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1. Introduction

In the paper [1] and [2], the concept of statistical convergence of real valued sequences
is defined by Fast and Steinhaus indepentendly. The idea of statistical convergence based
on asymptotic density of the subset of natural numbers (see [3]). Over the years, under
different names, statistical convergence has been studied and it is applied some problems
in Fourier Analysis, Ergodic Theory and Number Theory such as [4–9] and [10], etc.

Let K be a subset of positive natural numbers N and K(n) denotes the set

{k ≤ n : k ∈ K} .
Asymptotic density of the subset K is denoted by δ(K) if the limit

δ(K) := lim
n→∞

1

n
|K(n)|

exists, where |K(n)| denotes the cardinality of K(n).
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Definition 1.1. A real valued sequence x = (xn) is said to be statistical convergent to
L, if for every ε > 0, the set

K(ε) := {n : |xn − L| ≥ ε}

has zero asymptotic density. In this case, we write st− lim
n→∞

xn = L.

In 1980, by comparing convergence rate of nonnegative two sequences, Pobyvanets in
[11] gave necessary and sufficient conditions for a nonnegative summability matrix A to
have a property that, two nonnegative sequences x = (xn) and y = (yn) bounded below
from zero, one has that Ax

Ay → 1 whenever x
y → 1.

After this paper, Fridy (in [12]) offered a new way to compare convergence rate of
nonnegative sequences which are belonging l1-space and c-space.

Later, Marouf (in [13]) continued to study this problem and gave necessary and suf-
ficient conditions for a matrix A to be asymptotic regular matrix. In [14], under weak
conditions, Jinlu gave some further results for asymptotic regular matrix. Some analogy
results were established by Patterson in [15] by considering statistical convergence instead
of ordinary convergence. Also, all results in [11] and [15] are extended to the setting where
convergence is replaced by convergence with respect to ideal in [16] by Connor-Gümüş.

Another active research area about asymptotic equivalence is the preservation of as-
ymptotic equivalence. This kind of research was began with a paper of Patterson and
Savaş in [17] which they established necessary and sufficient conditions for sequences to
be simultaneously asymptotic equivalence with respect to the statistical convergence, la-
cunary statistical convergence and strong lacunary convergence. By considering different
summability methods, this kind of results are obtained by different authors such as [18–21]
etc.

On the contrary to the convergence of point sequences, in literature, there are only well
known three type convergence methods, and some generalizations of them, for sequence
of sets: Wijsman, Hausdorff and Kuratowski (see [22–24] ). In [25], Nuray and Rhoades
defined Wijsman statistical convergence of sequence of sets. Later, in the paper [26] by
using lacunary sequence, this concept is generalized to the lacunary statistical convergence
and some parallel results in [25] is given by Ulusu and Nuray. Apart from these results,
ideal convergence of sequences of sets has been given in [27].

Definition 1.2 ([13]). Two nonnegative sequence x = (xn) and y = (yn) are said to be
asymptotically equivalent if

lim
n

xn
yn

= 1. (1.1)

It is denoted by x ∼ y .

By combination of Definition 1.1 and Definition 1.2 asymtotically statistical equivalent
with multiple L of two nonnegative sequences is defined by Patterson in [15] as follows:

Definition 1.3 ([15]). Two nonnegative sequences x = (xn) and y = (yn) are said to be
asymptotically equivalent with multiple L if for every ε > 0,

lim
n→∞

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣xkyk − L
∣∣∣∣ > ε

}∣∣∣∣ = 0, (1.2)

exists and it is denoted by x
SL∼ y.
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Also, if L = 1 in (1.2), the sequences x and y are simply called asymptotically

statistical equivalent and it is denoted by x
S∼ y.

In this paper, our aim to give a typical generalization of Definition 1.3 by considering
deferred statistical density which is defined in [28], and to obtained many general results
than literature.

