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Abstract For a fixed nonempty subset Y of X, let T'(X,Y’) be the semigroup consisting of all trans-
formations from X into Y. Let p be an equivalence relation on X, p the restriction of p on Y and R a
cross-section of the partition Y/j. We define

T(X,Y,p,R)={a € T(X,Y): Ra C R and (a,b) € p = (ac,ba) € p}.
Then T(X,Y, p,R) is a subsemigroup of T'(X,Y). In this paper, we describe regular elements in T'(X,Y p,R),
characterize when T'(X,Y, p, R) is a regular semigroup and investigate some classes of T(X,Y, p, R) such
as completely regular and inverse from which the results on T'(X, p, R) and T(X,Y’) can be recaptured
easily when taking Y = X and p to be the identity relation, respectively. Moreover, the description of
unit-regularity on T'(X, p, R) is obtained.
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1. INTRODUCTION

For any a nonempty set X, denote by T'(X) the semigroup of all transformations from
X into itself with composition. There is a well-known result on T'(X) stated that T'(X)
is a regular semigroup which was shown in [1]. Additionally, Alarcao [2] characterized
the unit-regularity of 7(X) in 1980. Several kinds of subsemigroups of 7'(X) have been
considered in different years. Especially, in 2003, Araijo and Konieczny [3] investigated a
subsemigroup of T'(X) with respect to an equivalence relation p on X and a cross-section
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R of the partition X/p (i.e., each p-class contains exactly one element of R), namely
T(X, p, R), which is defined as follows:

T(X,p,R) ={a€T(X): Ra C R and (a,b) € p= (ax,ba) € p}.

Moreover, the authors determined the automorphism groups of centralizers of idempo-
tents. Furthermore, they studied Green’s relations, regularity, inverse and completely
regular classes of T'(X, p, R) in 2004 [4].

Let Y be any subset of a set X. A subsemigroup Fiz(X,Y) of T(X) is defined to be
the set of all transformations on X which fix all elements in Y, that is,

Fiz(X,)Y)={aeT(X):anx=aforall a € Y}.

In 2003, Honyam and Sanwong [5] showed that Fiz(X,Y") is a regular submonoid of T(X).
Later in 2007, Chaiya et al. [6] also studied this semigroup. They provided necessary and
sufficient conditions for Fiz(X,Y") to be unit-regular.

For a nonempty subset Y of X, a subsemigroup T(X,Y") of T(X) was first considered
by Symons [7] in 1975. He defined T'(X,Y") as a semigroup of all transformations on X
whose ranges are contained in Y, that is,

T(X,Y)={acT(X): Xa CY}.

Furthermore, he described all the automorphisms of T'(X,Y") and also determined when
T(X1,Y1) is isomorphic to T'(X2,Y2). Later in 2005, Nenthein et al. [8] provided the
characterization when T'(X,Y) is regular. In 2008, Sanwong and Sommanee [9] studied
other algebraic properties of T(X,Y). They determined its Green’s relations and obtained
a class of maximal inverse subsemigroups of T'(X,Y). In addition, they introduced a new
subsemigroup of T'(X,Y), denoted by F(X,Y), defined as follows:

F(X,Y)={aeT(X,Y): XaC Ya}.
They proved that F(X,Y) is the largest regular subsemigroup of T'(X,Y). In 2011,

Sanwong [10] determined all maximal regular subsemigroups of F(X,Y) when Y is a
finite set.
Recently, Pookpienlert et al. [11] gave descriptions of Green’s relations on the sub-

semigroup T(X,Y, p, R) of T(X,Y’) which is defined as follows. Let p be an equivalence
relation on X, p the restriction of pon'Y (i.e,, p=p N (Y xY)), R a cross-section of the
partition Y/p and define

T(X,Y,p,R) ={a e T(X,Y): Ra C R and (a,b) € p = (ac,ba) € p}.

IfY = X, then T(X,Y,p,R) = T(X,p,R); and if p = A, then T(X,Y,A,)Y) =T(X,Y)
where A = {(z,z) : € X} is the identity relation on X. Thus their results ex-
tend the results of Araijo and Konieczny [4] and of Sanwong and Sommanee [9] on
Green'’s relations of T'(X, p, R) and T(X,Y), respectively. Furthermore, they observed
that F(X,Y)NT(X,Y,p, R) is a subsemigroup of T'(X,Y, p, R), denoted by F, since it
contains all constant maps whose images belong to R.

