g : Rn → R ∪ {+∞} is lower semicontinuous function at a point x0 ∈ Rn
if

g(x0) ≤ lim infx→x0g(x).

If a function is lower semicontinuous at every point of its domain, then it is simply called
lower semicontinuous function. It is also noted in [4] a map H : Rn → Rm is called
positively lower semicontinuous if, for every z ∈ Rm+ , the extended-valued scalar function
x 7→ 〈H(x), z〉 is lower semicontinuous.

Next, we recall some concepts of proximal point mapping.
Let g : Rn → R ∪ {+∞} be proper convex and lower semi-continuous. For any λ > 0,

the proximal point mapping proxgλ : Rn → Rn is defined by:

proxgλ(y) = arg minx∈Rn

(
g(x) +

λ

2
‖x− y‖2

)
, ∀y ∈ Rn. (2.1)

It was shown in [17] that the fixed point set Fix(proxgλ) coincides with the set of minimizers
of g.

Some other relevant characteristics of proxgλ of function g : Rn → R ∪ {+∞} are
incorporated in the following couple of lemmas:

Lemma 2.1 ([18]). Let g : Rn → R∪{+∞} be proper convex and lower semi-continuous
function. For any λ > 0, the proximal point mapping proxgλ is nonexpansive.

Lemma 2.2 ([19]). Let g : Rn → R∪{+∞} be proper convex and lower semi-continuous.
Then, for all x, y ∈ Rn and λ > 0, the following inequality holds

1

2λ
‖proxgλ x− y‖

2 − 1

2λ
‖x− y‖2 +

1

2λ
‖x− proxgλ x‖

2 ≤ g(y)− g(proxgλ x). (2.2)

Lemma 2.3 ([18]). Let g : Rn → R∪{+∞} be a proper convex and lower semicontinuous
function. Then the following identity holds:

proxgλ x = proxgµ

(
λ− µ
λ

proxgλ x+
µ

λ
x

)
, ∀x ∈ Rn and λ > µ > 0.

We will end this section by recalling some auxiliary facts which will be useful proving
the convergence results of our proposed iterative algorithm.

Definition 2.4. A sequence
{
xk
}
⊂ Rn is said to be Fejér monotone to a nonempty set

U iff, for all x ∈ U ∥∥xk+1 − x
∥∥ ≤ ∥∥xk − x∥∥ , k = 0, 1, . . .

Lemma 2.5 ([20]). Let x, y ∈ Rn. Let α ∈ R and R denote the set of real numbers. Then

‖αx+ (1− α)y‖2 + α(1− α)‖x− y‖2 = α‖x‖2 + (1− α)‖y‖2.

Lemma 2.6 ([21]). Let U ⊂ Rn be a nonempty set and
{
xk
}
⊂ Rn be a Fejér monotone

sequence to U . Then,
{
xk
}

is bounded. Moreover, if an accumulation point x of
{
xk
}

belongs to U , the whole sequence
{
xk
}

converges to x as k goes to +∞.
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Proposition 2.7 ([22], Corollary 1). Let H : Rn → Rm and C ⊂ Rn be nonempty subset.
It holds

arg minw{H(x)|x ∈ Rn} ∩ C ⊆ arg minw{H(x)|x ∈ C}.

3. Convergence Theorem

In this section, we prove the main convergence theorem of proposed iterative
scheme. We will work under the following assumptions:

(A1) H is Rm+ -convex function.
(A2) H is positively lower semicontinuous function.
(A3) T is a nonexpansive mapping.
(A4) There is z ∈ Rm+ \ {0} such that Υz := arg miny∈Rn

{
〈H(y), z〉

}⋂
Fix(T ) is a

nonempty set.

We proceed with the following main tools.

Lemma 3.1. Assume the the assumptions (A1)-(A4) are satisfied. Then, under the
following control conditions:

(i) {λk} is a bounded sequence of positive real numbers;
(ii) {αk} is a sequence such that 0 < a ≤ αk ≤ b < 1, ∀k ≥ 1 and for some

constant a, b in (0, 1),

the sequence {xk}, which is generated by the algorithm (1.6), with respect to z, satisfies
the following items

(i) limk→∞ ‖xk − x∗‖ exist for all x∗ ∈ Υz;
(ii) limk→∞ ‖xk − x̃k‖ = 0;

(iii) limk→∞ ‖Txk − xk‖ = 0.

Proof. Let x∗ ∈ Υz. So, we have x∗ = Tx∗ and x∗ ∈ arg miny∈Rn

{
〈H(y), z〉

}
. Then for

all y ∈ Rn, we acquire

〈H(x∗), z〉+
λk
2
‖x∗ − x∗‖2〈ek, z〉 ≤ 〈H(y), z〉+

λk
2
‖y − x∗‖2〈ek, z〉.

