Thai Journal of **Math**ematics Volume 18 Number 2 (2020) Pages 831–837

http://thaijmath.in.cmu.ac.th

On the Parametric Interest of the Option Price of Stock from Black-Scholes Equation

Amnuay Kananthai^{1,*}, Somsak Chanaim² and Chongkolnee Rungruang³

¹ Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : malamnka@gmail.com

² International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : somsak_ ch@cmu.ac.th

³ Faculty of Commerce and Management, Prince of Songkla University, Trang Campus, Trang 92000, Thailand e-mail : chongkolnee.r@psu.ac.th

Abstract In this paper, we studied the option price of stock from the Black-Scholes equation and discovered some parameter λ which is the generalization of the interest r. Such λ is the first that named the parametric interest which is new the results. Moreover we found that such λ gives the conditions for the solution of the Black-Scholes equation which may be weak or strong solution.

MSC: 62P05

Keywords: option; stock; Black-Scholes equation

Submission date: 07.08.2019 / Acceptance date: 22.04.2020

1. INTRODUCTION

It is well known that the Black-Scholes equation plays an important role in solving the option price of the stock which is call the Black-Scholes formula (see [1, pp. 637-659]). The Black-Scholes equation is given by

$$\frac{\partial}{\partial t}u(s,t) + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2}{\partial s^2}u(s,t) + rs\frac{\partial}{\partial s}u(s,t) - ru(s,t) = 0$$
(1.1)

with the call payoff

$$u(s_T, T) = (s_T - p)^+ \equiv \max(s_T - p, 0)$$
(1.2)

for $0 \le t \le T$ where u(s,t) is the option price at time t, s_T is the price of stock at the expiration time T, s is the price of stock at time t, r is the interest rate, σ is the volatility of stock price and p is the strike price.

They obtained the solution u(s,t) of (1.1) which is called the Black-Scholes formula and satisfies (1.2) of the form

$$u(s,t) = sN(d_1) - pe^{-r(T-t)}N(d_2)$$
(1.3)

*Corresponding author.

Published by The Mathematical Association of Thailand. Copyright © 2020 by TJM. All rights reserved.

see [2, pp. 90-91] where

$$d_1 = \frac{\ln\left(\frac{s}{p}\right) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$
$$d_2 = \frac{\ln\left(\frac{s}{p}\right) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

and $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy.$

In this work, we studied the solution of (1.1) in the other form which is the generalization of (1.3). Starting with changing the variable u(s,t) = V(R,t) where $R = \ln s$. Then (1.1) is transformed to equation

$$\frac{\partial}{\partial t}V(R,t) + \frac{\sigma^2}{2}\frac{\partial^2}{\partial R^2}V(R,t) + (r - \frac{\sigma^2}{2})\frac{\partial}{\partial R}V(R,t) - rV(R,t) = 0$$
(1.4)

with the call payoff in (1.2)

$$V(R_T, T) = (e^{R_T} - p)^+$$
(1.5)

where $R_T = \ln s_T$. Then we obtained the solution of (1.4) in the form

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \mathcal{L}^{-1}(\xi^{\alpha})$$
(1.6)

where $\mathcal{L}^{-1}(\xi^{\alpha})$ is the inverse Laplace transform of ξ^{α} and $X(\ln s_T)$ is the function of $\ln s_T$ and α is the real number that can be obtained from the equation

$$\sigma^2 \alpha^2 + (3\sigma^2 - 2r)\alpha + (2\sigma^2 - 4r + 2\lambda) = 0$$
(1.7)

with λ is the parametric interest.

Now consider the following cases.

(i) Suppose $\alpha = m$ where m is nonnegative integer then we obtained the solution in (1.6) as the weak solution of the form

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \delta^{(m)}(s)$$
(1.8)

where $\delta^{(m)}(s)$ is the Dirac-delta function with *m*-derivative with $\delta^{(0)}(s) = \delta(s)$ and the parametric interest λ can be obtained from (1.7) as

$$\lambda = \lambda(r,\sigma) = (m+2)r - \frac{m^2 + 3m + 2}{2}\sigma^2.$$
(1.9)

(*ii*) Suppose α is a negative real number, that is $\alpha < 0$ then we obtained the solution is (1.6) as the strong solution or the classical solution of the form

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \frac{s^{-\alpha - 1}}{\Gamma(-\alpha)}$$
(1.10)

where $\Gamma(-\alpha)$ is the Gamma function of $-\alpha$. In particular, if $\alpha = -n$ for some positive integer *n* then (1.10) reduces to

$$u(s,t,\lambda) = (s_T - p)^+ e^{-\lambda(T-t)} \left(\frac{s}{s_T}\right)^{n-1}$$
(1.11)

with the parametric interest

$$\lambda = (2-n)r - \frac{(n^2 - 3n + 2)}{2}\sigma^2.$$
(1.12)