Our purposes are to characterize regular elements in T(X,Y, p, R) and provide neces-
sary and sufficient conditions for T'(X,Y, p, R) to be regular. Moreover, we characterize
when F' is the largest regular subsemigroup of T'(X,Y, p, R). In addition, we present some
conditions for T'(X,Y, p, R) to be never a completely regular semigroup and an inverse
semigroup. Finally, we provide the characterization of the unit-regularity of T(X,Y, p, R).
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2. PRELIMINARIES

Let S be a semigroup. An element a € S is regular if there exists € S such that
a = azxa, and S is called a regular semigroup if every element of S is regular. Moreover,
a is said to be completely reqular if there exists x € S in which ¢ = axza and ax = xa. If
every element in S is completely regular, then S is called a completely regular semigroup.
Furthermore, an element @’ in S is said to be an inverse of a if a = aa’a and @’ = a’aa’. If
every element in S has a unique inverse, then S is called an inverse semigroup. Another
version is that S is an inverse semigroup if and only if it is regular and its idempotents
commute (Howie [1]).

Let S be a monoid with identity 1. An element u € S is called a unit if uv’ =1 =v'u
for some v’ € S. Furthermore, S is said to be unit-reqular if for each a € S, there exists
a unit element v € S in which a = aua.

In fact, completely regular semigroups, inverse semigroups and unit-regular semigroups
are regular semigroups.

Throughout this paper, the cardinality of a set A is denoted by |A|. Furthermore, we
write functions on the right, this means that for a composition af, « is applied first. For
an equivalence relation p on A, if a,b € A we sometimes write a p b instead of (a,b) € p,
and define ap to be the equivalence class that contains a, that is, ap ={b€ A:bpa}. In
addition, the universal relation on A is denoted by w. That is w = A x A.

It is known that o € T(X) is an idempotent if and only if xa = z for all € Xa.
Moreover, T'(X) is a semigroup with an identity, the identity map. But for T(X,Y, p, R),
this is not always true as shown in the following example.

Example 2.1. Let X = {1,2,3,4,5},Y = {1,3} and X/p = {{1,2},{3,4},{5}}. Then
Y/p={{1},{3}} and let R =Y. Suppose that ¢ is an identity in T'(X,Y, p, R). Consider
a € T(X,Y,p, R) defined by
(12 3 4 5
‘= (1 111 3) '

We see that (5¢)a = 5(ca)) = ba = 3 which implies that 5 = 5¢ € Y, a contradiction.

However, we provide necessary and sufficient conditions for T'(X,Y, p, R) possessing an
identity in Section 5.

In general, T(X,Y, p, R) is not a regular semigroup as shown in the example below.
Example 2.2. Let X ={1,2,3,4,5},Y ={1,2,3,4} and X/p = {{1,2,3},{4,5}}. Then
Y/p={{1,2,3},{4}} and let R = {1,4}. Define o« € T(X,Y, p, R) by

(1 2 3 4 5
“=\1 2 21 3)
Suppose that « is regular. Then o = afa for some § € T(X,Y,p, R). We see that
3 =ba = 5(afa) = (3F)a which implies that 5 = 38 € Y, a contradiction.

The following lemmas are used in characterizing the regularity of T'(X,Y, p, R).

Lemma 2.3. IfY is a cross-section of X/p, then T(X,Y, p, R) is isomorphic to T(Y).

Proof. Assume that Y is a cross-section of X/p. Then ¥ = R and for each a €
T(X,Y,p, R), we have aly € T(Y). So we define ¢ : T(X,Y,p,R) = T(Y) by ap = a|y
for all « € T(X,Y, p, R). Now, we show that ¢ is an isomorphism.

v is injective: Let a, 8 € T(X,Y, p, R) be such that ap = Sp. Then aly = f|y. For
each a € X, we have a pr for some unique r € R. From «, 8 € T(X,Y, p, R), we obtain
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that (ac,ra), (af,rB) € p. So ac = ra and a8 = rf since Y is a cross-section of X/p.
Thus aa = ra =raly =rfly =r8 =ap for all a € X. Hence a = 3.

