On the Parametric Interest of the Option Price of Stock from Black-Scholes Equation

Amnuay Kananthai ${ }^{1, *}$, Somsak Chanaim ${ }^{2}$ and Chongkolnee Rungruang ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : malamnka@gmail.com
${ }^{2}$ International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : somsak_ch@cmu.ac.th
${ }^{3}$ Faculty of Commerce and Management, Prince of Songkla University, Trang Campus, Trang 92000, Thailand e-mail : chongkolnee.r@psu.ac.th

Abstract

In this paper, we studied the option price of stock from the Black-Scholes equation and discovered some parameter λ which is the generalizztion of the interest r. Such λ is the first that named the parametric interest which is new the results. Morever we found that such λ gives the conditions for the solution of the Black-Scholes equation which may be weak or strong solution.

MSC: 62P05
Keywords: option; stock; Black-Scholes equation

Submission date: 07.08 .2019 / Acceptance date: 22.04.2020

1. Introduction

It is well known that the the Black-Scholes equation plays an important role in solving the option price of the stock which is call the Black-Scholes formula (see [1, pp. 637-659]). The Black-Scholes equation is given by

$$
\begin{equation*}
\frac{\partial}{\partial t} u(s, t)+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2}}{\partial s^{2}} u(s, t)+r s \frac{\partial}{\partial s} u(s, t)-r u(s, t)=0 \tag{1.1}
\end{equation*}
$$

with the call payoff

$$
\begin{equation*}
u\left(s_{T}, T\right)=\left(s_{T}-p\right)^{+} \equiv \max \left(s_{T}-p, 0\right) \tag{1.2}
\end{equation*}
$$

for $0 \leq t \leq T$ where $u(s, t)$ is the option price at time t, s_{T} is the price of stock at the expiration time T, s is the price of stock at time t, r is the interest rate, σ is the volatility of stock price and p is the strike price.

They obtained the solution $u(s, t)$ of (1.1) which is called the Black-Scholes formula and satisfies (1.2) of the form

$$
\begin{equation*}
u(s, t)=s N\left(d_{1}\right)-p e^{-r(T-t)} N\left(d_{2}\right) \tag{1.3}
\end{equation*}
$$

[^0]see [2, pp. 90-91] where
\[

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{s}{p}\right)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& d_{2}=\frac{\ln \left(\frac{s}{p}\right)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
\end{aligned}
$$
\]

and $N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} d y$.
In this work, we studied the solution of (1.1) in the other form which is the generalization of (1.3). Starting with changing the variable $u(s, t)=V(R, t)$ where $R=\ln s$. Then (1.1) is transformed to equation

$$
\begin{equation*}
\frac{\partial}{\partial t} V(R, t)+\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial R^{2}} V(R, t)+\left(r-\frac{\sigma^{2}}{2}\right) \frac{\partial}{\partial R} V(R, t)-r V(R, t)=0 \tag{1.4}
\end{equation*}
$$

with the call payoff in (1.2)

$$
\begin{equation*}
V\left(R_{T}, T\right)=\left(e^{R_{T}}-p\right)^{+} \tag{1.5}
\end{equation*}
$$

where $R_{T}=\ln s_{T}$. Then we obtained the solution of (1.4) in the form

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \mathcal{L}^{-1}\left(\xi^{\alpha}\right) \tag{1.6}
\end{equation*}
$$

where $\mathcal{L}^{-1}\left(\xi^{\alpha}\right)$ is the inverse Laplace transform of ξ^{α} and $X\left(\ln s_{T}\right)$ is the function of $\ln s_{T}$ and α is the real number that can be obtained from the equation

$$
\begin{equation*}
\sigma^{2} \alpha^{2}+\left(3 \sigma^{2}-2 r\right) \alpha+\left(2 \sigma^{2}-4 r+2 \lambda\right)=0 \tag{1.7}
\end{equation*}
$$

with λ is the parametric interest.
Now consider the following cases.
(i) Suppose $\alpha=m$ where m is nonnegative integer then we obtained the solution in (1.6) as the weak solution of the form

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \delta^{(m)}(s) \tag{1.8}
\end{equation*}
$$

where $\delta^{(m)}(s)$ is the Dirac-delta function with m-derivative with $\delta^{(0)}(s)=\delta(s)$ and the parametric interest λ can be obtained from (1.7) as

$$
\begin{equation*}
\lambda=\lambda(r, \sigma)=(m+2) r-\frac{m^{2}+3 m+2}{2} \sigma^{2} . \tag{1.9}
\end{equation*}
$$

