Regularity of a Semigroup of Transformations with Restricted Range that Preserves an Equivalence Relation and a Cross-Section

Chollawat Pookpienlert ${ }^{1}$, Preeyanuch Honyam ${ }^{2, *}$ and Jintana Sanwong ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand e-mail : chollawat_j@hotmail.com (C. Pookpienlert)
${ }^{2}$ Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : preeyanuch.h@cmu.ac.th (P. Honyam); jintana.s@cmu.ac.thm (J. Sanwong)

Abstract

For a fixed nonempty subset Y of X, let $T(X, Y)$ be the semigroup consisting of all transformations from X into Y. Let ρ be an equivalence relation on $X, \hat{\rho}$ the restriction of ρ on Y and R a cross-section of the partition $Y / \hat{\rho}$. We define $$
T(X, Y, \rho, R)=\{\alpha \in T(X, Y): R \alpha \subseteq R \text { and }(a, b) \in \rho \Rightarrow(a \alpha, b \alpha) \in \rho\}
$$

Then $T(X, Y, \rho, R)$ is a subsemigroup of $T(X, Y)$. In this paper, we describe regular elements in $T(X, Y, \rho, R)$, characterize when $T(X, Y, \rho, R)$ is a regular semigroup and investigate some classes of $T(X, Y, \rho, R)$ such as completely regular and inverse from which the results on $T(X, \rho, R)$ and $T(X, Y)$ can be recaptured easily when taking $Y=X$ and ρ to be the identity relation, respectively. Moreover, the description of unit-regularity on $T(X, \rho, R)$ is obtained.

MSC: 20M20
Keywords: transformation semigroup; regularity; completely regularity; inverse semigroup; unit-regularity

Submission date: 01.10.2018 / Acceptance date: 20.03.2019

1. Introduction

For any a nonempty set X, denote by $T(X)$ the semigroup of all transformations from X into itself with composition. There is a well-known result on $T(X)$ stated that $T(X)$ is a regular semigroup which was shown in [1]. Additionally, Alarcao [2] characterized the unit-regularity of $T(X)$ in 1980. Several kinds of subsemigroups of $T(X)$ have been considered in different years. Especially, in 2003, Araújo and Konieczny [3] investigated a subsemigroup of $T(X)$ with respect to an equivalence relation ρ on X and a cross-section
R of the partition X / ρ (i.e., each ρ-class contains exactly one element of R), namely $T(X, \rho, R)$, which is defined as follows:

$$
T(X, \rho, R)=\{\alpha \in T(X): R \alpha \subseteq R \text { and }(a, b) \in \rho \Rightarrow(a \alpha, b \alpha) \in \rho\}
$$

Moreover, the authors determined the automorphism groups of centralizers of idempotents. Furthermore, they studied Green's relations, regularity, inverse and completely regular classes of $T(X, \rho, R)$ in 2004 [4].

Let Y be any subset of a set X. A subsemigroup $\operatorname{Fix}(X, Y)$ of $T(X)$ is defined to be the set of all transformations on X which fix all elements in Y, that is,

$$
\operatorname{Fix}(X, Y)=\{\alpha \in T(X): a \alpha=a \text { for all } a \in Y\} .
$$

In 2003, Honyam and Sanwong [5] showed that $\operatorname{Fix}(X, Y)$ is a regular submonoid of $T(X)$. Later in 2007, Chaiya et al. [6] also studied this semigroup. They provided necessary and sufficient conditions for $\operatorname{Fix}(X, Y)$ to be unit-regular.

For a nonempty subset Y of X, a subsemigroup $T(X, Y)$ of $T(X)$ was first considered by Symons [7] in 1975. He defined $T(X, Y)$ as a semigroup of all transformations on X whose ranges are contained in Y, that is,

$$
T(X, Y)=\{\alpha \in T(X): X \alpha \subseteq Y\}
$$

Furthermore, he described all the automorphisms of $T(X, Y)$ and also determined when $T\left(X_{1}, Y_{1}\right)$ is isomorphic to $T\left(X_{2}, Y_{2}\right)$. Later in 2005, Nenthein et al. [8] provided the characterization when $T(X, Y)$ is regular. In 2008, Sanwong and Sommanee [9] studied other algebraic properties of $T(X, Y)$. They determined its Green's relations and obtained a class of maximal inverse subsemigroups of $T(X, Y)$. In addition, they introduced a new subsemigroup of $T(X, Y)$, denoted by $F(X, Y)$, defined as follows:

$$
F(X, Y)=\{\alpha \in T(X, Y): X \alpha \subseteq Y \alpha\}
$$

They proved that $F(X, Y)$ is the largest regular subsemigroup of $T(X, Y)$. In 2011, Sanwong [10] determined all maximal regular subsemigroups of $F(X, Y)$ when Y is a finite set.

Recently, Pookpienlert et al. [11] gave descriptions of Green's relations on the subsemigroup $T(X, Y, \rho, R)$ of $T(X, Y)$ which is defined as follows. Let ρ be an equivalence relation on $X, \hat{\rho}$ the restriction of ρ on Y (i.e., $\hat{\rho}=\rho \cap(Y \times Y)), R$ a cross-section of the partition $Y / \hat{\rho}$ and define

$$
T(X, Y, \rho, R)=\{\alpha \in T(X, Y): R \alpha \subseteq R \text { and }(a, b) \in \rho \Rightarrow(a \alpha, b \alpha) \in \rho\}
$$

If $Y=X$, then $T(X, Y, \rho, R)=T(X, \rho, R)$; and if $\rho=\triangle$, then $T(X, Y, \triangle, Y)=T(X, Y)$ where $\triangle=\{(x, x): x \in X\}$ is the identity relation on X. Thus their results extend the results of Araújo and Konieczny [4] and of Sanwong and Sommanee [9] on Green's relations of $T(X, \rho, R)$ and $T(X, Y)$, respectively. Furthermore, they observed that $F(X, Y) \cap T(X, Y, \rho, R)$ is a subsemigroup of $T(X, Y, \rho, R)$, denoted by F, since it contains all constant maps whose images belong to R.

Our purposes are to characterize regular elements in $T(X, Y, \rho, R)$ and provide necessary and sufficient conditions for $T(X, Y, \rho, R)$ to be regular. Moreover, we characterize when F is the largest regular subsemigroup of $T(X, Y, \rho, R)$. In addition, we present some conditions for $T(X, Y, \rho, R)$ to be never a completely regular semigroup and an inverse semigroup. Finally, we provide the characterization of the unit-regularity of $T(X, Y, \rho, R)$.