Let us recall deferred Cesàro mean. In 1932, R. P. Agnew in [29] defined the deferred
Cesàro mean Dp,q of a sequence x = (xn) by

(Dp,qx)n :=
1

q (n)− p (n)

q(n)∑
k=p(n)+1

xk,

where {p (n)}n∈N and {q (n)}n∈N are sequences of positive natural numbers under which

p (n) < q (n) and lim
n→∞

q (n) =∞. (1.3)

Let (X, ρ) be a metric space. For any nonempty closed subsets Ak, T ⊆ X, we say that
the sequence A = (Ak) is Wijsman convergent to the set T if

lim
k→∞

dx(Ak) = dx(T ), (1.4)

exists for each x ∈ X. It is denoted by W − limAk = T .
In (1.4), the symbol dx(B) denotes the distance of the point x ∈ X to the set B such

that

dx(B) := inf{ρ(x, a) : a ∈ B}.

Definition 1.4 ([30]). A sequence A = (Ak) is said to be Wijsman strongly deferred
Cesàro summable to the set T if for each x ∈ X,

lim
n→∞

1

q − p

q∑
k=p+1

|dx(Ak)− dx(T )| = 0

holds. In this case, we write WD − limk→∞Ak = T .

Deferred density of K ⊂ N is defined as if the limit exists:

δD(K) := lim
n→∞

1

q − p
∣∣{p < k ≤ q : k ∈ K}

∣∣.
Definition 1.5 ([30]). A sequence A = (Ak) is said to be Wijsman deferred statistically
convergent to a set T if for every ε > 0 and x ∈ X,

lim
n→∞

1

q − p
|{p < k ≤ q : |dx(Ak)− dx(T )| ≥ ε}| = 0,

hold. In this case, we write WDS − limk→∞Ak = T .

Asymptotically equivalent and asymptotically statistical equivalent of sequences of sets
is defined by Ulusu and Nuray in [31] as follow:

Definition 1.6 ([31]). Let (X, d) be a metric space. For any nonempty closed subsets
A = (Ak) , B = (Bk) ⊆ X such that dx(Ak) > 0 and dx(Bk) > 0, for each x ∈ X. We
say that the sequences A = (Ak) and B = (Bk) are
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(i) asymptotically equivalent(in the Wijsman sense) with mutiple L if for each x ∈ X,

lim
n→∞

dx(Ak)

dx(Bk)
= L, (1.5)

and it is denoted by A
WL∼ B.

(ii) asymptotically statistical equivalent(in the Wijsman sense) with mutiple L if for
every ε > 0 and for each x ∈ X,

lim
n→∞

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ = 0, (1.6)

and it is denoted by A
WSL∼ B.

Definition 1.7. Let (X, d) be a metric space. For any non empty closed subsets A =
(Ak) , B = (Bk) ⊆ X such that dx(Ak) > 0 and dx(Bk) > 0 for each x ∈ X. We say that
the sequences A = (Ak) and B = (Bk) are

(i) asymptotically deferred equivalent(in the Wijsman sense) with mutiple L if for each
x ∈ X,

lim
n→∞

1

q − p

q∑
k=p+1

(
dx(Ak)

dx(Bk)
− L

)
= 0 (1.7)

and it is denoted by A
WDL∼ B.

(ii) asymptotically deferred statistical equivalent(in the Wijsman sense) with mutiple
L if for every ε > 0 and for each x ∈ X,

lim
n→∞

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ = 0 (1.8)

and it is denoted by A
WDSL∼ B.

Example 1.8. Let X = R2 and d be a metric on R2 and A = (Ak), B = (Bk) be
sequences of sets as follows:

Ak :=

{ {
(x, y) : x2 + (y − 1)2 = 1

k

}
, if p < k ≤ q, k = m2, m = 1, 2, ...,

{(0, 0)} , otherwise

and

Bk :=

{ {
(x, y) : x2 + (y + 1)2 = 1

k

}
, if p < k ≤ q, k = m2, m = 1, 2, ...,

{(0, 0)} , otherwise.