¢ is surjective: Let o € T(Y). We define 5 € T(X,Y, p, R) on each p-class as follows.
Let ap € X/p. Then there is a unique r, € Y such that a pr, and define a8 = r . Thus
Bly = .

From the fact that (af8)ly = (aly)(Bly) for all o, 8 € T(X,Y, p, R), we obtain that
(aB)e = (af)|ly = (aly)(Bly) = (ap)(Bp). Therefore, T(X,Y, p, R) is isomorphic to
T(Y). ]

Lemma 2.4. [2, Proposition 5] Let X be a nonempty set. Then T(X) is unit-regular if
and only if X is finite.

Lemma 2.5. [6, Theorem 5.2] Let Y be a fized subset of X. Then Fix(X,Y) is unit-
regular if and only if X\Y is finite.

Lemma 2.6. [3, Theorem 3.1] Let o € T(X, p, R). Then « is a unit if and only if o is
a bijection.

3. REGULARITY OF T(X,Y, p, R)

Let Z be a nonempty subset of Y. An equivalence relation 6 on Y induces a partition
Z/p ot Z where Z/p={rpNZ:r e Rand rpNZ # 0}. For a € T(X,Y, p, R), we define
Yo and Yo by

Ya = {(zp)a:r € X} and Va = {(rp)a:r € R}.
Note that in Example 2.2, we have Xa/p = {{1,2,3}} is not a subset of ¥Va =

{{1},{1,2}} which destroys the regularity of e. The following theorem describes a regular
element in T(X,Y, p, R).

Theorem 3.1. Let « be any element in T(X,Y,p,R). Then « is regular if and only if
Xa/p C Va.

Proof. Assume that « is regular. Then a = afa for some g € T(X,Y,p,R). Let
rpN Xa € Xa/p. Then rpN Xa # O and so there exists b € 7p N Xa, hence b € rp and
b = aa for some a € X. From 8 € T(X,Y,p, R), we obtain that (rp)8 C sp for some
s € R. We prove that rp N Xa = (sp)a. Consider b = aax = a(afa) = (bf)a € (sp)a,
we obtain b € rp N (sp)a # 0, thus (sp)a C rp since all elements in (sp)a belong to the
same class. Hence (sp)a C rpN Xa. Now, if za € rpN Xa, we have (za)B € (rp)8 C sp.
It follows that za = x(afa) = (zaf)a € (sp)a, that is, rpN Xa C (sp)a and rpN Xa =
(sp)a € Yo as required.

Conversely, assume that Xa/p C ¥'a. Let rg € R be fixed and define 8 € T(X,Y, p, R)
on each p-class as follows. Let zp € X/p.

If xp N Xa = 0, then define a8 = rg for all a € xzp. So (xp)B = {ro} C rop.

IfzpnNXa # 0, then zpNY # (. Let zpNY = rp for some r € R and a € zp.
Since § # rp N Xa € Xa/p C Y, we obtain that 7p N Xa = (sp)a for some s € R. If
a€ XaCY,thenae€rpnXa = (sp)a. We choose b, € sp (if a = r, we may choose
b, = s) such that b,a = a and define a8 = b,. If a ¢ Xa, we define a8 = s. By the
definition of S, we have (zp)8 C sp and 8 = s.

Since zp is arbitrary, we conclude that § € T(X,Y, p, R). To see that a = afa, let
a € X. Then aa € Xa and so (aa)p N Xa # @. By the definition of 3, we obtain
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a(afa) = (aa)Ba = by = aa. Thus a = afa for some 3 € T(X,Y, p, R), that is, a is
regular. [

If Y = X in Theorem 3.1, then T(X,Y, p, R) = T(X, p, R), p = p and ¥'a = Vo for all
a € T(X,Y,p, R), so we have the following corollary.

Corollary 3.2. [4, Theorem 3.1] Let « be any element in T(X, p, R). Then « is regular
if and only if Xa/p C Vau.