2. Preliminaries

Let S be a semigroup. An element $a \in S$ is regular if there exists $x \in S$ such that $a=a x a$, and S is called a regular semigroup if every element of S is regular. Moreover, a is said to be completely regular if there exists $x \in S$ in which $a=a x a$ and $a x=x a$. If every element in S is completely regular, then S is called a completely regular semigroup. Furthermore, an element a^{\prime} in S is said to be an inverse of a if $a=a a^{\prime} a$ and $a^{\prime}=a^{\prime} a a^{\prime}$. If every element in S has a unique inverse, then S is called an inverse semigroup. Another version is that S is an inverse semigroup if and only if it is regular and its idempotents commute (Howie [1]).

Let S be a monoid with identity 1 . An element $u \in S$ is called a unit if $u u^{\prime}=1=u^{\prime} u$ for some $u^{\prime} \in S$. Furthermore, S is said to be unit-regular if for each $a \in S$, there exists a unit element $u \in S$ in which $a=a u a$.

In fact, completely regular semigroups, inverse semigroups and unit-regular semigroups are regular semigroups.

Throughout this paper, the cardinality of a set A is denoted by $|A|$. Furthermore, we write functions on the right, this means that for a composition $\alpha \beta, \alpha$ is applied first. For an equivalence relation ρ on A, if $a, b \in A$ we sometimes write $a \rho b$ instead of $(a, b) \in \rho$, and define $a \rho$ to be the equivalence class that contains a, that is, $a \rho=\{b \in A: b \rho a\}$. In addition, the universal relation on A is denoted by ω. That is $\omega=A \times A$.

It is known that $\alpha \in T(X)$ is an idempotent if and only if $x \alpha=x$ for all $x \in X \alpha$. Moreover, $T(X)$ is a semigroup with an identity, the identity map. But for $T(X, Y, \rho, R)$, this is not always true as shown in the following example.
Example 2.1. Let $X=\{1,2,3,4,5\}, Y=\{1,3\}$ and $X / \rho=\{\{1,2\},\{3,4\},\{5\}\}$. Then $Y / \hat{\rho}=\{\{1\},\{3\}\}$ and let $R=Y$. Suppose that ε is an identity in $T(X, Y, \rho, R)$. Consider $\alpha \in T(X, Y, \rho, R)$ defined by

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 3
\end{array}\right)
$$

We see that $(5 \varepsilon) \alpha=5(\varepsilon \alpha)=5 \alpha=3$ which implies that $5=5 \varepsilon \in Y$, a contradiction.
However, we provide necessary and sufficient conditions for $T(X, Y, \rho, R)$ possessing an identity in Section 5.

In general, $T(X, Y, \rho, R)$ is not a regular semigroup as shown in the example below.
Example 2.2. Let $X=\{1,2,3,4,5\}, Y=\{1,2,3,4\}$ and $X / \rho=\{\{1,2,3\},\{4,5\}\}$. Then $Y / \hat{\rho}=\{\{1,2,3\},\{4\}\}$ and let $R=\{1,4\}$. Define $\alpha \in T(X, Y, \rho, R)$ by

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 2 & 1 & 3
\end{array}\right)
$$

Suppose that α is regular. Then $\alpha=\alpha \beta \alpha$ for some $\beta \in T(X, Y, \rho, R)$. We see that $3=5 \alpha=5(\alpha \beta \alpha)=(3 \beta) \alpha$ which implies that $5=3 \beta \in Y$, a contradiction.

The following lemmas are used in characterizing the regularity of $T(X, Y, \rho, R)$.
Lemma 2.3. If Y is a cross-section of X / ρ, then $T(X, Y, \rho, R)$ is isomorphic to $T(Y)$.
Proof. Assume that Y is a cross-section of X / ρ. Then $Y=R$ and for each $\alpha \in$ $T(X, Y, \rho, R)$, we have $\left.\alpha\right|_{Y} \in T(Y)$. So we define $\varphi: T(X, Y, \rho, R) \rightarrow T(Y)$ by $\alpha \varphi=\left.\alpha\right|_{Y}$ for all $\alpha \in T(X, Y, \rho, R)$. Now, we show that φ is an isomorphism.
φ is injective: Let $\alpha, \beta \in T(X, Y, \rho, R)$ be such that $\alpha \varphi=\beta \varphi$. Then $\left.\alpha\right|_{Y}=\left.\beta\right|_{Y}$. For each $a \in X$, we have $a \rho r$ for some unique $r \in R$. From $\alpha, \beta \in T(X, Y, \rho, R)$, we obtain
that $(a \alpha, r \alpha),(a \beta, r \beta) \in \rho$. So $a \alpha=r \alpha$ and $a \beta=r \beta$ since Y is a cross-section of X / ρ. Thus $a \alpha=r \alpha=\left.r \alpha\right|_{Y}=\left.r \beta\right|_{Y}=r \beta=a \beta$ for all $a \in X$. Hence $\alpha=\beta$.
φ is surjective: Let $\alpha \in T(Y)$. We define $\beta \in T(X, Y, \rho, R)$ on each ρ-class as follows. Let $a \rho \in X / \rho$. Then there is a unique $r_{a} \in Y$ such that $a \rho r_{a}$ and define $a \beta=r_{a} \alpha$. Thus $\left.\beta\right|_{Y}=\alpha$.

From the fact that $\left.(\alpha \beta)\right|_{Y}=\left(\left.\alpha\right|_{Y}\right)\left(\left.\beta\right|_{Y}\right)$ for all $\alpha, \beta \in T(X, Y, \rho, R)$, we obtain that $(\alpha \beta) \varphi=\left.(\alpha \beta)\right|_{Y}=\left(\left.\alpha\right|_{Y}\right)\left(\left.\beta\right|_{Y}\right)=(\alpha \varphi)(\beta \varphi)$. Therefore, $T(X, Y, \rho, R)$ is isomorphic to $T(Y)$.

Lemma 2.4. [2, Proposition 5] Let X be a nonempty set. Then $T(X)$ is unit-regular if and only if X is finite.

Lemma 2.5. [6, Theorem 5.2] Let Y be a fixed subset of X. Then $\operatorname{Fix}(X, Y)$ is unitregular if and only if $X \backslash Y$ is finite.
Lemma 2.6. [3, Theorem 3.1] Let $\alpha \in T(X, \rho, R)$. Then α is a unit if and only if α is a bijection.