For any (x0, 0) ∈ R2, we have d(x0,0)(Ak) = d(x0,0)(Bk). Since

lim
n→∞

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣d(x0,0)(Ak)

d(x0,0)(Bk)
− 1

∣∣∣∣ ≥ ε}∣∣∣∣ = 0,

then, the sequences A = (Ak) and B = (Bk) are asymptotically Wijsman deferred statis-

tical equivalence, i.e., A
WDS∼ B.

Remark 1.9. It is clear from the Definition 1.7 that

(i) If q (n) = n and p (n) = n− 1, then (1.7) is coincide with (1.5).
(ii) If q (n) = n and p (n) = 0, then (1.8) is coincide with (1.6).
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(iii) If we consider q (n) = kn and p (n) = kn−1 (for any lacunary sequence of non-
negative integers with kn − kn−1 → ∞ as n → ∞), then (1.8) is coincide the definition
of asymptotically lacunary statistical equivalence which is given by Patterson and Savaş
in [17] and some version of it is studied by Braha and Ulusu- Savaş in [18] and [32],
respectively.

(iv) If q(n) = λn and p(n) = 0 (where λn is a strictly increasing sequence of natu-
ral numbers such that lim

n
λn = ∞), then (1.8) is coincide λ−statistical equivalence of

sequences which is given by Osikievich in [33].
(iv) If q(n) = n and p (n) = n − λn (where (λn) is a nondecrasing sequence of real

numbers such that λ0 = 1 and λn+1 ≤ λn + 1 for all n ∈ N), then (1.8) is coincide
λ−density which was defined by Mursaleen in [34] and was studied by Hazarika-Esi in
[20, 35].

2.WDSL-Equivalence of Sequences of Sets

Throughout the paper, we consider p = {p (n)}n∈N and q = {q (n)}n∈N are sequences
of positive natural numbers satisfying the conditions (1.3). Also, it is assumed, for any
nonempty closed subsets A = (Ak) , B = (Bk) ⊆ X such that dx(Ak) > 0 and dx(Bk) > 0
hold for each x ∈ X and k ∈ N.

The notation A ≺ B will be used if An ⊆ Bn holds for all n ∈ N.

Theorem 2.1. Let A = (Ak) and B = (Bk) and C = (Ck) be sequences of nonempty

closed sets. If A
WDSL∼ B and A ≺ C, then C

WDSL∼ B.

Proof. Assume that A
WDSL∼ B and A ≺ C. Let x ∈ X be an arbitrary fixed point. Since

A ≺ C, then

dx(Ck) ≤ dx(Ak)

hold for all n ∈ N. Therefore, the inequality∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≤ ∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣
holds for all sufficiently large n ∈ N, then the inclusion{

p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ⊆ {
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
is true.

Hence, for any ε > 0, following inequality

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≤ 1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
holds. If we take limit when n→∞, desired result is obtained.

Theorem 2.2. Let A = (Ak) and B = (Bk) and C = (Ck) be sequences of nonempty

closed sets. If A
WDSL∼ B and C ≺ B, then A

WDSL∼ C.
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Proof. From the assumption the inequality dx(Bk) ≤ dx(Ck) hold for all k ∈ N. So for
sufficiently large n ∈ N, we have∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≤ ∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ .
Hence, for any ε > 0 the following inclusion{

p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε} ⊂ {
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
holds. From this inclusion, we have

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≤ 1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ .
If we take limit when n→∞, we obtaine A

WDSL∼ C.

Theorem 2.3. Let A = (Ak) , B = (Bk) and C = (Ck) be sequences of nonempty closed

sets. If A
WDSL∼ B, then A ∪ C WDSL∼ B and A

WDSL∼ B ∩ C hold.

Proof. For any sequence of sets C = (Ck) we have Ak ⊂ Ak ∪ Ck and Bk ∩ Ck ⊂ Bk for
all k ∈ N. It means that A ≺ A∪C and B ∩C ≺ B. So, proof is clear from the Theorem
2.1 and Theorem 2.2. So it is omitted here.

Definition 2.4. If A = (Ak) satisfies a property P for all k ∈ N except a set which
has zero deferred density, then it is said that the sequence A = (Ak) has the property P
deferred almost all k ∈ N and it is denoted by ”d.a.a.k”.

