On the Hyers-Ulam-Rassias Stability of

 an n-Dimensional Additive Functional EquationP. Nakmahachalasint

Abstract

In this paper, we prove the Hyers-Ulam-Rassias stability of the following n-dimensional additive functional equation

$$
f\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}-x_{i-1}\right)
$$

where $x_{0} \equiv x_{n}$ and $n>1$.
Keywords : Additive functional equation, stability, Hyers-Ulam-Rassias stability 2000 Mathematics Subject Classification: 39B22, 39B52, 39B82

1 Introduction

In 1940 S.M. Ulam [8] proposed the famous Ulam stability problem of linear mappings. In 1941 D.H. Hyers [1] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$ where E and E^{\prime} are Banach spaces and f satisfies inequality $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$ for all $x, y \in E$. It was shown that the limit $L(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)$ exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying $\|f(x)-L(x)\| \leq \varepsilon$. The stability problem of various functional equations has been studied by a number of authors ([2]-[7]) since then.

In this paper, we propose an n-dimensional additive functional equation

$$
f\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}-x_{i-1}\right)
$$

where $x_{0} \equiv x_{n}$ and $n>1$, and investigate its Hyers-Ulam-Rassias stability.

2 The Solution

The following theorem establishes the equivalence of the proposed functional equation and the Cauchy functional equation.

Theorem 2.1. Let X and Y be vector spaces. A mapping $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}-x_{i-1}\right) \tag{2.1}
\end{equation*}
$$

where $x_{0} \equiv x_{n}$ and $n>1$, for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ if and only if it satisfies the Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$.
Proof. Suppose a mapping $f: X \rightarrow Y$ satisfies the Cauchy functional equation. Then it is straightforward to show that

$$
f\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)
$$

and

$$
\sum_{i=1}^{n} f\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)=0
$$

Hence, f satisfies (2.1).
Suppose a mapping $f: X \rightarrow Y$ satisfies (2.1). Setting $x_{1}=x_{2}=\cdots=x_{n}=0$, we can see that $f(0)=0$. Settings $x_{1}=x$ and $x_{2}=x_{3}=\cdots=x_{n}=0$, we have

$$
f(x)=f(x)+(f(x)+f(-x))
$$

which shows that $f(-x)=-f(x)$ for all $x \in X$.
If $n=2$, then (2.1) reduces to

$$
f(x+y)=f(x)+f(y)+f(x-y)+f(y-x) .
$$

Noting the oddness of f, the above equation simplifies to the Cauchy functional equation.
If $n>2$, then we substitute $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(x, y, 0, \ldots, 0)$ and (2.1) becomes

$$
f(x+y)=f(x)+f(y)+(f(x-y)+f(y)+f(-x)) .
$$

Again, by the oddness of f, the above equation reduces to

$$
f(x+y)-f(x-y)=2 f(y)
$$

Observing that the right-hand side is independent of x, we have

$$
f\left(\left(x+\frac{y}{2}\right)+\frac{y}{2}\right)-f\left(\left(x+\frac{y}{2}\right)-\frac{y}{2}\right)=2 f\left(\frac{y}{2}\right)=f\left(\frac{y}{2}+\frac{y}{2}\right)-f\left(\frac{y}{2}-\frac{y}{2}\right)
$$

or $f(x+y)=f(x)+f(y)$ as desired. This completes the proof.

3 The Hyers-Ulam-Rassias Stability

The following theorem gives a condition for which a linear mapping exists near an approximately linear mapping.

Theorem 3.1. Let $p \neq 1$ be a positive real number and $\theta \geq 0$ be a real number. Let X be a real vector space and Y be a Banach space. If a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} f\left(x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}-x_{i-1}\right)-f\left(\sum_{i=1}^{n} x_{i}\right)\right\| \leq \delta+\theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \tag{3.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$, and $\delta=0$ when $p>1$, then there exists a unique linear mapping $L: X \rightarrow Y$ such that L satisfies the functional equation given by (2.1), and satisfies the inequality

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{4 n}{2 n-1} \delta+\frac{3 \theta}{\left|2-2^{p}\right|}\|x\|^{p} \tag{3.2}
\end{equation*}
$$

for all $x \in X$. The mapping L is given by

$$
L(x)= \begin{cases}\lim _{m \rightarrow \infty} 2^{-m} f\left(2^{m} x\right) & \text { if } 0<p<1 \tag{3.3}\\ \lim _{m \rightarrow \infty} 2^{m} f\left(2^{-m} x\right) & \text { if } p>1\end{cases}
$$

for all $x \in X$.
Proof. Setting $x_{1}=x_{2}=\cdots=x_{n}=0$ in (3.1), we have $\|(2 n-1) f(0)\| \leq \delta$. Thus,