If p in Theorem 3.1 is the identity relation, then T(X,Y,p,R) = T(X,Y),R =Y and
xp = {x} for all z € X. Thus Xa/p = {{r} : r € Xa} and Vo = {{sa} : s € Y}. Tt
follows that Xa/p C V' is equivalent to Xa C Y. Therefore, we obtain the corollary
below.

Corollary 3.3. [3, Theorem 2.1] Let « be any element in T(X,Y). Then « is reqular if
and only if Xa C Ya.

In general, F' is not a regular subsemigroup of T(X,Y, p, R) as shown in the example
below.

Example 3.4. Let X = {1,2,3,4,5,6,7},Y = {1,2,3,4,5} and X/p = {{1,2,3},
{4,5},{6,7}}. Then Y/p = {{1,2,3},{4,5}} and let R = {1,4}. Define a € F by

(1234567
““\t 22132 3)
We observe that Xa/p = {{1,2,3}} ¢ {{1,2},{1,3}} = ¥’a. By Theorem 3.1, « is not
regular.

However, we have every regular element o € T(X,Y,p, R) is contained in F' since
Xa=Xafa = (XaB)a C Ya where a = afa for some 8 € T(X,Y, p, R).
The lemma below is needed in describing the regularity of F'.

Lemma 3.5. If a € T(X,Y, p, R) is regular, then there exists 8 € F such that & = afa.

Proof. Assume that « is regular. Then a = aya for some v € T(X,Y, p, R) and so o =
aya = (aya)ya = a(yay)a. We show that yay € F. Since Xyay = (Xy)ay C Yay C
Xay = X(avya)y = (Xa)yay C Yyay, we obtain that yay € F(X,Y)NT(X,Y,p,R) =
F. So we conclude that a = afa where 8 = yay € F. [

An equivalence relation p on X is a T-relation if there is at most one p-class containing
two or more elements. If there is n > 1 such that each p-class has at most n elements, we
say that p is n-bounded.

The following theorem characterizes the regularity of F'.

Theorem 3.6. F is a regular subsemigroup of T(X,Y, p, R) if and only if p is 2-bounded
or a T-relation. In this case, F is the largest reqular subsemigroup of T(X,Y, p, R).

Proof. Assume that F is a regular subsemigroup of T'(X,Y, p, R). Suppose that p is not
2-bounded. So there is 7 € R such that |rp| > 3. Let aj,as € rp and a1 # 1 # as. If R
has exactly one element, we see that p is a T-relation. Now, suppose that R has more
than one element. Let s € R be such that s # r. We prove that |sp| = 1 by supposing
that this is false, so |sp| > 2. Let b € sp\{s} and define a € F' by
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a ,a € {al,ag};
aq = as ,a=b;
r ,otherwise.

Then we observe that Xa/p = {{r,a1,a2}} and either ¥'a = {{r,a;}, {r,az}} or ¥’a =
{{r,a1},{r a2}, {r}}. It follows that Xa/p ¢ ¥¥a. By Theorem 3.1, we obtain that « is
not regular which is a contradiction. So |sp| =1 for all s # r. Hence p is a T-relation.
Conversely, assume that p is 2-bounded or a T-relation and let « be any element in F'.
To show that Xa/p C ¥a, let rpN Xa € Xa/p. Since a € F, there exists s € R such
that r =saerpn Xa.
Case 1: p is 2-bounded. Then rp has at most two elements. If 7p N Xa = {r}, then
0 # (sp)a CrpNnXa = {r}, thus rpNXa = (sp)a € Ya. If rpNXa = {r,y} where y # r,
then y € Xa = Ya and thus y € (tp)a for some t € R, so rpNXa = {r,y} = (tp)a € Vau.
Case 2: pis a T-relation. If rpN X = {r}, then, as in Case 1, we have rpNXa € Va.
If rpN X o has at least two elements, then |rp| > 2 and |¢p| = 1 for all » # ¢ € R since p is
a T-relation. This implies |(¢p)a| = 1 which forces (rp)a = rpN Xa. Thus rpNXa € Va.
From the above two cases, we conclude that « is regular by Theorem 3.1. Thus by
Lemma 3.5, we have a« = afa for some g € F and hence F' is a regular semigroup.
Finally, we have known that every regular element in 7T(X,Y, p, R) is contained in F.
Therefore, F' is the largest regular subsemigroup of T(X,Y, p, R). [

IfY =X, then F = F(X,Y)NT(X,Y,p,R) =T(X)NT(X,p,R) = T(X,p, R) and
p = p. By Theorem 3.6, we have the following corollary.