3. Regularity of $T(X, Y, \rho, R)$

Let Z be a nonempty subset of Y. An equivalence relation $\hat{\rho}$ on Y induces a partition $Z / \hat{\rho}$ of Z where $Z / \hat{\rho}=\{r \hat{\rho} \cap Z: r \in R$ and $r \hat{\rho} \cap Z \neq \emptyset\}$. For $\alpha \in T(X, Y, \rho, R)$, we define $\boldsymbol{\nabla} \alpha$ and $\boldsymbol{\nabla}^{Y} \alpha$ by

$$
\boldsymbol{\nabla} \alpha=\{(x \rho) \alpha: x \in X\} \text { and } \boldsymbol{\nabla}^{Y} \alpha=\{(r \hat{\rho}) \alpha: r \in R\} .
$$

Note that in Example 2.2, we have $X \alpha / \hat{\rho}=\{\{1,2,3\}\}$ is not a subset of $\boldsymbol{\nabla}^{Y} \alpha=$ $\{\{1\},\{1,2\}\}$ which destroys the regularity of α. The following theorem describes a regular element in $T(X, Y, \rho, R)$.

Theorem 3.1. Let α be any element in $T(X, Y, \rho, R)$. Then α is regular if and only if $X \alpha / \hat{\rho} \subseteq \mathbf{\nabla}^{Y} \alpha$.

Proof. Assume that α is regular. Then $\alpha=\alpha \beta \alpha$ for some $\beta \in T(X, Y, \rho, R)$. Let $r \hat{\rho} \cap X \alpha \in X \alpha / \hat{\rho}$. Then $r \hat{\rho} \cap X \alpha \neq \emptyset$ and so there exists $b \in r \hat{\rho} \cap X \alpha$, hence $b \in r \hat{\rho}$ and $b=a \alpha$ for some $a \in X$. From $\beta \in T(X, Y, \rho, R)$, we obtain that $(r \hat{\rho}) \beta \subseteq s \hat{\rho}$ for some $s \in R$. We prove that $r \hat{\rho} \cap X \alpha=(s \hat{\rho}) \alpha$. Consider $b=a \alpha=a(\alpha \beta \alpha)=(b \beta) \alpha \in(s \hat{\rho}) \alpha$, we obtain $b \in r \hat{\rho} \cap(s \hat{\rho}) \alpha \neq \emptyset$, thus $(s \hat{\rho}) \alpha \subseteq r \hat{\rho}$ since all elements in $(s \hat{\rho}) \alpha$ belong to the same class. Hence $(s \hat{\rho}) \alpha \subseteq r \hat{\rho} \cap X \alpha$. Now, if $x \alpha \in r \hat{\rho} \cap X \alpha$, we have $(x \alpha) \beta \in(r \hat{\rho}) \beta \subseteq s \hat{\rho}$. It follows that $x \alpha=x(\alpha \beta \alpha)=(x \alpha \beta) \alpha \in(s \hat{\rho}) \alpha$, that is, $r \hat{\rho} \cap X \alpha \subseteq(s \hat{\rho}) \alpha$ and $r \hat{\rho} \cap X \alpha=$ $(s \hat{\rho}) \alpha \in \mathbf{\nabla}^{Y} \alpha$ as required.

Conversely, assume that $X \alpha / \hat{\rho} \subseteq \nabla^{Y} \alpha$. Let $r_{0} \in R$ be fixed and define $\beta \in T(X, Y, \rho, R)$ on each ρ-class as follows. Let $x \rho \in X / \rho$.

If $x \rho \cap X \alpha=\emptyset$, then define $a \beta=r_{0}$ for all $a \in x \rho$. So $(x \rho) \beta=\left\{r_{0}\right\} \subseteq r_{0} \hat{\rho}$.
If $x \rho \cap X \alpha \neq \emptyset$, then $x \rho \cap Y \neq \emptyset$. Let $x \rho \cap Y=r \hat{\rho}$ for some $r \in R$ and $a \in x \rho$. Since $\emptyset \neq r \hat{\rho} \cap X \alpha \in X \alpha / \hat{\rho} \subseteq \mathbf{V}^{Y} \alpha$, we obtain that $r \hat{\rho} \cap X \alpha=(s \hat{\rho}) \alpha$ for some $s \in R$. If $a \in X \alpha \subseteq Y$, then $a \in r \hat{\rho} \cap X \alpha=(s \hat{\rho}) \alpha$. We choose $b_{a} \in s \hat{\rho}$ (if $a=r$, we may choose $b_{a}=s$) such that $b_{a} \alpha=a$ and define $a \beta=b_{a}$. If $a \notin X \alpha$, we define $a \beta=s$. By the definition of β, we have $(x \rho) \beta \subseteq s \hat{\rho}$ and $r \beta=s$.

Since $x \rho$ is arbitrary, we conclude that $\beta \in T(X, Y, \rho, R)$. To see that $\alpha=\alpha \beta \alpha$, let $a \in X$. Then $a \alpha \in X \alpha$ and so $(a \alpha) \rho \cap X \alpha \neq \emptyset$. By the definition of β, we obtain
$a(\alpha \beta \alpha)=(a \alpha) \beta \alpha=b_{a \alpha} \alpha=a \alpha$. Thus $\alpha=\alpha \beta \alpha$ for some $\beta \in T(X, Y, \rho, R)$, that is, α is regular.

If $Y=X$ in Theorem 3.1, then $T(X, Y, \rho, R)=T(X, \rho, R), \hat{\rho}=\rho$ and $\boldsymbol{\nabla}^{Y} \alpha=\nabla \alpha$ for all $\alpha \in T(X, Y, \rho, R)$, so we have the following corollary.

Corollary 3.2. [4, Theorem 3.1] Let α be any element in $T(X, \rho, R)$. Then α is regular if and only if $X \alpha / \rho \subseteq \mathbf{\nabla} \alpha$.

If ρ in Theorem 3.1 is the identity relation, then $T(X, Y, \rho, R)=T(X, Y), R=Y$ and $x \rho=\{x\}$ for all $x \in X$. Thus $X \alpha / \hat{\rho}=\{\{r\}: r \in X \alpha\}$ and $\boldsymbol{\nabla}^{Y} \alpha=\{\{s \alpha\}: s \in Y\}$. It follows that $X \alpha / \hat{\rho} \subseteq \mathbf{V}^{Y} \alpha$ is equivalent to $X \alpha \subseteq Y \alpha$. Therefore, we obtain the corollary below.

Corollary 3.3. [8, Theorem 2.1] Let α be any element in $T(X, Y)$. Then α is regular if and only if $X \alpha \subseteq Y \alpha$.

In general, F is not a regular subsemigroup of $T(X, Y, \rho, R)$ as shown in the example below.