(ii) Suppose α is a negative real number, that is $\alpha<0$ then we obtained the solution is (1.6) as the strong solution or the classical solution of the form

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \frac{s^{-\alpha-1}}{\Gamma(-\alpha)} \tag{1.10}
\end{equation*}
$$

where $\Gamma(-\alpha)$ is the Gamma function of $-\alpha$. In particular, if $\alpha=-n$ for some positive integer n then (1.10) reduces to

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} e^{-\lambda(T-t)}\left(\frac{s}{s_{T}}\right)^{n-1} \tag{1.11}
\end{equation*}
$$

with the parametric interest

$$
\begin{equation*}
\lambda=(2-n) r-\frac{\left(n^{2}-3 n+2\right)}{2} \sigma^{2} . \tag{1.12}
\end{equation*}
$$

We see that (1.8) and (1.10) are the other solutions of the Black-Scholes solution in (1.1). Particularly, for $n=1$ in (1.12) we have $\lambda=r$ that means the parametric interest λ is the interest rate r of the option price of stock. It follows that from (1.11)

$$
u(s, t, r)=\left(s_{t}-p\right)^{+} e^{-r(T-t)}
$$

and at $t=T$ we obtained $u\left(s_{T}, T, r\right)=\left(s_{T}-p\right)^{+}$which is the call payoff in (1.2). Also for the case $n=2$ in (1.12) we have $\lambda=0$. It follows that from (1.11)

$$
u(s, t, 0)=\left(s_{T}-p\right)^{+} e^{0(T-t)}\left(\frac{s}{s_{T}}\right)=\left(s_{T}-p\right)^{+}\left(\frac{s}{s_{T}}\right)
$$

and at $t=T, u\left(s_{T}, T, 0\right)=\left(s_{T}-p\right)^{+}\left(\frac{s_{T}}{s_{T}}\right)=\left(s_{T}-p\right)^{+}$which is the call payoff in (1.2).

2. Preliminaries

The following definition and lemma are needed.
Definition 2.1. Given f is piescewise continuous on the interval $0 \leq t \leq A$ for any positive A and if there exists the real constant K, a and M such that

$$
|f(t)| \leq K e^{\alpha t} \text { for } t \geq M
$$

Then the Laplace transform of the $f(t)$, denoted by $\mathcal{L} f(t)$ is defined by

$$
\begin{equation*}
\mathcal{L} f(t)=F(\xi)=\int_{0}^{\infty} e^{-\xi t} f(t) d t \tag{2.1}
\end{equation*}
$$

and the inverse Laplace transform of $F(\xi)$ is defined by

$$
\begin{equation*}
f(t)=\mathcal{L}^{-1} F(\xi)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(\xi) e^{\xi t} d \xi \tag{2.2}
\end{equation*}
$$

Lemma 2.2. [3]

(i) $\mathcal{L} \delta(t)=1$ where $\delta(t)$ is the Dirac-delta function.
(ii) $\mathcal{L} \delta^{(k)}(t)=\xi^{k}$ where $\delta^{(k)}(t)$ is the Dirac-delta function with k-derivative and $\delta^{(0)}(t)=\delta(t)$ and $\xi>0$.
(iii) $\mathcal{L}\left(t^{p}\right)=\frac{\Gamma(p+1)}{\xi^{p+1}}$ for $p>-1$ and $\xi>0$ where $\Gamma(p+1)$ is the Gamma function. If p is positive number n then $\mathcal{L}\left(t^{n}\right)=\frac{n!}{\xi^{n+1}}, \xi>0$.
(iv) $\mathcal{L}\left[t^{k} f(t)\right]=(-1)^{k} F^{(k)}(\xi)$.
(v) $\mathcal{L}\left[f^{(k)}(t)\right]=\xi^{k} F(\xi)$.