Corollary 3.7. [1, Theorem 3.7] The semigroup T'(X, p, R) is regular if and only if p is
2-bounded or a T-relation.

If p is the identity relation, then p is 2-bounded and a T-relation. So by applying p to
be the identity relation in Theorem 3.6, we obtain the following corollary.

Corollary 3.8. [9, Theorem 2.4] F(X,Y) is the largest reqular subsemigroup of T(X,Y).

As shown in Example 2.2, T(X,Y, p, R) is not a regular semigroup. The following
theorem describes when T'(X,Y, p, R) is regular.

Theorem 3.9. T(X,Y,p, R) is regular if and only if one of the following statements
holds:

(i) [Y|=1 orY is a cross-section of X/p;
(ii) Y = X; and p is 2-bounded or a T-relation.

Proof. Let T(X,Y, p, R) be regular. Suppose that |Y| > 2 and Y is not a cross-section of
X/p. So there exists zg € X such that zopNY = @ or |[zopNY| > 2. Now, we prove that
Y = X by supposing that this is false, so Y C X.

If zop NY = 0, then since |Y| > 2, we can choose r € R and y € Y such that r # y.
Define a € T(X,Y, p, R) by

aa:{ Yy .a€zop;
r,a ¢ xop.
Then either Xa/p = {{r,y}} or Xa/p = {{r},{y}}; and ¥'a = {{r}}. Thus Xa/p ¢
v'a. By Theorem 3.1, « is not regular which is a contradiction.

If |zop NY| > 2, then there exist 7,y € xop NY such that » € R and r # y. Since
Y C X, we obtain that X\Y # (). So we define a € T(X,Y, p, R) by
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{7" ,a €Y
ac =

y ,a€X\Y.

Then Xa/p = {{r,y}} € {{r}} = ¥*a which implies that « is not regular, a contradiction.

Thus Y = X which implies that T(X, p, R) = T(X,Y, p, R) is regular. By Corollary
3.7, we have p is 2-bounded or a T-relation.

Conversely, assume that the conditions hold. If |Y| = 1, then T(X,Y, p, R) contains
exactly one element, the constant map, and it is regular. If Y is a cross-section of X/p,
then T'(X,Y, p, R) is isomorphic to T(Y) by Lemma 2.3, and so it is regular. Finally, if
Y = X; and p is 2-bounded or a T-relation, then T'(X,Y, p, R) = T(X, p, R) is regular by
Corollary 3.7. n

The following corollary is a direct consequence of Theorem 3.9 by replacing p with the
identity relation.

Corollary 3.10. [8, Corollary 2.2] The semigroup T(X,Y) is reqular if and only if |Y] = 1
orY =X.

4. COMPLETELY REGULAR T(X,Y, p, R) AND INVERSE T'(X,Y, p, R)

Aratjo and Konieczny [1] determined that T(X, p, R) is never a completely regular
semigroup (if |X| > 4) and an inverse semigroup (if |X| > 3). Here, we aim to find some
conditions for T'(X,Y, p, R) to be never a completely regular semigroup and an inverse
semigroup. This leads to new results on the semigroup T'(X,Y’) when replacing p with
the identity relation.

We start with the following lemma.

Lemma 4.1. If a € T(X,Y, p, R) is completely reqular, then Xa = Xa?.

Proof. Let a € T(X,Y, p, R) be completely regular. Then there exists 5 € T(X,Y, p, R)
such that o = afBa and a8 = Ba. Thus a = (aB)a = Ba? which implies that Xa =
(XB)a? C Xa?. And Xa? = (Xa)a € Xa, so we obtain Xa = Xa?. L]

Theorem 4.2. Suppose that Y satisfies one of the following statements:
(i) [Y]=3andY C X;
(i) Y| > 4.

Then T(X,Y, p, R) is not a completely regular semigroup.

Proof. Assume that Y| > 3. We aim to define o € T(X,Y, p, R) such that Xa # Xa?.
We consider two cases.