Example 3.4. Let $X=\{1,2,3,4,5,6,7\}, Y=\{1,2,3,4,5\}$ and $X / \rho=\{\{1,2,3\}$, $\{4,5\},\{6,7\}\}$. Then $Y / \hat{\rho}=\{\{1,2,3\},\{4,5\}\}$ and let $R=\{1,4\}$. Define $\alpha \in F$ by

$$
\alpha=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 2 & 2 & 1 & 3 & 2 & 3
\end{array}\right)
$$

We observe that $X \alpha / \hat{\rho}=\{\{1,2,3\}\} \nsubseteq\{\{1,2\},\{1,3\}\}=\boldsymbol{\nabla}^{Y} \alpha$. By Theorem 3.1, α is not regular.

However, we have every regular element $\alpha \in T(X, Y, \rho, R)$ is contained in F since $X \alpha=X \alpha \beta \alpha=(X \alpha \beta) \alpha \subseteq Y \alpha$ where $\alpha=\alpha \beta \alpha$ for some $\beta \in T(X, Y, \rho, R)$.

The lemma below is needed in describing the regularity of F.
Lemma 3.5. If $\alpha \in T(X, Y, \rho, R)$ is regular, then there exists $\beta \in F$ such that $\alpha=\alpha \beta \alpha$.
Proof. Assume that α is regular. Then $\alpha=\alpha \gamma \alpha$ for some $\gamma \in T(X, Y, \rho, R)$ and so $\alpha=$ $\alpha \gamma \alpha=(\alpha \gamma \alpha) \gamma \alpha=\alpha(\gamma \alpha \gamma) \alpha$. We show that $\gamma \alpha \gamma \in F$. Since $X \gamma \alpha \gamma=(X \gamma) \alpha \gamma \subseteq Y \alpha \gamma \subseteq$ $X \alpha \gamma=X(\alpha \gamma \alpha) \gamma=(X \alpha) \gamma \alpha \gamma \subseteq Y \gamma \alpha \gamma$, we obtain that $\gamma \alpha \gamma \in F(X, Y) \cap T(X, Y, \rho, R)=$ F. So we conclude that $\alpha=\alpha \beta \alpha$ where $\beta=\gamma \alpha \gamma \in F$.

An equivalence relation ρ on X is a T-relation if there is at most one ρ-class containing two or more elements. If there is $n \geq 1$ such that each ρ-class has at most n elements, we say that ρ is n-bounded.

The following theorem characterizes the regularity of F.
Theorem 3.6. F is a regular subsemigroup of $T(X, Y, \rho, R)$ if and only if $\hat{\rho}$ is 2 -bounded or a T-relation. In this case, F is the largest regular subsemigroup of $T(X, Y, \rho, R)$.

Proof. Assume that F is a regular subsemigroup of $T(X, Y, \rho, R)$. Suppose that $\hat{\rho}$ is not 2 -bounded. So there is $r \in R$ such that $|r \hat{\rho}| \geq 3$. Let $a_{1}, a_{2} \in r \hat{\rho}$ and $a_{1} \neq r \neq a_{2}$. If R has exactly one element, we see that $\hat{\rho}$ is a T-relation. Now, suppose that R has more than one element. Let $s \in R$ be such that $s \neq r$. We prove that $|s \hat{\rho}|=1$ by supposing that this is false, so $|s \hat{\rho}| \geq 2$. Let $b \in s \hat{\rho} \backslash\{s\}$ and define $\alpha \in F$ by

$$
a \alpha= \begin{cases}a_{1} & , a \in\left\{a_{1}, a_{2}\right\} \\ a_{2} & , a=b \\ r & , \text { otherwise }\end{cases}
$$

Then we observe that $X \alpha / \hat{\rho}=\left\{\left\{r, a_{1}, a_{2}\right\}\right\}$ and either $\boldsymbol{\nabla}^{Y} \alpha=\left\{\left\{r, a_{1}\right\},\left\{r, a_{2}\right\}\right\}$ or $\boldsymbol{\nabla}^{Y} \alpha=$ $\left\{\left\{r, a_{1}\right\},\left\{r, a_{2}\right\},\{r\}\right\}$. It follows that $X \alpha / \hat{\rho} \nsubseteq \mathbf{\nabla}^{Y} \alpha$. By Theorem 3.1, we obtain that α is not regular which is a contradiction. So $|s \hat{\rho}|=1$ for all $s \neq r$. Hence $\hat{\rho}$ is a T-relation.

Conversely, assume that $\hat{\rho}$ is 2 -bounded or a T-relation and let α be any element in F. To show that $X \alpha / \hat{\rho} \subseteq \nabla^{Y} \alpha$, let $r \hat{\rho} \cap X \alpha \in X \alpha / \hat{\rho}$. Since $\alpha \in F$, there exists $s \in R$ such that $r=s \alpha \in r \hat{\rho} \cap X \alpha$.

Case 1: $\hat{\rho}$ is 2-bounded. Then $r \hat{\rho}$ has at most two elements. If $r \hat{\rho} \cap X \alpha=\{r\}$, then $\emptyset \neq(s \hat{\rho}) \alpha \subseteq r \hat{\rho} \cap X \alpha=\{r\}$, thus $r \hat{\rho} \cap X \alpha=(s \hat{\rho}) \alpha \in \mathbf{\nabla}^{Y} \alpha$. If $r \hat{\rho} \cap X \alpha=\{r, y\}$ where $y \neq r$, then $y \in X \alpha=Y \alpha$ and thus $y \in(t \hat{\rho}) \alpha$ for some $t \in R$, so $r \hat{\rho} \cap X \alpha=\{r, y\}=(t \hat{\rho}) \alpha \in \mathbf{\nabla}^{Y} \alpha$.

Case 2: $\hat{\rho}$ is a T-relation. If $r \hat{\rho} \cap X \alpha=\{r\}$, then, as in Case 1, we have $r \hat{\rho} \cap X \alpha \in \mathbf{\nabla}^{Y} \alpha$. If $r \hat{\rho} \cap X \alpha$ has at least two elements, then $|r \hat{\rho}| \geq 2$ and $|t \hat{\rho}|=1$ for all $r \neq t \in R$ since $\hat{\rho}$ is a T-relation. This implies $|(t \hat{\rho}) \alpha|=1$ which forces $(r \hat{\rho}) \alpha=r \hat{\rho} \cap X \alpha$. Thus $r \hat{\rho} \cap X \alpha \in \mathbf{V}^{Y} \alpha$.

From the above two cases, we conclude that α is regular by Theorem 3.1. Thus by Lemma 3.5, we have $\alpha=\alpha \beta \alpha$ for some $\beta \in F$ and hence F is a regular semigroup. Finally, we have known that every regular element in $T(X, Y, \rho, R)$ is contained in F. Therefore, F is the largest regular subsemigroup of $T(X, Y, \rho, R)$.