3. Main Results

Theorem 3.1. Recall the Black-Scholes equation in (1.1) that

$$
\begin{equation*}
\frac{\partial}{\partial t} u(s, t)+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2}}{\partial s^{2}} u(s, t)+r s \frac{\partial}{\partial s} u(s, t)-r u(s, t)=0 \tag{3.1}
\end{equation*}
$$

and the call payoff in (1.2) that

$$
\begin{equation*}
u\left(s_{T}, T\right)=\left(s_{T}-p\right)^{+} \tag{3.2}
\end{equation*}
$$

then in (1.6)

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \mathcal{L}^{-1}\left(\xi^{\alpha}\right) \tag{3.3}
\end{equation*}
$$

is the solution of (3.1) with the parametric interest

$$
\begin{equation*}
\lambda=(\alpha+2) r-\frac{\alpha^{2}+3 \alpha+2}{2} \sigma^{2} . \tag{3.4}
\end{equation*}
$$

In particular if $\alpha=m$ where m is nonnegative integer then (3.3) becomes

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \xi^{(m)}(s) \tag{3.5}
\end{equation*}
$$

with the parametric interest

$$
\begin{equation*}
\lambda=(m+2) r-\frac{m^{2}+3 m+2}{2} \sigma^{2} . \tag{3.6}
\end{equation*}
$$

Also for the case α is negative real number, that is $\alpha<0$ then (3.3) becomes

$$
\begin{equation*}
u(S, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \frac{s^{-\alpha-1}}{\Gamma(-\alpha)} \tag{3.7}
\end{equation*}
$$

In particular, if α is negative integer and suppose $\alpha=-n$ then (3.7) reduces to

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} e^{-\lambda(T-t)}\left(\frac{s}{s_{T}}\right)^{n-1} \tag{3.8}
\end{equation*}
$$

with the parametric interest

$$
\begin{equation*}
\lambda=(2-n) r-\frac{\left(n^{2}-3 n+2\right.}{2} \sigma^{2} . \tag{3.9}
\end{equation*}
$$

Proof. By changing the variable $u(s, t)=V(R, T)$ where $R=\ln s$ then (3.1) is transformed to the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} V(R, t)+\frac{1}{2} \sigma^{2} \frac{\partial^{2}}{\partial R^{2}} V(R, t)+\left(r-\frac{\sigma^{2}}{2}\right) \frac{\partial}{\partial R} V(R, t)-r V(R, t)=0 . \tag{3.10}
\end{equation*}
$$

By the method of separation of variable, let $V(R, t)=X(R) U(t)$, then $\frac{\partial}{\partial t} V(R, t)=$ $X(R) U^{\prime}(t), \frac{\partial}{\partial R} V(R, t)=X^{\prime}(R) U(t)$ and $\frac{\partial^{2}}{\partial R^{2}} V(R, t)=X^{\prime \prime}(t) U(t)$ then substitute into (3.10). Then we obtained

$$
X(R) U^{\prime}(t)+\frac{1}{2} \sigma^{2} X^{\prime \prime}(R) U(t)+\left(r-\frac{\sigma^{2}}{2}\right) X^{\prime}(R) U(t)-r X(R) U(t)=0
$$

or

$$
\frac{U^{\prime}(t)}{U(t)}+\frac{1}{2} \sigma^{2} \frac{X^{\prime \prime}(R)}{X(R)}+\left(r-\frac{\sigma^{2}}{2}\right) \frac{X^{\prime}(R)}{X(R)}-r=0
$$

Let

$$
\frac{U^{\prime}(t)}{U(t)}+\frac{1}{2} \sigma^{2} \frac{X^{\prime \prime}(R)}{X(R)}+\left(r-\frac{\sigma^{2}}{2}\right) \frac{X^{\prime}(R)}{X(R)}-r=\lambda
$$

where λ is a parameter.
Now consider $\frac{U^{\prime}(t)}{U(t)}=\lambda$ then $U(t)=C e^{\lambda t}$. Now we compute the constant C.
Since $u(s, t)=V(R, t)=X(R) U(t)$ and the call payoff $u\left(s_{T}, T\right)=\left(s_{T}-p\right)^{+}$, hence $X\left(\ln s_{T}\right) U(T)=\left(s_{T}-p\right)^{+}$and $U(T)=C e^{\lambda T}$. It follows that $C=\frac{U(T)}{e^{\lambda T}}=\frac{\left(s_{T}-p\right)^{+}}{X\left(\ln s_{T}\right) e^{\lambda T}}$. Thus we have

$$
\begin{equation*}
U(t)=\frac{\left(s_{T}-p\right)^{+}}{X\left(\ln S_{T}\right)} \frac{e^{\lambda t}}{e^{\lambda T}}=\frac{\left(s_{T}-p\right)^{+}}{X\left(\ln S_{T}\right)} e^{-\lambda(T-t)} \tag{3.11}
\end{equation*}
$$