$$
\|f(0)\| \leq \frac{\delta}{2 n-1}
$$

Setting $x_{1}=x$ and $x_{2}=x_{3}=\cdots=x_{n}=0$, we have

$$
\|(f(x)+(n-1) f(0))+(f(x)+f(-x)+(n-2) f(0))-f(x)\| \leq \delta+\theta\|x\|^{p}
$$

which simplifies to

$$
\|(2 n-3) f(0)+f(x)+f(-x)\| \leq \delta+\theta\|x\|^{p}
$$

If $n>2$, we set $x_{1}=x_{2}=x$ and $x_{3}=x_{4}=\cdots=x_{n}=0$, then

$$
\|(2 f(x)+(n-2) f(0))+(f(x)+f(-x)+(n-2) f(0))-f(2 x)\| \leq \delta+2 \theta\|x\|^{p},
$$

or simply

$$
\|-f(0)+((2 n-3) f(0)+f(x)+f(-x))+2 f(x)-f(2 x)\| \leq \delta+2 \theta\|x\|^{p},
$$

Thus,
$\|2 f(x)-f(2 x)\| \leq\|f(0)\|+\left(\delta+\theta\|x\|^{p}\right)+\left(\delta+2 \theta\|x\|^{p}\right)=\|f(0)\|+2 \delta+3 \theta\|x\|^{p}$.
If $n=2$, we set $x_{1}=x_{2}=x$ in (3.1), then

$$
\|2 f(x)+2 f(0)-f(2 x)\| \leq \delta+2 \theta\|x\|^{p}
$$

It follows that

$$
\|2 f(x)-f(2 x)\| \leq 2\|f(0)\|+\delta+2 \theta\|x\|^{p}
$$

Hence, we determine that

$$
\begin{aligned}
\|2 f(x)-f(2 x)\| & \leq 2\|f(0)\|+2 \delta+3 \theta\|x\|^{p} \\
& \leq\left(\frac{2}{2 n-1}+2\right) \delta+3 \theta\|x\|^{p} \\
& \leq \frac{4 n}{2 n-1} \delta+3 \theta\|x\|^{p}
\end{aligned}
$$

We first consider the case when $0<p<1$. Rewrite the above inequality as

$$
\begin{equation*}
\left\|f(x)-2^{-1} f(2 x)\right\| \leq \frac{4 n}{4 n-2} \delta+\frac{3 \theta}{2}\|x\|^{p} \tag{3.4}
\end{equation*}
$$

For every positive integer m,

$$
\begin{aligned}
\left\|f(x)-2^{-m} f\left(2^{m} x\right)\right\| & =\left\|\sum_{i=0}^{m-1}\left(2^{-i} f\left(2^{i} x\right)-2^{-(i+1)} f\left(2^{i+1} x\right)\right)\right\| \\
& \leq \sum_{i=0}^{m-1}\left\|2^{-i} f\left(2^{i} x\right)-2^{-(i+1)} f\left(2^{i+1} x\right)\right\| \\
& =\sum_{i=0}^{m-1} 2^{-i}\left\|f\left(2^{i} x\right)-2^{-1} f\left(2 \cdot 2^{i} x\right)\right\|
\end{aligned}
$$

Applying (3.4) with appropriate values of x 's, we have

$$
\left\|f(x)-2^{-m} f\left(2^{m} x\right)\right\| \leq \frac{4 n}{4 n-2} \delta \sum_{i=0}^{m-1} 2^{-i}+\frac{3 \theta}{2}\|x\|^{p} \sum_{i=0}^{m-1} 2^{i(p-1)}
$$

Consider the sequence $\left\{2^{-m} f\left(2^{m} x\right)\right\}$. For all positive integers $k<l$, we have

$$
\begin{aligned}
\left\|2^{-k} f\left(2^{k} x\right)-2^{-l} f\left(2^{l} x\right)\right\| & =2^{-k}\left\|f\left(2^{k} x\right)-2^{-(l-k)} f\left(2^{l-k} \cdot 2^{k} x\right)\right\| \\
& \leq 2^{-k}\left(\frac{4 n}{4 n-2} \delta \sum_{i=0}^{l-k-1} 2^{-i}+\frac{3 \theta}{2}\left\|2^{k} x\right\|^{p} \sum_{i=0}^{l-k-1} 2^{i(p-1)}\right) \\
& \leq \frac{4 n}{4 n-2} 2^{-k} \delta \sum_{i=0}^{\infty} 2^{-i}+\frac{3 \theta}{2} 2^{-k(1-p)}\|x\|^{p} \sum_{i=0}^{\infty} 2^{i(p-1)}
\end{aligned}
$$