If $Y=X$, then $F=F(X, Y) \cap T(X, Y, \rho, R)=T(X) \cap T(X, \rho, R)=T(X, \rho, R)$ and $\hat{\rho}=\rho$. By Theorem 3.6, we have the following corollary.
Corollary 3.7. [4, Theorem 3.7] The semigroup $T(X, \rho, R)$ is regular if and only if ρ is 2 -bounded or a T-relation.

If ρ is the identity relation, then $\hat{\rho}$ is 2 -bounded and a T-relation. So by applying ρ to be the identity relation in Theorem 3.6, we obtain the following corollary.
Corollary 3.8. [9, Theorem 2.4] $F(X, Y)$ is the largest regular subsemigroup of $T(X, Y)$.
As shown in Example 2.2, $T(X, Y, \rho, R)$ is not a regular semigroup. The following theorem describes when $T(X, Y, \rho, R)$ is regular.
Theorem 3.9. $T(X, Y, \rho, R)$ is regular if and only if one of the following statements holds:
(i) $|Y|=1$ or Y is a cross-section of X / ρ;
(ii) $Y=X$; and ρ is 2 -bounded or a T-relation.

Proof. Let $T(X, Y, \rho, R)$ be regular. Suppose that $|Y| \geq 2$ and Y is not a cross-section of X / ρ. So there exists $x_{0} \in X$ such that $x_{0} \rho \cap Y=\emptyset$ or $\left|x_{0} \rho \cap Y\right| \geq 2$. Now, we prove that $Y=X$ by supposing that this is false, so $Y \subsetneq X$.

If $x_{0} \rho \cap Y=\emptyset$, then since $|Y| \geq 2$, we can choose $r \in R$ and $y \in Y$ such that $r \neq y$. Define $\alpha \in T(X, Y, \rho, R)$ by

$$
a \alpha= \begin{cases}y & , a \in x_{0} \rho \\ r & , a \notin x_{0} \rho\end{cases}
$$

Then either $X \alpha / \hat{\rho}=\{\{r, y\}\}$ or $X \alpha / \hat{\rho}=\{\{r\},\{y\}\}$; and $\boldsymbol{\nabla}^{Y} \alpha=\{\{r\}\}$. Thus $X \alpha / \hat{\rho} \nsubseteq$ $\boldsymbol{\nabla}^{Y} \alpha$. By Theorem 3.1, α is not regular which is a contradiction.

If $\left|x_{0} \rho \cap Y\right| \geq 2$, then there exist $r, y \in x_{0} \rho \cap Y$ such that $r \in R$ and $r \neq y$. Since $Y \subsetneq X$, we obtain that $X \backslash Y \neq \emptyset$. So we define $\alpha \in T(X, Y, \rho, R)$ by

$$
a \alpha= \begin{cases}r & , a \in Y ; \\ y & , a \in X \backslash Y .\end{cases}
$$

Then $X \alpha / \hat{\rho}=\{\{r, y\}\} \nsubseteq\{\{r\}\}=\boldsymbol{\nabla}^{Y} \alpha$ which implies that α is not regular, a contradiction.
Thus $Y=X$ which implies that $T(X, \rho, R)=T(X, Y, \rho, R)$ is regular. By Corollary 3.7, we have ρ is 2 -bounded or a T-relation.

Conversely, assume that the conditions hold. If $|Y|=1$, then $T(X, Y, \rho, R)$ contains exactly one element, the constant map, and it is regular. If Y is a cross-section of X / ρ, then $T(X, Y, \rho, R)$ is isomorphic to $T(Y)$ by Lemma 2.3, and so it is regular. Finally, if $Y=X$; and ρ is 2-bounded or a T-relation, then $T(X, Y, \rho, R)=T(X, \rho, R)$ is regular by Corollary 3.7.

The following corollary is a direct consequence of Theorem 3.9 by replacing ρ with the identity relation.
Corollary 3.10. [8, Corollary 2.2] The semigroup $T(X, Y)$ is regular if and only if $|Y|=1$ or $Y=X$.

4. Completely Regular $T(X, Y, \rho, R)$ and Inverse $T(X, Y, \rho, R)$

Araújo and Konieczny [4] determined that $T(X, \rho, R)$ is never a completely regular semigroup (if $|X| \geq 4$) and an inverse semigroup (if $|X| \geq 3$). Here, we aim to find some conditions for $T(X, Y, \rho, R)$ to be never a completely regular semigroup and an inverse semigroup. This leads to new results on the semigroup $T(X, Y)$ when replacing ρ with the identity relation.

We start with the following lemma.
Lemma 4.1. If $\alpha \in T(X, Y, \rho, R)$ is completely regular, then $X \alpha=X \alpha^{2}$.
Proof. Let $\alpha \in T(X, Y, \rho, R)$ be completely regular. Then there exists $\beta \in T(X, Y, \rho, R)$ such that $\alpha=\alpha \beta \alpha$ and $\alpha \beta=\beta \alpha$. Thus $\alpha=(\alpha \beta) \alpha=\beta \alpha^{2}$ which implies that $X \alpha=$ $(X \beta) \alpha^{2} \subseteq X \alpha^{2}$. And $X \alpha^{2}=(X \alpha) \alpha \subseteq X \alpha$, so we obtain $X \alpha=X \alpha^{2}$.
Theorem 4.2. Suppose that Y satisfies one of the following statements:
(i) $|Y|=3$ and $Y \subsetneq X$;
(ii) $|Y| \geq 4$.

Then $T(X, Y, \rho, R)$ is not a completely regular semigroup.
Proof. Assume that $|Y| \geq 3$. We aim to define $\alpha \in T(X, Y, \rho, R)$ such that $X \alpha \neq X \alpha^{2}$. We consider two cases.

Case 1: there are at least three $\hat{\rho}$-classes. Then there are $r \hat{\rho}, s \hat{\rho}$ and $t \hat{\rho}$ such that r, s, t are all distinct elements in R. Define $\alpha \in T(X, Y, \rho, R)$ by

$$
\alpha=\left(\begin{array}{cc}
X \backslash r \rho & r \rho \\
s & t
\end{array}\right)
$$

Thus $X \alpha=\{s, t\} \neq\{s\}=X \alpha^{2}$.
Case 2: there are at most two $\hat{\rho}$-classes. Since $|Y| \geq 3$, there exists $r \in R$ such that $r \hat{\rho}$ contains at least two elements. Let $y \in r \hat{\rho}$ be such that $y \neq r$. If $|Y|=3$ and $Y \subsetneq X$; or $|Y| \geq 4$, then there exists $x \in X \backslash R$ such that $x \neq y$. Define $\alpha \in T(X, Y, \rho, R)$ by

$$
\alpha=\left(\begin{array}{cc}
X \backslash\{x\} & x \\
r & y
\end{array}\right) .
$$

Thus $X \alpha=\{r, y\} \neq\{r\}=X \alpha^{2}$.
From the two cases described above, we obtain that α defined in each case satisfies $X \alpha \neq X \alpha^{2}$. By Lemma 4.1, α is not completely regular. Therefore, $T(X, Y, \rho, R)$ is not a completely regular semigroup.