Following Theorems are the typically generalization of Theorem 2.1 and Theorem 2.2.

Theorem 2.5. Let A = (Ak) , B = (Bk) and C = (Ck) be sequences of nonempty closed

sets. If A
WDSL∼ B and A ≺ C (d.a.a.k), then C

WDSL∼ B.

Proof. Let us consider M = {k : Ck ⊂ Ak}. From the assumption, δD (M) = 0 holds.
Therefore, following inequality∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≤ ∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣
holds d.a.a.k. Then, we have

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≤ 1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
+

1

q − p
|M | .

By taking limit when n→∞, we obtained C
WDSL∼ B.

Theorem 2.6. Let A = (Ak) , B = (Bk) and C = (Ck) be sequences of nonempty closed

sets. If A
WDSL∼ B and B ≺ C (d.a.a.k), then A

WDSL∼ C.

Proof. The proof can be obtain by following the proof of Theorem 2.5. So it is omitted
here.
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Theorem 2.7. Let A = (Ak) , B = (Bk) and C = (Ck) be sequences of nonempty closed

sets. If A
WDSL∼ B and A = C (d.a.a.k), then C

WDSL∼ B.

Proof. Take M := {k : Ak 6= Ck}. From the assumption we have δD (M) = 0. So, for
any ε > 0, the following inclusion{

p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε} =

{
p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∩ (MC ∪M
)

⊆
({

p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∩MC

)
∪
({

p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∩M)
⊆
{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∪M
holds. Hence,

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ck)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≤ 1

q − p

{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
+

1

q − p
|M |

holds. After taking limit when n→∞, desired result is obtained.

Theorem 2.8. Let A = (Ak), B = (Bk) and C = (Ck) be sequences of nonempty closed

sets. If A
WDSL∼ B and B = C (d.a.a.k), then A

WDSL∼ C.

Proof. Denote the set M := {k : Bk 6= Ck} such that we have δD (M) = 0. From this
fact dx(Bk) = dx(Ck) (d.a.a.k) satisfied for any x ∈ X. Therefore, following inclusion{

p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε} =

{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε} ∩ (MC ∪M
)

⊆
({

p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∩MC

)
∪
({

p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε} ∩M)
holds. Since[{

p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∩MC

]
⊆
{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
and [{

p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε} ∩M] ⊆M,

then we have{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε} ⊆ {p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∪M.

Hence,

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≤ 1

q − p

{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Ck)
− L

∣∣∣∣ ≥ ε}
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+
1

q − p
|M |

holds. After taking limit when n→∞,desired result is obtained.

3. Comparison of WDL and WDSL-Equivalence

In this section, WDL-equivalence and WDSL-equivalence will be compared. Also, it
will be shown that WDL-equivalence is equal WDSL-equivalence under some conditions.

Theorem 3.1. Let A = (Ak) and B = (Bk) be sequences of nonempty closed sets. Then,

A
WDL∼ B implies A

WDSL∼ B.

Proof. Assume that A
WDL∼ B i.e.,

lim
n→∞

1

q − p

q∑
k=p+1

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ = 0.

For an arbitrary ε > 0, the following inequality

1

q − p

q∑
k=p+1

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ =
1

q − p


q∑

k=p+1∣∣∣∣ dx(Ak)
dx(Bk)

−L
∣∣∣∣≥ε

+

q∑
k=p+1∣∣∣∣ dx(Ak)

dx(Bk)
−L

∣∣∣∣<ε


∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣
≥ 1

q − p

q∑
k=p+1∣∣∣∣ dx(Ak)

dx(Bk)
−L

∣∣∣∣≥ε

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣
≥ ε

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
holds. If we take limit when n→∞, then we obtain

lim
n→∞

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ = 0.

This gives the proof.

Corollary 3.2. If A
WL∼ B then A

WDSL∼ B.

Remark 3.3. The converse of Theorem 3.1 and Corollary 3.2 are not true, in general.