We see that (1.8) and (1.10) are the other solutions of the Black-Scholes solution in (1.1). Particularly, for n = 1 in (1.12) we have $\lambda = r$ that means the parametric interest λ is the interest rate r of the option price of stock. It follows that from (1.11)

$$u(s,t,r) = (s_t - p)^+ e^{-r(T-t)}$$

and at t = T we obtained $u(s_T, T, r) = (s_T - p)^+$ which is the call payoff in (1.2). Also for the case n = 2 in (1.12) we have $\lambda = 0$. It follows that from (1.11)

$$u(s,t,0) = (s_T - p)^+ e^{0(T-t)} \left(\frac{s}{s_T}\right) = (s_T - p)^+ \left(\frac{s}{s_T}\right)$$

and at t = T, $u(s_T, T, 0) = (s_T - p)^+ \left(\frac{s_T}{s_T}\right) = (s_T - p)^+$ which is the call payoff in (1.2).

2. Preliminaries

The following definition and lemma are needed.

Definition 2.1. Given f is piescewise continuous on the interval $0 \le t \le A$ for any positive A and if there exists the real constant K, a and M such that

$$|f(t)| \le K e^{\alpha t}$$
 for $t \ge M$.

Then the Laplace transform of the f(t), denoted by $\mathcal{L}f(t)$ is defined by

$$\mathcal{L}f(t) = F(\xi) = \int_0^\infty e^{-\xi t} f(t)dt$$
(2.1)

and the inverse Laplace transform of $F(\xi)$ is defined by

$$f(t) = \mathcal{L}^{-1} F(\xi) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(\xi) e^{\xi t} d\xi.$$
 (2.2)

Lemma 2.2. [3]

- (i) $\mathcal{L}\delta(t) = 1$ where $\delta(t)$ is the Dirac-delta function.
- (ii) $\mathcal{L}\delta^{(k)}(t) = \xi^k$ where $\delta^{(k)}(t)$ is the Dirac-delta function with k-derivative and $\delta^{(0)}(t) = \delta(t)$ and $\xi > 0$.
- (iii) $\mathcal{L}(t^p) = \frac{\Gamma(p+1)}{\xi^{p+1}}$ for p > -1 and $\xi > 0$ where $\Gamma(p+1)$ is the Gamma function.

If p is positive number n then $\mathcal{L}(t^n) = \frac{n!}{\xi^{n+1}}, \xi > 0.$

(*iv*)
$$\mathcal{L}[t^k f(t)] = (-1)^k F^{(k)}(\xi).$$

(*v*) $\mathcal{L}[f^{(k)}(t)] = \xi^k F(\xi).$

3. Main Results

Theorem 3.1. Recall the Black-Scholes equation in (1.1) that

$$\frac{\partial}{\partial t}u(s,t) + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2}{\partial s^2}u(s,t) + rs\frac{\partial}{\partial s}u(s,t) - ru(s,t) = 0$$
(3.1)

and the call payoff in (1.2) that

$$u(s_T, T) = (s_T - p)^+$$
(3.2)

then in (1.6)

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \mathcal{L}^{-1}(\xi^{\alpha})$$
(3.3)

is the solution of (3.1) with the parametric interest

$$\lambda = (\alpha + 2)r - \frac{\alpha^2 + 3\alpha + 2}{2}\sigma^2. \tag{3.4}$$

In particular if $\alpha = m$ where m is nonnegative integer then (3.3) becomes

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \xi^{(m)}(s)$$
(3.5)

with the parametric interest

$$\lambda = (m+2)r - \frac{m^2 + 3m + 2}{2}\sigma^2.$$
(3.6)

Also for the case α is negative real number, that is $\alpha < 0$ then (3.3) becomes

$$u(S, t, \lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \frac{s^{-\alpha - 1}}{\Gamma(-\alpha)}.$$
(3.7)

In particular, if α is negative integer and suppose $\alpha = -n$ then (3.7) reduces to

$$u(s,t,\lambda) = (s_T - p)^+ e^{-\lambda(T-t)} \left(\frac{s}{s_T}\right)^{n-1}$$
(3.8)

with the parametric interest

$$\lambda = (2-n)r - \frac{(n^2 - 3n + 2)^2}{2}\sigma^2.$$
(3.9)

Proof. By changing the variable u(s,t) = V(R,T) where $R = \ln s$ then (3.1) is transformed to the equation

$$\frac{\partial}{\partial t}V(R,t) + \frac{1}{2}\sigma^2 \frac{\partial^2}{\partial R^2}V(R,t) + \left(r - \frac{\sigma^2}{2}\right)\frac{\partial}{\partial R}V(R,t) - rV(R,t) = 0.$$
(3.10)