Next consider $\frac{1}{2} \sigma^{2} \frac{X^{\prime \prime}(R)}{X(R)}+\left(r-\frac{\sigma^{2}}{2}\right) \frac{X^{\prime}(R)}{X(R)}-r+\lambda=0$ and let $X(R)=X(\ln s)=y(s)$. Then $X^{\prime}(R)=\frac{d y(s)}{d R}=\frac{d y(s)}{d s} \frac{d s}{d R}=s y^{\prime}(s)$ and $X^{\prime \prime}(R)=s^{2} y^{\prime \prime}(s)+s y^{\prime}(s)$ thus

$$
\sigma^{2}\left[s^{2} y^{\prime \prime}(s)+s y^{\prime}(s)\right]+\left(2 r-\sigma^{2}\right) s y^{\prime}(s)-(2 r-2 \lambda) y(s)=0
$$

or

$$
\begin{equation*}
\sigma^{2} s^{2} y^{\prime \prime}(s)+2 r s y^{\prime}(s)-(2 r-2 \lambda) y(s)=0 \tag{3.12}
\end{equation*}
$$

The equation (3.12) is the Euler's equation of order 2. Take the Laplace transform of (2.1) to (3.12) and use (iv) and (v) of Lemma 2.2. Where $\mathcal{L} y(s)=Y(\xi)$ then

$$
\sigma^{2} \frac{d^{2}}{d \xi^{2}}\left[\xi^{2} Y(\xi)\right]+(-1) 2 r \frac{d}{d \xi}[\xi Y(\xi)]-(2 r-2 \lambda) Y(\xi)=0
$$

or

$$
\begin{equation*}
\sigma^{2} \xi^{2} Y^{\prime \prime}(\xi)+\left(4 \sigma^{2}-2 r\right) \xi Y^{\prime}(\xi)+\left(2 \sigma^{2}-4 r+2 \lambda\right) Y(\xi)=0 \tag{3.13}
\end{equation*}
$$

which is also the Euler's equation of order 2. Let $y(\xi)=\xi^{\alpha}$ and substitute into (3.13) then

$$
\left[\sigma^{2} \alpha(\alpha-1)+\left(4 \sigma^{2}-2 r\right) \alpha+\left(2 \sigma^{2}-4 r+2 \lambda\right)\right] \xi^{\alpha}=0
$$

Thus we have

$$
\begin{equation*}
\sigma^{2} \alpha^{2}+\left(3 \sigma^{2}-2 r\right) \alpha+\left(2 \sigma^{2}-4 r+2 \lambda\right)=0 \tag{3.14}
\end{equation*}
$$

The real number α and the parametric interest λ can be obtained from (3.14). Since $Y(\xi)=\xi^{\alpha}$, hence $y(s)=\mathcal{L}^{-1} Y(\xi)=\mathcal{L}^{-1}\left(\xi^{\alpha}\right)$ where \mathcal{L}^{-1} is the inverse Laplace transform.

Since $u(s, t)=V(R, t)=X(\ln s) U(t)=y(s) U(t)$, thus from (3.11)

$$
\begin{equation*}
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \mathcal{L}^{-1}\left(\xi^{\alpha}\right) \tag{3.15}
\end{equation*}
$$

where $u(s, t, \lambda)$ is the function of s, t and λ.
Thus we obtained (3.3) as required.
Now for the case $\alpha=m$ where m is nonnegative integer and from (ii) of Lemma 2.2 $\mathcal{L} \delta^{(m)}(s)=\xi^{m}$. Thus $\delta^{(m)}(s)=\mathcal{L}^{-1}\left(\xi^{m}\right)$. It follows that

$$
u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \delta^{(m)}(s)
$$

Thus we obtained (3.5) as required.
Next for the case $\alpha<0$ and from (iii) of Lemma 2.2

$$
\mathcal{L} s^{p}=\frac{\Gamma(p+1)}{\xi^{p+1}}=\Gamma(p+1) \xi^{-p-1}, \text { for } p>-1
$$