Let x0 ∈ X be an arbitrary fixed point and take any arbitrary sequnce of sets C = (Ck)
such that dx0

(Ck) = k holds for all k ∈ N. Also, let D = (Dk) be a sequence of sets such
that dx0

(Ck)dx0
(Dk) = 1 holds for all k ∈ N.

Now, we are ready to give counter example: Let sequences of sets A = (Ak) and
B = (Bk) as follows:

Ak :=

{
Ck,

[√
q (n)

]
−m0 < k ≤

[√
q (n)

]
, n = 1, 2, 3, ..,

E, otherwise
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and

Bk :=

{
Dk,

[√
q (n)

]
−m0 < k ≤

[√
q (n)

]
, n = 1, 2, 3, ...,

E, otherwise

respectively, where q (n) is a strictly monotone increasing sequence and m0 is an arbitrary
fixed natural number. The symbol [.] is the integer part of inside number.

Therefore, we have

dx0
(Ak) :=

{
k,

[√
q (n)

]
−m0 < k ≤

[√
q (n)

]
, n = 1, 2, 3, ..,

dx0
(E) , otherwise

and

dx0
(Bk) :=

{
k−1,

[√
q (n)

]
−m0 < k ≤

[√
q (n)

]
, n = 1, 2, 3, ..,

dx0 (E) , otherwise.

Hence, it is clear that A
WDSL∼ B for L = dx0

(E) but A
WDL� B.

Theorem 3.4. If A = (Ak) and B = (Bk) ∈ l∞, then A
WDSL∼ B implies A

WDL∼ B,
where l∞ denotes the set of all bounded sequences(in the Wijsman sense).

Proof. It is clear from Theorem 3.1 that A
WDL∼ B implies A

WDSL∼ B. Now assume that

the sequences A = (Ak) and B = (Bk) are from `∞ and satisfying A
WDSL∼ B. Then,

there exists M > 0 such that ∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≤M
holds for all k ∈ N. So, for any ε > 0, following inequality

1

q − p

q∑
k=p+1

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ =

(∑
k∈N

+
∑
k∈Nc

)∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣
≤ M

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣+ ε

is satisfied where

N :=

{
p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} .
Hence, after taking limit when n→∞ desired result is obtained.

Definition 3.5 ([29]). A method Dp,q is called properly deferred when p = {p (n)} and
q = {q (n)} satisfy in addition to (1.3), the condition{

p (n)

q (n)− p (n)

}
n∈N

is bounded.

In the following theorem, it is shown that WSL−equivalence implies WDSL− equiva-
lence.

Theorem 3.6. In order that A
WSL∼ B implies A

WDSL∼ B if and only if the method Dp,q

is properly deferred.
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Proof. Since A
WSL∼ B, then we have

lim
n→∞

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ = 0.

Therefore, following limit

lim
n→∞

1

q

∣∣∣∣{k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ = 0

because q(n)→∞, n→∞. It is clear from set comparison that the following inequality∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ ≤ ∣∣∣∣{k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
holds for every ε > 0. Hence,

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≤ q

q − p
1

q

∣∣∣∣{k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
=

(
1 +

p

q − p

)[
1

q

∣∣∣∣{k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣] .
After taking limit when n → ∞, we obtain desired result if and only if Dp,q is properly
deferred.

Theorem 3.7. If A
WDSL∼ B w.r.t an arbitrary p and q = n, then A

WSL∼ B hold.

Proof. Let us assume that A
WDSL∼ B with respect to q = n and arbitrary p. For any

n ∈ N, there is a h ∈ N such that nh+1 = 0 and the inequality

p (n) = n(1) > p
(
n(1)

)
= n(2) > p

(
n(2)

)
= n(3) > ... > p

(
n(h−1)

)
= n(h) ≥ 1

holds. Therefore, the set
{
k ≤ n :

∣∣∣dx(Ak)dx(Bk)
− L

∣∣∣ ≥ ε} can be represent as{
k ≤ n(1) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∪{n(1) < k ≤ n :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} .
By the same way the first set in the union can be represent as{

k ≤ n(2) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∪{n(2) < k ≤ n(1) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} .
After finite step (at most h step),{

k ≤ n(h−1) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
=

{
k ≤ n(h) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ∪{n(h) < k ≤ n(h−1) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
is obtained. Therefore,