Case 1: there are at least three p-classes. Then there are 7p, sp and tp such that r, s, ¢
are all distinct elements in R. Define o € T(X,Y, p, R) by

X\rp r
a=(*y7 7).
Thus Xa = {s,t} # {s} = Xa?.
Case 2: there are at most two p-classes. Since |Y| > 3, there exists r € R such that
rp contains at least two elements. Let y € rp be such that y #r. If Y| =3 and Y C X
or |Y| > 4, then there exists € X\ R such that « # y. Define o € T(X,Y, p, R) by

o= (X\jx} y)
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Thus Xa = {r,y} # {r} = Xa?.

From the two cases described above, we obtain that « defined in each case satisfies
Xa # Xa?. By Lemma 4.1, « is not completely regular. Therefore, T(X,Y, p, R) is not
a completely regular semigroup. [

For the case |Y| = 1or 2, or |Y| = |X| = 3, we observe that if |[Y| = 1; or |Y| = | X| = 2;
or |[Y| =2, Y C X, pis the identity relation on Y and there are two p-classes; or
Y| =|X|=3and X/p = {{r,z},{s}}, then T(X,Y, p, R) is completely regular. For the
other cases, T'(X,Y, p, R) is not completely regular.

As a direct consequence of Theorem 4.2 and by taking Y = X, we obtain the following
corollary.

Corollary 4.3. [, Theorem 5.2] If | X| > 4, then T'(X, p, R) is not a completely reqular
semigroup.

Replacing p with the identity relation in Theorem 4.2, we obtain the following corollary.

Corollary 4.4. If|Y| > 3, then T(X,Y) is not a completely reqular semigroup.

Proof. By replacing p with the identity relation in Theorem 4.2, we have if |Y| = 3 and
Y C X;or|Y| >4, then T(X,Y) =T(X,Y, p, R) is not a completely regular semigroup.
For the case Y = X has three elements, T'(X,Y) = T(X) is not a completely regular
semigroup since « = (‘“ a2 “3) € T(X) satisfies Xa # Xa?. "

ai ai az

Theorem 4.5. Suppose that Y satisfies one of the following statements:
(i) Y|=2andY C X;
(i) [¥]> 3.

Then T'(X,Y, p, R) is not an inverse semigroup.

Proof. Assume that |Y| > 2. We aim to define idempotents e, f € T(X,Y, p, R) such that
ef # fe. There are two possible cases to consider.

Case 1: there are at least two p-classes. Let r,s € R be such that » # s. Define
e,f €T(X,Y,p,R) by ze =71 and xf = s for all z € X. Then e, f are idempotents and
r(ef) =s#r =r(fe). Thus ef # fe.

Case 2: there is only one p-class. Let R = {r}. Then |rp| > 2. If |Y|=2and Y C X,
then 7p = {r,y} in which y # r and there exists x € X\Y. Define e, f € T(X,Y, p, R) by

o (AMYY v g po (XMewd {zud)
(50 3 mar= (R0 )

r )

Then e, f are idempotents and z(ef) = r # y = z(fe). Thus ef # fe. If |Y| > 3,
then |rp| > 3 and so there are yi,y2 € rp such that r,y;,y2 are all distinct. Define
e, € T(X,Y,p,R) by

o (X\{Z/hyz} {ylyalyz}> and f = <X\{%~1’y2} {2/1792})_

r Y2

Then e, f are idempotents and y;(ef) = y2 # y1 = y1(fe). Hence ef # fe.
As the fact that all idempotents of an inverse semigroup commute, it follows that
T(X,Y,p, R) is not an inverse semigroup. m



Regularity of a Semigroup of Transformations with Restricted Range ... 827

We observe that if |[Y| = 1; or |Y] = |X| = 2 and p = w, then T(X,Y,p, R) is an
inverse semigroup. But if [Y| = |X| =2 and p = A, then T(X,Y, p, R) is not an inverse
semigroup.

As a consequence of Theorem 4.5, we have the following corollaries.

Corollary 4.6. [4, Theorem 5.1] If | X| > 3, then T'(X, p, R) is not an inverse semigroup.
Corollary 4.7. If |Y| > 2, then T(X,Y) is not an inverse semigroup.