For the case $|Y|=1$ or 2 , or $|Y|=|X|=3$, we observe that if $|Y|=1$; or $|Y|=|X|=2$; or $|Y|=2, Y \subsetneq X, \hat{\rho}$ is the identity relation on Y and there are two ρ-classes; or $|Y|=|X|=3$ and $X / \rho=\{\{r, x\},\{s\}\}$, then $T(X, Y, \rho, R)$ is completely regular. For the other cases, $T(X, Y, \rho, R)$ is not completely regular.

As a direct consequence of Theorem 4.2 and by taking $Y=X$, we obtain the following corollary.

Corollary 4.3. [4, Theorem 5.2] If $|X| \geq 4$, then $T(X, \rho, R)$ is not a completely regular semigroup.

Replacing ρ with the identity relation in Theorem 4.2 , we obtain the following corollary.
Corollary 4.4. If $|Y| \geq 3$, then $T(X, Y)$ is not a completely regular semigroup.
Proof. By replacing ρ with the identity relation in Theorem 4.2, we have if $|Y|=3$ and $Y \subsetneq X$; or $|Y| \geq 4$, then $T(X, Y)=T(X, Y, \rho, R)$ is not a completely regular semigroup. For the case $Y=X$ has three elements, $T(X, Y)=T(X)$ is not a completely regular semigroup since $\alpha=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{1} & a_{1} & a_{2}\end{array}\right) \in T(X)$ satisfies $X \alpha \neq X \alpha^{2}$.

Theorem 4.5. Suppose that Y satisfies one of the following statements:
(i) $|Y|=2$ and $Y \subsetneq X$;
(ii) $|Y| \geq 3$.

Then $T(X, Y, \rho, R)$ is not an inverse semigroup.
Proof. Assume that $|Y| \geq 2$. We aim to define idempotents $e, f \in T(X, Y, \rho, R)$ such that $e f \neq f e$. There are two possible cases to consider.

Case 1: there are at least two $\hat{\rho}$-classes. Let $r, s \in R$ be such that $r \neq s$. Define $e, f \in T(X, Y, \rho, R)$ by $x e=r$ and $x f=s$ for all $x \in X$. Then e, f are idempotents and $r(e f)=s \neq r=r(f e)$. Thus $e f \neq f e$.

Case 2: there is only one $\hat{\rho}$-class. Let $R=\{r\}$. Then $|r \hat{\rho}| \geq 2$. If $|Y|=2$ and $Y \subsetneq X$, then $r \hat{\rho}=\{r, y\}$ in which $y \neq r$ and there exists $x \in X \backslash Y$. Define $e, f \in T(X, Y, \rho, R)$ by

$$
e=\left(\begin{array}{cc}
X \backslash\{y\} & y \\
r & y
\end{array}\right) \text { and } f=\left(\begin{array}{cc}
X \backslash\{x, y\} & \{x, y\} \\
r & y
\end{array}\right)
$$

Then e, f are idempotents and $x(e f)=r \neq y=x(f e)$. Thus ef $\neq f e$. If $|Y| \geq 3$, then $|r \hat{\rho}| \geq 3$ and so there are $y_{1}, y_{2} \in r \hat{\rho}$ such that r, y_{1}, y_{2} are all distinct. Define $e, f \in T(X, Y, \rho, R)$ by

$$
e=\left(\begin{array}{cc}
X \backslash\left\{y_{1}, y_{2}\right\} & \left\{y_{1}, y_{2}\right\} \\
r & y_{1}
\end{array}\right) \text { and } f=\left(\begin{array}{cc}
X \backslash\left\{y_{1}, y_{2}\right\} & \left\{y_{1}, y_{2}\right\} \\
r & y_{2}
\end{array}\right) .
$$

Then e, f are idempotents and $y_{1}(e f)=y_{2} \neq y_{1}=y_{1}(f e)$. Hence $e f \neq f e$.
As the fact that all idempotents of an inverse semigroup commute, it follows that $T(X, Y, \rho, R)$ is not an inverse semigroup.

We observe that if $|Y|=1$; or $|Y|=|X|=2$ and $\rho=\omega$, then $T(X, Y, \rho, R)$ is an inverse semigroup. But if $|Y|=|X|=2$ and $\rho=\triangle$, then $T(X, Y, \rho, R)$ is not an inverse semigroup.

As a consequence of Theorem 4.5, we have the following corollaries.
Corollary 4.6. [4, Theorem 5.1] If $|X| \geq 3$, then $T(X, \rho, R)$ is not an inverse semigroup.
Corollary 4.7. If $|Y| \geq 2$, then $T(X, Y)$ is not an inverse semigroup.
Proof. By replacing ρ with the identity relation in Theorem 4.5, we have if $|Y|=2$ and $Y \subsetneq X$; or $|Y| \geq 3$, then $T(X, Y)=T(X, Y, \rho, R)$ is not an inverse semigroup. For the case $Y=X$ has two elements, $T(X, Y)=T(X)$ is not an inverse semigroup since the two constant maps are idempotents which do not commute.

5. Unit-Regularity of $T(X, Y, \rho, R)$

In this section, we characterize when $T(X, Y, \rho, R)$ possesses an identity. Then the unit-regularity of such semigroups are investigated, and this gives the description for the unit-regularity of $T(X, \rho, R)$.

Note that if $a \in X$ such that $a \rho \cap Y \neq \emptyset$, then there exists exactly one $r \in R$ such that $a \rho r$, which will be denoted by r_{a}.

Theorem 5.1. $T(X, Y, \rho, R)$ has an identity if and only if one of the following statements holds:
(i) $|Y|=1$ or $Y=X$;
(ii) Y is a cross-section of X / ρ.