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ =

h∑
m=0

n(m) − n(m+1)

n
Um,
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where

Um :=
1

n(m) − n(m+1)

∣∣∣∣{n(m+1) < k ≤ n(m) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ .
If we consider a matrix S := (sn,m) as

sn,m :=

{
n(m)−n(m+1)

n , m = 0, 1, 2, ..., h,
0, otherwise,

then the sequence {
1

n

∣∣∣∣{k ≤ n :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣}
n∈N

is (sn,m) transformation of the sequence (Um) . Since the matrix S = (sn,m) satisfies
Silverman-Toeplitz Theorem (see in [36]) and from assumption on A = (Ak) and B = (Bk)
then we have desired result.

Combining Theorem 3.6 and Theorem 3.7 we can give following theorem without proof:

Theorem 3.8. WDSL−asymptotically equivalence w.r.t. any p and q = n is equivalent

to WSL−equivalence if and only if
{

p
n−p

}
is bounded for all n ∈ N.

If we consider the method as

Dθ
n :=

S[θn]+1 + S[θn]+2 + ...+ Sn

n− [θn]
,

where θ is a constant 0 ≤ θ < 1. Then, as a Corollary of Theorem 3.8, the following
result can be given:

Corollary 3.9. A
WDθnSL∼ B if and only if A

WSL∼ B.

4. Comparison of WDSL-Equivalence for Any Sequences p and q

Take into consider p′ = {p′ (n)} and q′ = {q′ (n)} be any sequences of positive natural
numbers such that

p(n) ≤ p′ (n) < q′ (n) ≤ q (n) (4.1)

hold for all n ∈ N besides (1.3). Denote by the associated sets

E := {p (n) : n ∈ N} , E′ := {p′ (n) : n ∈ N} ,

F := {q (n) : n ∈ N} and F ′ := {q′ (n) : n ∈ N} .

Theorem 4.1. If the set F ′ \ F is finite and

lim
n→∞

q (n)− q′ (n)

q′ (n)− p (n)
<∞

holds, then A
WDSLv B w.r.t. p and q implies A

WDSLv B w.r.t. p and q′.
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Proof. Since F ′ \ F is finite, then there is a number n0 ∈ N such that the inclusion

{q′ : n > n0} ⊂ {q : n ∈ N}
holds. So, there is a strictly increasing sequence j = {j (n)} such that q′ (n) = q (j (n))
hold for all n ≥ n0. Therefore, for sufficiently large n ∈ N, following inequality

1

q′ − p

∣∣∣∣{p < k ≤ q′ :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
=

1

q (j (n))− p

∣∣∣∣{p < k ≤ q (j (n)) :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≤ q − p

q′ − p
· 1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε }∣∣∣∣
=

(
q − q′

q′ − p
+ 1

)
1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε }∣∣∣∣
holds. Under the assumption, if we take limit where n→∞, we have desired result.

Theorem 4.2. If the set F \ F ′ is finite and

lim inf
n→∞

q′ (n)− p (n)

q (n)− p (n)
> 0

holds, then A
WDSLv B w.r.t. p and q′ implies A

WDSLv B w.r.t. p and q.

Proof. It can be proved by following Theorem 4.1. So, proof is omitted here.

Corollary 4.3. If F4F ′ is finite, then A
WDSLv B w.r.t. p and q if and only if A

WDSLv B
w.r.t. p and q′.

Theorem 4.4. If E′ \ E is finite and

lim inf
n→∞

q (n)− p′ (n)

q (n)− p (n)
> 0

holds, then A
WDSLv B w.r.t. p and q implies A

WDSLv B w.r.t. p′ and q.

Proof. If E′ \ E is finite, then there exists a natural number n0 ∈ N such that

{p′ : n ≥ n0} ⊂ {p : n ∈ N}
holds. It means that there is a strictly increasing sequence j = (jn) of natural numbers
such that

p′ (n) = p (jn) .