Proof. By replacing p with the identity relation in Theorem 4.5, we have if |Y| = 2 and
Y C X;or |Y] >3, then T(X,Y) = T(X,Y, p, R) is not an inverse semigroup. For the
case Y = X has two elements, T(X,Y) = T(X) is not an inverse semigroup since the two
constant maps are idempotents which do not commute. [

5. UNIT-REGULARITY OF T(X,Y, p, R)

In this section, we characterize when T'(X,Y, p, R) possesses an identity. Then the
unit-regularity of such semigroups are investigated, and this gives the description for the
unit-regularity of T'(X, p, R).

Note that if @ € X such that apNY # (@, then there exists exactly one r € R such that
a p r, which will be denoted by r,.

Theorem 5.1. T'(X,Y, p, R) has an identity if and only if one of the following statements
holds:

i) Y|=1orY =X;

(ii) Y is a cross-section of X/p.

Proof. Assume that T(X,Y, p, R) has an identity . Suppose that |Y| > 2 and ¥ C X.
From ¢ is an identity, we obtain that e« = o = ae for all @ € T(X,Y,p,R). Let
a € T(X,Y,p,R) be such that Xa =Y (for example, fix 7o € R and define

a ,a€Y;
re ,a€ X\Y and apNY # (;
ro ,a€ X\YandapnY =,

thus o € T(X,Y,p,R) and Xao =Y). Then Ye = (Xa)e = X(awe) = Xa = Y which
implies that Xe = Y. Since ¢ is an idempotent, we have ye = y for all y € Y. Now, we
prove that Y is a cross-section of X/p, that is, [tpNY| =1 for all z € X. Suppose that
this is false, so there exists g € X such that zogpNY =0 or |[zgpNY| > 2.

If xopNY = (), then we assume that xge = yo ¢ xop for some yo € Y. Since |Y| > 2,
we choose y; € Y such that y; # yo. Define 8 € T(X,Y, p, R) by

_ ) Y1 ,a € xop;
aﬁ—{ ag ,a ¢ zop.

ax

We observe that zoe8 = (20€)f = yof = Yoe = Yo # y1 = o3, this leads to a contradic-
tion since € is an identity.

If [xgpNY| > 2, then there exist y1,y2 € xopNY such that y; € R and y; # yo. Since
Y C X, there exists ;1 € X\Y and let 16 = yg for some yo € Y. Define 5 € T(X,Y, p, R)
by

Y2 ,0=1x1.

a,é’:{ yi e € X\{z1h;
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We see that 168 = (216) = yoff = 11 # y2 = 218 and hence e # [ which is a
contradiction.

Therefore, |zpNY| =1 for all z € X.

Conversely, if |[Y|=1orY = X, then |[T(X,Y,p,R)|=1or T(X,Y,p,R) =T(X, p, R),
respectively and both have identities. If Y is a cross-section of X/p, then T'(X,Y, p, R) is
isomorphic to T(Y') by Lemma 2.3, and so T(X,Y, p, R) has an identity. L]

If |Y] = 1, then T(X,Y, p, R) has only one element, thus it is unit-regular. If Y is a
cross-section of X/p, then T(X,Y, p, R) is isomorphic to T'(Y). Therefore, in this case
T(X,Y,p, R) is unit-regular if and only if Y is finite by Lemma 2.4.

Now, we characterize the unit-regularity of T'(X,Y, p, R) when Y = X. In this case,
T(X,Y,p,R) = T(X,p, R).

Lemma 5.2. If T(X, p, R) is unit-reqular and p # w, then each p-class has the same
size.

Proof. Assume that T'(X, p, R) is unit-regular and p # w. We show that each p-class has
the same size, by supposing that this is false. So there exist a,b € X such that |ap| # |bp|.
For convenience, we assume that |ap| = I < J = |bp|. Thus there are an injective map
@ ap — bp with r,¢ = 1, and a surjective map ¥ : bp — ap with r9p = r,. Now, we
define @ € T(X, p, R) by

o LT € ap;
ra=<( x ,x € bp;
x , otherwise.