Let us note that, sinceH is positively lower semicontinuous, then we have the scalar valued
function 〈H(y), z〉 is lower semicontinuous and convexity of H implies the convexity of
〈H(y), z〉, hence φz(y) = 〈H(y), z〉 is proper, convex and lower semicontinuous function.

Now define βk = λk〈ek, z〉. Note that, βk > 0, because λk > 0, z ∈ Rm+ \ {0},
{ek} ⊂ Rm++. So, we get that x∗ = proxφz

βk
x∗.

(i) Now, we first show that limk→∞ ‖xk − x∗‖ exists for all x∗ ∈ Υz. Noting that

x̃k = proxφz

βk
xk for all k ≥ 1. So, Lemma 2.1 provide us

‖x̃k − x∗‖ = ‖ proxφz

βk
xk − proxφz

βk
x∗‖ ≤ ‖xk − x∗‖. (3.1)
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It follows from the algorithm (1.6) and nonexpansiveness of T that

‖xk+1 − x∗‖ = ‖(1− αk)x̃k + αkT x̃
k − x∗‖

≤ (1− αk)‖x̃k − x∗‖+ αk‖T x̃k − x∗‖

≤ (1− αk)‖x̃k − x∗‖+ αk‖x̃k − x∗‖

= ‖x̃k − x∗‖

≤ ‖xk − x∗‖, ∀k ≥ 1.

(3.2)

This shows that {‖xk − x∗‖} is decreasing and bounded below. Hence limk→∞ ‖xk − x∗‖
exists for all x∗ ∈ Υz.

(ii) In order to proceed for part (ii), we assume, without loss of any generality, that

lim
k→∞

‖xk − x∗‖ = c ≥ 0. (3.3)

Indeed, by (2.2), we have

1

2λk

(
‖x̃k − x∗‖2 − ‖xk − x∗‖2 + ‖xk − x̃k‖2

)
≤ φz(x∗)− φz(x̃k).

Since φz(x
∗) ≤ φz(x̃k) for all k ≥ 1, it follows that

‖xk − x̃k‖2 ≤ ‖xk − x∗‖2 − ‖x̃k − x∗‖2. (3.4)

Therefore in order to prove limk→∞ ‖xk − x̃k‖ = 0, it suffices to prove ‖x̃k − x∗‖ → c,
because ‖xk − x∗‖ → c.
Taking lim inf on both sides of the estimate (3.2), we have

c ≤ lim inf
k→∞

‖x̃k − x∗‖. (3.5)

On the other hand, by taking lim sup on both sides of the estimate (3.1), we get

lim sup
k→∞

‖x̃k − x∗‖ ≤ lim sup
k→∞

‖xk − x∗‖ = c.

Hence, the above estimate together with (3.5) implies that

lim
k→∞

‖x̃k − x∗‖ = c. (3.6)

Therefore, from (3.4), we obtain

lim
k→∞

‖xk − x̃k‖ = 0. (3.7)

(iii) Next, we prove that limk→∞ ‖Txk − xk‖ = 0. As, we observe from lemma 2.5 that

‖xk+1 − x∗‖2 = ‖(1− αk)x̃k + αkT x̃
k − x∗‖2

= ‖(1− αk)(x̃k − x∗) + αk(T x̃k − x∗)‖2

= (1− αk)‖x̃k − x∗‖2 + αk‖T x̃k − x∗‖2 − αk(1− αk)‖x̃k − T x̃k‖2.
Since T is nonexpansive, it follows that

‖xk+1 − x∗‖2 ≤ (1− αk)‖x̃k − x∗‖2 + αk‖x̃k − x∗‖2 − αk(1− αk)‖x̃k − T x̃k‖2

≤ ‖x̃k − x∗‖2 − αk(1− αk)‖x̃k − T x̃k‖2

≤ ‖xk − x∗‖2 − a(1− b)‖x̃k − T x̃k‖2.
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This implies that

‖x̃k − T x̃k‖2 ≤ 1

a(1− b)
(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
→ 0 (as k →∞), (3.8)

Since T nonexpansive and from (3.7), (3.8) we obtain that

‖x̃k − Txk‖ ≤ ‖x̃k − T x̃k‖+ ‖T x̃k − Txk‖

≤ ‖x̃k − T x̃k‖+ ‖x̃k − xk‖ → 0 (as k →∞).
(3.9)

Now, we can prove that limk→∞ ‖xk − Txk‖ = 0. From (3.7) and (3.9), we obtain

‖xk − Txk‖ ≤ ‖xk − x̃k‖+ ‖x̃k − Txk‖ → 0 (as k →∞). (3.10)

Now we are in position to present our main theorem.