Therefore, following inequality

1

q − p′

∣∣∣∣{p′ < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε }∣∣∣∣
=

1

q − p

∣∣∣∣{p (jn) < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≤ q − p

q − p′
· 1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
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holds. If we take limit when n→∞, we obtain the proof of theorem.

Theorem 4.5. The sequence p′(n) and q′(n) are satisfied (4.1) such that the set
{k : p(n) < k ≤ p′(n)} and {k : q′(n) < k ≤ q(n)} are finite for all n ∈ N. Then,

A
WDSL∼ B w.r.t. p′ and q′ implies A

WDSL∼ B w.r.t. p and q.

Proof. Assume that A
WDSL∼ B (w.r.t. p′ and q′) . So, for an arbitrary ε > 0, we have the

following inequality

1
q−p

∣∣∣{p < k ≤ q :
∣∣∣dx(Ak)dx(Bk)

− L
∣∣∣ ≥ ε}∣∣∣

≤ 1

q′ − p′

∣∣∣∣{p < k ≤ p′ :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
+

1

q′ − p′

∣∣∣∣{p′ < k ≤ q′ :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
+

1

q′ − p′

∣∣∣∣{q′ < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≤ m1

q′ − p′
+

1

q′ − p′

∣∣∣∣{p′ < k ≤ q′ :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣+
m2

q′ − p′
,

where

m1 := |{k : p < k ≤ p′}| , m2 := |{k : q′ < k ≤ q}| .
On taking limit when n→∞, we have

lim
n→∞

1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣ = 0.

Thus A
WDSL∼ B (w.r.t. p and q) .

Theorem 4.6. The sequence p′ (n) and q′ (n) are satisfying (4.1) such that

lim
n→∞

q (n)− p (n)

q′ (n)− p′ (n)
= d > 0.

Then, A
WDSL∼ B w.r.t. p and q implies A

WDSL∼ B w.r.t. p′ and q′.

Proof. It is clear from the inclusion{
p′ < k ≤ q′ :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε} ⊂ {p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}
that the following inequality

1

q′ − p′

∣∣∣∣{p′ < k ≤ q′ :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
≤ q − p
q′ − p′

· 1

q − p

∣∣∣∣{p < k ≤ q :

∣∣∣∣dx(Ak)

dx(Bk)
− L

∣∣∣∣ ≥ ε}∣∣∣∣
holds. After taking limit when n→∞ the desired result is obtained.
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[16] J. Connor, H. Gümüş, Summability matrices that preserve asymptotic equivalence
for ideal convergence, Sarajevo J. Math. 12 (24) (2016) 107–124.

[17] R.F. Patterson, E. Savas, On Asymptotically lacunary statistical equivalent se-
quences, Thai J. Math. 4 (2) (2006) 267–272.

[18] N.L. Braha, On asymptotically ∆m-lacunary statistical equivalent sequences, Appl.
Math. Comput. 219 (2012) 280–288.

[19] A. Esi, On almost asymptotically lacunary statistical equivalent sequences induced
probabilistic norms, Analysis 34 (1) (2014) 19–28.

[20] B. Hazarika, A. Esi, N.L. Braha, On asymptotically Wijsman lacunary σ− statistical
convergence of set sequences, J. Math. Anal. 4 (3) (2013) 33–46.

[21] V. Kumer, A. Sharma, On asymptotically generalized statistical equivalent sequences
via ideals, Tamkang J. Math. 43 (2012) 469–478.

[22] J.P. Aubin, H. Frankowska, Set Valued Analysis, Birkhauser, Basel, 1986.



On Asymptotically Wijsman Deferred Statistical Equivalence ... 817

[23] C. Kuratowski, Topology, Academic Press, New York, 1986.

[24] R.A. Wijsman, Convergence of sequences of convex of sets, Bull. Am. Math. Soc. 70
(1964) 186–188.

[25] F. Nuray, B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49
(2012) 87–99.

[26] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequences of sets, Progress
in Applied Mathematics 4 (2) (2012) 99–109.
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