By the method of separation of variable, let V(R,t) = X(R)U(t), then $\frac{\partial}{\partial t}V(R,t) = X(R)U'(t)$, $\frac{\partial}{\partial R}V(R,t) = X'(R)U(t)$ and $\frac{\partial^2}{\partial R^2}V(R,t) = X''(t)U(t)$ then substitute into (3.10). Then we obtained

$$X(R)U'(t) + \frac{1}{2}\sigma^2 X''(R)U(t) + (r - \frac{\sigma^2}{2})X'(R)U(t) - rX(R)U(t) = 0$$

or

$$\frac{U'(t)}{U(t)} + \frac{1}{2}\sigma^2 \frac{X''(R)}{X(R)} + (r - \frac{\sigma^2}{2})\frac{X'(R)}{X(R)} - r = 0.$$

Let

$$\frac{U'(t)}{U(t)} + \frac{1}{2}\sigma^2 \frac{X''(R)}{X(R)} + (r - \frac{\sigma^2}{2})\frac{X'(R)}{X(R)} - r = \lambda$$

where λ is a parameter.

Now consider $\frac{U'(t)}{U(t)} = \lambda$ then $U(t) = Ce^{\lambda t}$. Now we compute the constant C. Since u(s,t) = V(R,t) = X(R)U(t) and the call payoff $u(s_T,T) = (s_T - p)^+$, hence $X(\ln s_T)U(T) = (s_T - p)^+$ and $U(T) = Ce^{\lambda T}$. It follows that $C = \frac{U(T)}{e^{\lambda T}} = \frac{(s_T - p)^+}{X(\ln s_T)e^{\lambda T}}$. Thus we have

$$U(t) = \frac{(s_T - p)^+}{X(\ln S_T)} \frac{e^{\lambda t}}{e^{\lambda T}} = \frac{(s_T - p)^+}{X(\ln S_T)} e^{-\lambda(T-t)}.$$
(3.11)

Next consider $\frac{1}{2}\sigma^2 \frac{X''(R)}{X(R)} + (r - \frac{\sigma^2}{2})\frac{X'(R)}{X(R)} - r + \lambda = 0 \text{ and let } X(R) = X(\ln s) = y(s).$ Then $X'(R) = \frac{dy(s)}{dR} = \frac{dy(s)}{ds}\frac{ds}{dR} = sy'(s)$ and $X''(R) = s^2y''(s) + sy'(s)$ thus

$$\sigma^{2}[s^{2}y''(s) + sy'(s)] + (2r - \sigma^{2})sy'(s) - (2r - 2\lambda)y(s) = 0$$

or

$$\sigma^2 s^2 y''(s) + 2rsy'(s) - (2r - 2\lambda)y(s) = 0.$$
(3.12)

The equation (3.12) is the Euler's equation of order 2. Take the Laplace transform of (2.1) to (3.12) and use (iv) and (v) of Lemma 2.2. Where $\mathcal{L}y(s) = Y(\xi)$ then

$$\sigma^2 \frac{d^2}{d\xi^2} [\xi^2 Y(\xi)] + (-1)2r \frac{d}{d\xi} [\xi Y(\xi)] - (2r - 2\lambda)Y(\xi) = 0$$

or

$$\sigma^{2}\xi^{2}Y''(\xi) + (4\sigma^{2} - 2r)\xi Y'(\xi) + (2\sigma^{2} - 4r + 2\lambda)Y(\xi) = 0$$
(3.13)

which is also the Euler's equation of order 2. Let $y(\xi) = \xi^{\alpha}$ and substitute into (3.13) then

$$[\sigma^2 \alpha (\alpha - 1) + (4\sigma^2 - 2r)\alpha + (2\sigma^2 - 4r + 2\lambda)]\xi^{\alpha} = 0.$$

Thus we have

$$\sigma^2 \alpha^2 + (3\sigma^2 - 2r)\alpha + (2\sigma^2 - 4r + 2\lambda) = 0.$$
(3.14)

The real number α and the parametric interest λ can be obtained from (3.14). Since $Y(\xi) = \xi^{\alpha}$, hence $y(s) = \mathcal{L}^{-1}Y(\xi) = \mathcal{L}^{-1}(\xi^{\alpha})$ where \mathcal{L}^{-1} is the inverse Laplace transform. Since $u(s,t) = V(R,t) = X(\ln s)U(t) = y(s)U(t)$, thus from (3.11)

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \mathcal{L}^{-1}(\xi^{\alpha})$$
(3.15)

where $u(s, t, \lambda)$ is the function of s, t and λ .