Proof. Assume that $T(X, Y, \rho, R)$ has an identity ε. Suppose that $|Y| \geq 2$ and $Y \subsetneq X$. From ε is an identity, we obtain that $\varepsilon \alpha=\alpha=\alpha \varepsilon$ for all $\alpha \in T(X, Y, \rho, R)$. Let $\alpha \in T(X, Y, \rho, R)$ be such that $X \alpha=Y$ (for example, fix $r_{0} \in R$ and define

$$
a \alpha= \begin{cases}a & , a \in Y ; \\ r_{a} & , a \in X \backslash Y \text { and } a \rho \cap Y \neq \emptyset ; \\ r_{0} & , a \in X \backslash Y \text { and } a \rho \cap Y=\emptyset,\end{cases}
$$

thus $\alpha \in T(X, Y, \rho, R)$ and $X \alpha=Y)$. Then $Y \varepsilon=(X \alpha) \varepsilon=X(\alpha \varepsilon)=X \alpha=Y$ which implies that $X \varepsilon=Y$. Since ε is an idempotent, we have $y \varepsilon=y$ for all $y \in Y$. Now, we prove that Y is a cross-section of X / ρ, that is, $|x \rho \cap Y|=1$ for all $x \in X$. Suppose that this is false, so there exists $x_{0} \in X$ such that $x_{0} \rho \cap Y=\emptyset$ or $\left|x_{0} \rho \cap Y\right| \geq 2$.

If $x_{0} \rho \cap Y=\emptyset$, then we assume that $x_{0} \varepsilon=y_{0} \notin x_{0} \rho$ for some $y_{0} \in Y$. Since $|Y| \geq 2$, we choose $y_{1} \in Y$ such that $y_{1} \neq y_{0}$. Define $\beta \in T(X, Y, \rho, R)$ by

$$
a \beta= \begin{cases}y_{1} & , a \in x_{0} \rho \\ a \varepsilon & , a \notin x_{0} \rho\end{cases}
$$

We observe that $x_{0} \varepsilon \beta=\left(x_{0} \varepsilon\right) \beta=y_{0} \beta=y_{0} \varepsilon=y_{0} \neq y_{1}=x_{0} \beta$, this leads to a contradiction since ε is an identity.

If $\left|x_{0} \rho \cap Y\right| \geq 2$, then there exist $y_{1}, y_{2} \in x_{0} \rho \cap Y$ such that $y_{1} \in R$ and $y_{1} \neq y_{2}$. Since $Y \subsetneq X$, there exists $x_{1} \in X \backslash Y$ and let $x_{1} \varepsilon=y_{0}$ for some $y_{0} \in Y$. Define $\beta \in T(X, Y, \rho, R)$ by

$$
a \beta= \begin{cases}y_{1} & , a \in X \backslash\left\{x_{1}\right\} ; \\ y_{2} & , a=x_{1} .\end{cases}
$$

We see that $x_{1} \varepsilon \beta=\left(x_{1} \varepsilon\right) \beta=y_{0} \beta=y_{1} \neq y_{2}=x_{1} \beta$ and hence $\varepsilon \beta \neq \beta$ which is a contradiction.

Therefore, $|x \rho \cap Y|=1$ for all $x \in X$.
Conversely, if $|Y|=1$ or $Y=X$, then $|T(X, Y, \rho, R)|=1$ or $T(X, Y, \rho, R)=T(X, \rho, R)$, respectively and both have identities. If Y is a cross-section of X / ρ, then $T(X, Y, \rho, R)$ is isomorphic to $T(Y)$ by Lemma 2.3, and so $T(X, Y, \rho, R)$ has an identity.

If $|Y|=1$, then $T(X, Y, \rho, R)$ has only one element, thus it is unit-regular. If Y is a cross-section of X / ρ, then $T(X, Y, \rho, R)$ is isomorphic to $T(Y)$. Therefore, in this case $T(X, Y, \rho, R)$ is unit-regular if and only if Y is finite by Lemma 2.4.

Now, we characterize the unit-regularity of $T(X, Y, \rho, R)$ when $Y=X$. In this case, $T(X, Y, \rho, R)=T(X, \rho, R)$.
Lemma 5.2. If $T(X, \rho, R)$ is unit-regular and $\rho \neq \omega$, then each ρ-class has the same size.

Proof. Assume that $T(X, \rho, R)$ is unit-regular and $\rho \neq \omega$. We show that each ρ-class has the same size, by supposing that this is false. So there exist $a, b \in X$ such that $|a \rho| \neq|b \rho|$. For convenience, we assume that $|a \rho|=I<J=|b \rho|$. Thus there are an injective map $\varphi: a \rho \rightarrow b \rho$ with $r_{a} \varphi=r_{b}$ and a surjective map $\psi: b \rho \rightarrow a \rho$ with $r_{b} \psi=r_{a}$. Now, we define $\alpha \in T(X, \rho, R)$ by

$$
x \alpha= \begin{cases}x \varphi & , x \in a \rho ; \\ x \psi & , x \in b \rho ; \\ x & , \text { otherwise }\end{cases}
$$

Since $T(X, \rho, R)$ is unit-regular, by Lemma 2.6 there is a bijection $\beta \in T(X, \rho, R)$ such that $\alpha=\alpha \beta \alpha$. This implies $x \alpha=(x \alpha) \beta \alpha$ for all $x \alpha \in X \alpha$, that means $y \beta \in y \alpha^{-1}$ for all $y \in X \alpha$. Let $a \rho=\left\{a_{i}: i \in I\right\}$ and $b \rho=\left\{b_{j}: j \in J\right\}$. Since φ is injective, there is an injection $\theta: I \rightarrow J$ such that $a_{i} \varphi=b_{i \theta}$ for all $i \in I$. Then $b_{i \theta}=a_{i} \alpha \in X \alpha$, hence $b_{i \theta} \beta \in b_{i \theta} \alpha^{-1}=\left\{a_{i}\right\}$ for all $i \in I$. Since $|a \rho|<|b \rho|$, there is $b^{\prime} \in b \rho \backslash(a \rho) \varphi$, so $b^{\prime} \neq b_{i \theta}$ for all $i \in I$ and $b^{\prime} \beta \in a \rho=\left\{a_{i}: i \in I\right\}$. Thus $b^{\prime} \beta=a_{k}$ for some $k \in I$. It follows that $b^{\prime} \beta=a_{k}=b_{k \theta} \beta$ which leads to a contradiction since β is injective. Therefore, each ρ-class has the same size.

Theorem 5.3. $T(X, \rho, R)$ is unit-regular if and only if X is a finite set and one of the following statements holds.
(i) $\rho=\triangle$ or $\rho=\omega$;
(ii) each ρ-class has size two.

Proof. Assume that $T(X, \rho, R)$ is unit-regular. It follows that $T(X, \rho, R)$ is regular and thus ρ is 2 -bounded or a T-relation by Corollary 3.7. We first show that (i) or (ii) holds by supposing that $\rho \neq \omega$. By Lemma 5.2 , we have each ρ-class has the same size. So we conclude that $\rho=\triangle$ or each ρ-class has size two.