Let $\alpha=-p-1$ then $p=-\alpha-1$. Thus $\mathcal{L}\left(s^{-\alpha-1}\right)=\Gamma(-\alpha) \xi^{\alpha}$. It follows that $\mathcal{L}^{-1}\left(\xi^{\alpha}\right)=$ $\frac{s^{-\alpha-1}}{\Gamma(-\alpha)}$. Thus from (3.5),

$$
u(S, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \frac{s^{-\alpha-1}}{\Gamma(-\alpha)}
$$

Thus we obtained (3.7) as required. In particular, if α is negative integer and suppose $\alpha=-n$ then $u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{X\left(\ln s_{T}\right)} \frac{s^{n-1}}{\Gamma(n)}$. Since the call payoff $u\left(s_{T}, T, \lambda\right)=$ $\left(s_{T}-p\right)^{+}$at $t=T$ hence $\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-T)}}{X\left(\ln s_{T}\right)} \frac{s_{T}^{n-1}}{\Gamma(n)}=\left(s_{T}-p\right)^{+}$. It follows that $X\left(\ln s_{T}\right)=\frac{s_{T}^{n-1}}{\Gamma(n)}$. Thus we have $u(s, t, \lambda)=\left(s_{T}-p\right)^{+} \frac{e^{-\lambda(T-t)}}{\Gamma(n)} \frac{\Gamma(n)}{s_{T}^{n-1}} s^{n-1}$ or $u(s, t, \lambda)=$ $\left(s_{T}-p\right)^{+} e^{-\lambda(T-t)}\left(\frac{s}{s_{T}}\right)^{n-1}$ with the parametric interest from (3.14) with $\alpha=-n$

$$
\lambda=(2-n) r-\frac{\left(n^{2}-3 n+2\right)}{2} \sigma^{2} .
$$

Thus we obtained (3.8) as required. Now consider the call payoff $u\left(s_{T}, T, \lambda\right)$ at $t=T$ then from (3.8),

$$
u\left(s_{T}, T, \lambda\right)=\left(s_{T}-p\right)^{+} e^{-\lambda(T-T)}\left(\frac{s_{T}}{s_{T}}\right)^{n-1}=\left(s_{T}-p\right)^{+}
$$

with the same as the call payoff in (1.2)

$$
u\left(s_{T}, T\right)=\left(s_{T}-p\right)^{+}
$$

We see that even $u(s, t)$ in (1.3) is different from $u(s, t, \lambda)$ in (1.11) but they have the same call payoff.

Now consider (3.8) with $n=1$ and we have $\lambda=r$ in (3.9) with $n=1$. Then (3.8) reduces to

$$
u(s, t, r)=\left(s_{T}-p\right)^{+} e^{-r(T-t)}
$$

with call payoff $u\left(s_{T}, T, r\right)=\left(s_{T}-p\right)^{+}$at $t=T$.
Moreover for $n=2$ in (3.9) $\lambda=0$ and again from (3.8)

$$
u(s, t, 0)=\left(s_{T}-p\right)\left(\frac{s}{s_{T}}\right)
$$

with the call payoff

$$
u\left(s_{T}, T, 0\right)=\left(s_{T}-p\right)^{+}\left(\frac{s_{T}}{s_{T}}\right)=\left(s_{T}-p\right)^{+}
$$

We see that the parametric interest λ is the generalization of the interest rate r that appears in the option price $u(S, t)$.

4. CONCLUSION

The main point of this research is focusing on the parametric interest λ which gives the conditions of the solutions of the Black-Scholes equation to be weak or strong solution that appear in (1.8), (1.10) and (1.11) of the Introduction part.

Moreover λ is the generalization of the interest rate r. Thus from (3.9) for $n=1$ we have $\lambda=r$. Thus we obtained from (3.8)

$$
u(s, t, r)=\left(s_{T}-p\right)^{+} e^{-r(T-t)}
$$

or $\left(s_{T}-p\right)^{+}=u(s, t, r) e^{r(T-t)}$. That means the call payoff $\left(s_{T}-p\right)^{+}$is equal to the the option price $u(s, t, r)$ put in the bank with the interest rate r at the time $T-t$.

Acknowledgements

The authors would like to thank Chiang Mai University for financial support.

References

[1] F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of political economy 81 (3) (1973) 637-654.
[2] J. Stamffi, V. Goodman, The Mathematics of Finance: Modeling and Hedging, Thomas Learning, 2001.
[3] A.H. Zemanian, Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications, Courier Corporation, 1965.

[^0]: *Corresponding author.