Since T'(X, p, R) is unit-regular, by Lemma 2.6 there is a bijection 5 € T(X, p, R) such
that o = afa. This implies xa = (za)Ba for all za € Xa, that means y3 € ya~! for
all y € Xa. Let ap = {a; : i € I} and bp = {b; : j € J}. Since ¢ is injective, there is
an injection 6 : I — J such that a;p = by for all i« € I. Then b;y = a;a € X, hence
biof3 € biga™! = {a;} for all i € I. Since |ap| < |bp|, there is &' € bp\(ap)y, so b’ # big
forall i € I and V'3 € ap = {a; : i € I}. Thus V'8 = ay, for some k € I. It follows
that b8 = aj = by/3 which leads to a contradiction since [ is injective. Therefore, each
p-class has the same size. [

Theorem 5.3. T(X, p, R) is unit-regular if and only if X is a finite set and one of the
following statements holds.

(i) p=24 orp=uw;

(ii) each p-class has size two.

Proof. Assume that T(X, p, R) is unit-regular. It follows that T'(X, p, R) is regular and
thus p is 2-bounded or a T-relation by Corollary 3.7. We first show that (i) or (ii) holds
by supposing that p # w. By Lemma 5.2, we have each p-class has the same size. So we
conclude that p = A or each p-class has size two.

Now, we prove that X is finite. If p = A or p = w, then T(X,p,R) = T(X) or
T(X,p,R) = Fix(X,{ro}) where R = {ro}. Since T'(X, p, R) is unit-regular, we obtain
that X is a finite set by Lemmas 2.4 and 2.5. If each p-class has two elements, we suppose
that X is an infinite set. Then choose {u,r,} = up € X/p and let X' = X\{u,r,}. So
|X/p| = |X'/p| since X is infinite. Thus there is a bijection ¢ : X/p — X'/p. Define
a € T(X,p,R) as follows. Let ap € X/p. Then ap = {a,r,}, so define {a,r,}a =
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{a,ra}¢ € X’ /p. Since ¢ is a bijection, we obtain « is an injective map onto X’. From «
is unit-regular, there is a bijection 3 € T(X, p, R) such that o = afa. Since 2/ € 2'a™!
for all ' € X', it follows that X’3 = X since « is injective which contradicts the injectivity
of 8. Therefore, X is a finite set.

Conversely, assume that X is finite and (i) or (ii) holds. If X is finite and (i) holds, then
T(X,p,R)=T(X) or T(X,p,R) = Fiz(X,{ro}) where R = {rg}. Thus by Lemmas 2.4
and 2.5, T(X, p, R) is unit-regular. If X is finite and each p-class has size two, then p is
2-bounded and hence T'(X, p, R) is regular by Corollary 3.7. Let @ € T(X, p, R). Then «
is regular and so Xa/p C Yo by Corollary 3.2. We aim to find a bijection 8 € T'(X, p, R)
such that & = afa. Since {rpNXa:re Rand roNXa # 0} = Xa/p C va = {(sp)a:
s € R}, for each roN Xa € Xa/p, we can choose s, € R such that (s,p)a = rpN Xa.
Let & ={rp:r € Rand rpN Xa =0} and B = X/p\{srp : (srp)a = rpN Xa}. Thus
|| = | 2| since X is a finite set. Hence there is a bijection ¢ : &7 — . Now, we define
B € T(X,p,R) on each p-class as follows. Let rp = {a,r} € X/p where r € R.

If roN Xa # 0, then rpN Xa € Xa/p and so there exists s, € R such that (s.p)a =
rpN Xa where s,.p = {b, s, } thus define {a,r}5 = {b,s.}.

If rpN Xa =0, then rp € & and so define

{a,r}B = {a,r}e.

Therefore, § is a bijection in T'(X, p, R) which implies that § is a unit by Lemma 2.6.
To see that a = afa, let z € X. Then za € rpN Xa € Xa/p for some r € R and so

za €rpNXa=(s.p)a=1{b, s, ta. If xta = ba, we have

ba ,ba = a;

r  LSba=r,

wafa = (sa)Ba = (ba)Ba = {

which implies that zafa = ba = za. If za = s,a, then zafa = (za)fa = (s,a)fa =
(rB)a = spa = za. m
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