The right-hand side of the above inequality approaches 0 as k tends to infinity. Since Y is a Banach space and $\left\{2^{-m} f\left(2^{m} x\right)\right\}$ is a Cauchy sequence, we let

$$
L(x)=\lim _{m \rightarrow \infty} 2^{-m} f\left(2^{m} x\right) .
$$

It follows that

$$
\begin{aligned}
\|f(x)-L(x)\| & \leq \frac{4 n}{4 n-2} \delta \sum_{i=0}^{\infty} 2^{-i}+\frac{3 \theta}{2}\|x\|^{p} \sum_{i=0}^{\infty} 2^{i(p-1)} \\
& =\frac{4 n}{2 n-1} \delta+\frac{3 \theta}{2-2^{p}}\|x\|^{p} .
\end{aligned}
$$

From (3.1), we have

$$
\begin{aligned}
2^{-m} \| \sum_{i=1}^{n} f\left(2^{m} x_{i}\right) & \left.+\sum_{i=1}^{n} f\left(2^{m} x_{i}-2^{m} x_{i-1}\right)\right)-f\left(\sum_{i=1}^{n} 2^{m} x_{i}\right) \| \\
\leq & 2^{-m}\left(\delta+\theta \sum_{i=1}^{n}\left\|2^{m} x_{i}\right\|^{p}\right)=2^{-m} \delta+2^{-m(1-p)} \theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}
\end{aligned}
$$

As m tends to infinity, the right-hand side of the above inequality approaches 0 ; hence,

$$
\left.\sum_{i=1}^{n} L\left(x_{i}\right)+\sum_{i=1}^{n} L\left(x_{i}-x_{i-1}\right)\right)=L\left(\sum_{i=1}^{n} x_{i}\right)
$$

which reveals that L satisfies (2.1).
To prove the uniqueness of L, suppose there is a mapping $L^{\prime}: X \rightarrow Y$ such that L^{\prime} satisfies (2.1) and the condition (3.2). Then, the linearity of (2.1) as asserted by Theorem 2.1 implies

$$
\begin{aligned}
\left\|L(x)-L^{\prime}(x)\right\| & =2^{-m}\left\|L\left(2^{m} x\right)-L^{\prime}\left(2^{m} x\right)\right\| \\
& \leq 2^{-m}\left\|L\left(2^{m} x\right)-f\left(2^{m} x\right)\right\|+2^{-m}\left\|L^{\prime}\left(2^{m} x\right)-f\left(2^{m} x\right)\right\| \\
& \leq 2^{-m} \cdot 2\left(\frac{4 n}{2 n-1} \delta+\frac{3 \theta}{2-2^{p}}\|x\|^{p}\right)
\end{aligned}
$$

The right-hand side of the above inequality approaches 0 as m tends to infinity; so, we conclude that $L(x)=L^{\prime}(x)$ for all $x \in X$.

The proof for the case when $p>1$ starts by replacing (3.4) with

$$
\left\|f(x)-2 f\left(2^{-1} x\right)\right\| \leq \frac{4 n}{2 n-1} \delta+3 \theta\left\|2^{-1} x\right\|^{p}
$$

and the rest of the proof can be reproduced accordingly.
The following corollary gives the Hyers-Ulam stability of the functional equation given by (2.1).

Corollary 3.2. Let X be a real vector space and Y be a Banach space. If a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|\sum_{i=1}^{n} f\left(x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}-x_{i-1}\right)-f\left(\sum_{i=1}^{n} x_{i}\right)\right\| \leq \delta
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$, then there exists a unique linear mapping $L: X \rightarrow$ Y such that L satisfies the functional equation given by (2.1), and satisfies the inequality

$$
\|f(x)-L(x)\| \leq \frac{4 n}{2 n-1} \delta
$$

for all $x \in X$.
Proof. Letting $\theta=0$ and $p=\frac{1}{2}$ in Theorem 3.1, we immediately obtain the desired result.

References

[1] D.H. Hyers, On the Stability of the Linear Functional Equations, Proc. Natl. Acad. Sci 27 (1941), 222-224.
[2] K.-W. Jun, and H.-M. Kim, Stability Problem of Ulam for Generalized Forms of Cauchy Functional Equations, J. Math. Anal. Appl. 312 (2005), 535-547.
[3] S.-M. Jung, Hyers-Ulam-Rassias Stability of Jensen's Equations and Its Application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
[4] M.H. Moslehian, On the Stability of the Orthogonal Pexiderized Cauchy Equation, J. Math. Anal. Appl. 318 (2006), 211-223.
[5] W.-G. Park, and J.-H. Bae, On a Cauchy-Jensen Functional Equation and Its Stability, J. Math. Anal. Appl. 323 (2006), 634-643.
[6] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
[7] Th.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[8] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, WileyInterscience, New York, 1964.
(Received 30 May 2007)
Paisan Nakmahachalasint
Department of Mathematics
Faculty of Science
Chulalongkon University
Bangkok 10330, THAILAND.
e-mail: Paisan.N@chula.ac.th