Theorem 3.2. Assume the the assumptions (A1)-(A4) are satisfied. Then, under the
following control conditions:

(i) {λk} is a bounded sequence of positive real numbers such that λk ≥ λ > 0, for
some positive real number λ;

(ii) {αk} is a sequence such that 0 < a ≤ αk ≤ b < 1, ∀k ≥ 1 and for some
constant a, b in (0, 1),

the sequence {xk}, which is generated by the algorithm (1.6), with respect to z, converges
to a weak Pareto optimal point of the constraint multiobjective optimization problem (1.5).

Proof. In fact, it follows from (3.7) and Lemma 2.3 that

‖ proxφz

λ xk − xk‖ ≤ ‖proxφz

λ xk − x̃k‖+ ‖x̃k − xk‖

= ‖proxφz

λ xk − proxφz

βk
xk‖+ ‖x̃k − xk‖

= ‖proxφz

λ xk−proxφz

λ

(
βk−λ
βk

proxφz

βk
xk+

λ

βk
xk
)
‖+ ‖x̃k−xk‖

≤ ‖xk −
(
1− λ

βk

)
proxφz

βk
xk − λ

βk
xk‖+ ‖x̃k − xk‖

≤
(
1− λ

βk

)
‖xk − x̃k‖+ ‖x̃k − xk‖ → 0 (as k →∞)

(3.11)

Moreover, by (3.2), we have that {xk} is Fejér convergent to Υz. So, it guarantees
that {xk} is bounded. Then there exists a subsequence {xki} ⊂ {xk} such that xki → p∗.
By (3.10),

‖xki − Txki‖ → 0.

It follows that p∗ ∈ Fix(T ). Also, from (3.11), we have

‖xki − proxφz

λ xki‖ → 0.

Since proxφz

λ is a nonexpansive mapping. Then, we get that

p∗ ∈ Fix(proxφz

λ ) = arg miny∈Rnφz(y).

This shows that p∗ ∈ Υz. Therefore, using Lemma 2.6 with U = Υz, we conclude that
the whole sequence

{
xk
}

converges to p∗ as k goes to ∞.
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Further, we can see by equality (1.3) that p∗ ∈ arg miny∈Rn{H(y)}. Hence p∗ ∈
arg minw{H(y)|y ∈ Rn} ∩ Fix(T ). Finally, by Proposition 2.7, we obtain that the se-
quence {xk} converges to a weak Pareto optimal point of the constraint multiobjective
optimization problem (1.5). This completes the proof.

Remark 3.3. is remarked that, if we take constraint set Fix(T ) = Rn, then we get
multiobjective optimization problem (1.1), which is done by many authors by different
methods, see for instance [3, 4, 9, 10].

The next is a simple example for checking the conclusion of Theorem 3.2.

Example 3.4. Let H : R→ R2 be the vectorial function given by H(y) = (h1(y), h2(y)),
where h1(y) := y and h2(y) := (y − 1)2. We can see that

〈H(y), z〉 =

2∑
i=1

hi(y)zi = yz1 + (y − 1)2z2,

and for fixed z = ( 1√
2
, 1√

2
), arg min〈H(y), z〉 = 1

2 . Let T : R→ R be defined by

Ty = 1− y.
It is easy to check that T is a nonexpansive mapping with Fix(T ) = 1

2 and 〈H(y), z〉 is
proper convex and lower semi-continuous function. Thus by Proposition 1.3, we get that
0.5 is also a weak Pareto optimal solution of H. Moreover, it follows that 1

2 is the solution
of the problem (1.5).

Now, let αk = 1
2 , ek = { 1√

3
, 1√

3
} and also we put x1 = 10 is the initial value.

Number of iterates xk |xk+1 − xk|
1 10.0000 9.50000
2 0.50000 0.00000
3 0.50000 0.00000
4 0.50000 0.00000
5 0.50000 0.00000
6 0.50000 0.00000
7 0.50000 0.00000
8 0.50000 0.00000
9 0.50000 0.00000
10 0.50000 0.00000

Table 1. Number of iteration

From Table 1, we see that the sequence {xk} converges to 1
2 which is the solution of

the problem (1.5).

4. Conclusion

We consider the convex constraint multiobjective optimization problem when the con-
strained set is a fixed point set of nonexpansive mapping. By combining the concepts
of proximal method and Mann algorithm, we introduce the algorithm and provide the
convergence results of the such proposed iterative algorithm to compute a solution point



Hybrid Proximal Point Algorithm for Solution ... 849

the considered constraint convex multiobjective optimization problem. Since the results
in this paper is a suggestion an algorithm method for finding the weak Pareto optimal
point of the considered problem (1.5), of course, the convergence analysis of this suggested
algorithm and also the (new) updated algorithms for finding the Pareto optimal point of
this problem (1.5) should be considered in the future works.
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