Now, we prove that X is finite. If $\rho=\triangle$ or $\rho=\omega$, then $T(X, \rho, R)=T(X)$ or $T(X, \rho, R)=\operatorname{Fix}\left(X,\left\{r_{0}\right\}\right)$ where $R=\left\{r_{0}\right\}$. Since $T(X, \rho, R)$ is unit-regular, we obtain that X is a finite set by Lemmas 2.4 and 2.5 . If each ρ-class has two elements, we suppose that X is an infinite set. Then choose $\left\{u, r_{u}\right\}=u \rho \in X / \rho$ and let $X^{\prime}=X \backslash\left\{u, r_{u}\right\}$. So $|X / \rho|=\left|X^{\prime} / \rho\right|$ since X is infinite. Thus there is a bijection $\phi: X / \rho \rightarrow X^{\prime} / \rho$. Define $\alpha \in T(X, \rho, R)$ as follows. Let $a \rho \in X / \rho$. Then $a \rho=\left\{a, r_{a}\right\}$, so define $\left\{a, r_{a}\right\} \alpha=$
$\left\{a, r_{a}\right\} \phi \in X^{\prime} / \rho$. Since ϕ is a bijection, we obtain α is an injective map onto X^{\prime}. From α is unit-regular, there is a bijection $\beta \in T(X, \rho, R)$ such that $\alpha=\alpha \beta \alpha$. Since $x^{\prime} \beta \in x^{\prime} \alpha^{-1}$ for all $x^{\prime} \in X^{\prime}$, it follows that $X^{\prime} \beta=X$ since α is injective which contradicts the injectivity of β. Therefore, X is a finite set.

Conversely, assume that X is finite and (i) or (ii) holds. If X is finite and (i) holds, then $T(X, \rho, R)=T(X)$ or $T(X, \rho, R)=F i x\left(X,\left\{r_{0}\right\}\right)$ where $R=\left\{r_{0}\right\}$. Thus by Lemmas 2.4 and $2.5, T(X, \rho, R)$ is unit-regular. If X is finite and each ρ-class has size two, then ρ is 2 -bounded and hence $T(X, \rho, R)$ is regular by Corollary 3.7. Let $\alpha \in T(X, \rho, R)$. Then α is regular and so $X \alpha / \rho \subseteq \nabla \alpha$ by Corollary 3.2. We aim to find a bijection $\beta \in T(X, \rho, R)$ such that $\alpha=\alpha \beta \alpha$. Since $\{r \rho \cap X \alpha: r \in R$ and $r \rho \cap X \alpha \neq \emptyset\}=X \alpha / \rho \subseteq \mathbf{V} \alpha=\{(s \rho) \alpha$: $s \in R\}$, for each $r \rho \cap X \alpha \in X \alpha / \rho$, we can choose $s_{r} \in R$ such that $\left(s_{r} \rho\right) \alpha=r \rho \cap X \alpha$. Let $\mathscr{A}=\{r \rho: r \in R$ and $r \rho \cap X \alpha=\emptyset\}$ and $\mathscr{B}=X / \rho \backslash\left\{s_{r} \rho:\left(s_{r} \rho\right) \alpha=r \rho \cap X \alpha\right\}$. Thus $|\mathscr{A}|=|\mathscr{B}|$ since X is a finite set. Hence there is a bijection $\varphi: \mathscr{A} \rightarrow \mathscr{B}$. Now, we define $\beta \in T(X, \rho, R)$ on each ρ-class as follows. Let $r \rho=\{a, r\} \in X / \rho$ where $r \in R$.

If $r \rho \cap X \alpha \neq \emptyset$, then $r \rho \cap X \alpha \in X \alpha / \rho$ and so there exists $s_{r} \in R$ such that $\left(s_{r} \rho\right) \alpha=$ $r \rho \cap X \alpha$ where $s_{r} \rho=\left\{b, s_{r}\right\}$ thus define $\{a, r\} \beta=\left\{b, s_{r}\right\}$.

If $r \rho \cap X \alpha=\emptyset$, then $r \rho \in \mathscr{A}$ and so define

$$
\{a, r\} \beta=\{a, r\} \varphi .
$$

Therefore, β is a bijection in $T(X, \rho, R)$ which implies that β is a unit by Lemma 2.6.
To see that $\alpha=\alpha \beta \alpha$, let $x \in X$. Then $x \alpha \in r \rho \cap X \alpha \in X \alpha / \rho$ for some $r \in R$ and so $x \alpha \in r \rho \cap X \alpha=\left(s_{r} \rho\right) \alpha=\left\{b, s_{r}\right\} \alpha$. If $x \alpha=b \alpha$, we have

$$
x \alpha \beta \alpha=(x \alpha) \beta \alpha=(b \alpha) \beta \alpha= \begin{cases}b \alpha & , b \alpha=a \\ r & , b \alpha=r\end{cases}
$$

which implies that $x \alpha \beta \alpha=b \alpha=x \alpha$. If $x \alpha=s_{r} \alpha$, then $x \alpha \beta \alpha=(x \alpha) \beta \alpha=\left(s_{r} \alpha\right) \beta \alpha=$ $(r \beta) \alpha=s_{r} \alpha=x \alpha$.

Acknowledgement

This research was supported by Chiang Mai University.

References

[1] J.M. Howie, Fundamentals of Semigroup Theory, In: London Mathematical Society Monographs, New Series, 12 Oxford University Press, New York, 1995.
[2] H.D. Alarcao, Factorizable as a finiteness condition, Semigroup Forum 20 (1980) 281-282.
[3] J. Araújo, J. Konieczny, Automorphism groups of centralizers of idempotents, J. Algebra 269 (2003) 227-239.
[4] J. Araújo, J. Konieczny, Semigroups of transformations preserving an equivalence relation and a cross-section, Comm. Algebra 32 (2004) 1917-1935.
[5] P. Honyam, J. Sanwong, Semigroups of transformations with fixed sets, Quaest. Math. 36 (2013) 79-92.
[6] Y. Chaiya, P. Honyam, J. Sanwong, Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets, Turk. J. Math. 41 (2017) 43-54.
[7] J.S.V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc. 19 (1975) 413-425.
[8] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl. 16 (2005) 307-314.
[9] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 2008 (2008) Article ID $794013 \mathrm{https}: / /$ doi.org/10.1155/2008/794013.
[10] J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum 83 (2011) 134-146.
[11] C. Pookpienlert, P. Honyam, J. Sanwong, Green's relations on a semigroup of transformations with restricted range that preserves an equivalence relation and a crosssection, Mathematics 6 (8) (2018) https://doi.org/10.3390/math6080134.