Thus we obtained (3.3) as required.

Now for the case $\alpha = m$ where *m* is nonnegative integer and from (ii) of Lemma 2.2 $\mathcal{L}\delta^{(m)}(s) = \xi^m$. Thus $\delta^{(m)}(s) = \mathcal{L}^{-1}(\xi^m)$. It follows that

$$u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \delta^{(m)}(s).$$

Thus we obtained (3.5) as required.

Next for the case $\alpha < 0$ and from (iii) of Lemma 2.2

$$\mathcal{L}s^p = \frac{\Gamma(p+1)}{\xi^{p+1}} = \Gamma(p+1)\xi^{-p-1}, \text{ for } p > -1.$$

Let $\alpha = -p - 1$ then $p = -\alpha - 1$. Thus $\mathcal{L}(s^{-\alpha - 1}) = \Gamma(-\alpha)\xi^{\alpha}$. It follows that $\mathcal{L}^{-1}(\xi^{\alpha}) = \frac{s^{-\alpha - 1}}{\Gamma(-\alpha)}$. Thus from (3.5),

$$u(S,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \frac{s^{-\alpha-1}}{\Gamma(-\alpha)}.$$

Thus we obtained (3.7) as required. In particular, if α is negative integer and suppose $\alpha = -n$ then $u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{X(\ln s_T)} \frac{s^{n-1}}{\Gamma(n)}$. Since the call payoff $u(s_T,T,\lambda) = (s_T - p)^+$ at t = T hence $(s_T - p)^+ \frac{e^{-\lambda(T-T)}}{X(\ln s_T)} \frac{s_T^{n-1}}{\Gamma(n)} = (s_T - p)^+$. It follows that $X(\ln s_T) = \frac{s_T^{n-1}}{\Gamma(n)}$. Thus we have $u(s,t,\lambda) = (s_T - p)^+ \frac{e^{-\lambda(T-t)}}{\Gamma(n)} \frac{\Gamma(n)}{s_T^{n-1}} s^{n-1}$ or $u(s,t,\lambda) = (s_T - p)^+ e^{-\lambda(T-t)} \left(\frac{s}{s_T}\right)^{n-1}$ with the parametric interest from (3.14) with $\alpha = -n$ $\lambda = (2-n)r - \frac{(n^2 - 3n + 2)}{2}\sigma^2$.

Thus we obtained (3.8) as required. Now consider the call payoff $u(s_T, T, \lambda)$ at t = T then from (3.8),

$$u(s_T, T, \lambda) = (s_T - p)^+ e^{-\lambda(T - T)} \left(\frac{s_T}{s_T}\right)^{n-1} = (s_T - p)^+$$

with the same as the call payoff in (1.2)

$$u(s_T, T) = (s_T - p)^+.$$

We see that even u(s,t) in (1.3) is different from $u(s,t,\lambda)$ in (1.11) but they have the same call payoff.

Now consider (3.8) with n = 1 and we have $\lambda = r$ in (3.9) with n = 1. Then (3.8) reduces to

$$u(s,t,r) = (s_T - p)^+ e^{-r(T-t)}$$

with call payoff $u(s_T, T, r) = (s_T - p)^+$ at t = T.

Moreover for n = 2 in (3.9) $\lambda = 0$ and again from (3.8)

$$u(s,t,0) = (s_T - p)\left(\frac{s}{s_T}\right)$$

with the call payoff

$$u(s_T, T, 0) = (s_T - p)^+ \left(\frac{s_T}{s_T}\right) = (s_T - p)^+$$

We see that the parametric interest λ is the generalization of the interest rate r that appears in the option price u(S,t).

4. CONCLUSION

The main point of this research is focusing on the parametric interest λ which gives the conditions of the solutions of the Black-Scholes equation to be weak or strong solution that appear in (1.8), (1.10) and (1.11) of the Introduction part.

Moreover λ is the generalization of the interest rate r. Thus from (3.9) for n = 1 we have $\lambda = r$. Thus we obtained from (3.8)

$$u(s,t,r) = (s_T - p)^+ e^{-r(T-t)}$$

or $(s_T - p)^+ = u(s, t, r)e^{r(T-t)}$. That means the call payoff $(s_T - p)^+$ is equal to the the option price u(s, t, r) put in the bank with the interest rate r at the time T - t.

ACKNOWLEDGEMENTS

The authors would like to thank Chiang Mai University for financial support.

References

- F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of political economy 81 (3) (1973) 637–654.
- [2] J. Stamffi, V. Goodman, The Mathematics of Finance: Modeling and Hedging, Thomas Learning, 2001.
- [3] A.H. Zemanian, Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications, Courier Corporation, 1965.