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1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disc

U = {z : |z| < 1}.
Denote by S the subclass of A consisting functions of the form (1.1) that are normalized
by

f(0) = 0 = f ′(0)− 1

and are univalent in U.
If f and g are analytic functions in U = {z : |z| < 1}, following MacGregor [1], we say

that f is majorized by g in U that is f(z)� g(z), (z ∈ U) if there exists a function φ(z),
analytic in U, such that

|φ(z)| < 1 and f(z) = φ(z)g(z), z ∈ U.
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It is interested to note that the notation of majorization is closely related to the concept
of quasi-subordination between analytic functions.

For two analytic functions f, g ∈ A we say that f is subordinate to g denoted by
f ≺ g if there exists a Schwar’z function ω(z) which is analytic in U with ω(0) = 0 and
|ω(z)| < 1 for all z ∈ U, such that f(z) = g(ω(z)) and z ∈ U.

Note that, if the function g is univalent in U, due to Miller and Mocanu [2] we have

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Denote by S∗(γ) and C(γ) the class of starlike and convex functions of complex order
γ(γ ∈ C \ {0}, satisfying the following conditions

f(z)

z
6= 0 and <

(
1 +

1

γ

[
zf ′(z))

f(z)
− 1

])
> 0

and

f ′(z) 6= 0 and <
(

1 +
1

γ

[
zf ′′(z))

f ′(z)

])
> 0, (z ∈ U)

respectively. Further,

S∗((1− α)cosλ e−iλ) = S∗(α, λ), |λ| < π

2
; 0 ≤ α ≤ 1

and

S∗(cosλ e−iλ) = S∗(λ), |λ| < π

2
; 0 ≤ α ≤ 1

where denotes S∗(α, λ) the class of λ− Spiral-like function of order α investigated by
Libera [3] and S∗(λ) the class of Spiral-like functions introduced by Spacek [4] (see [5]).

We recall the Wright generalized hypergeometric function [6]

lΨs[(α1, A1), ..., (αl, Al); (β1, B1), ...., (βs, Bs); z]

= lΨs[(αm, Am)1,l ; (βm, Bm)1,s ; z]

is defined by

lΨs[(αm, Am)1,l ; (βm, Bm)1,s ; z]

=

∞∑
n=0

(
l∏

m=1

Γ(αm + nAm)

)(
s∏

m=1

Γ(βm + nBm)

)−1
zn

n!
, (z ∈ U). (1.2)

If Am = 1(m = 1, ..., l) and Bm = 1(m = 1, .., s), we have the relationship

Ω lΨs[(αn,1)1,l ; (βn,1)1,s ; z] = lFs(α1, ..., αl;β1, ..., βs; z), (1.3)

where, lFs(α1, ..., αl ;β1, ..., βs ; z) is the generalized hypergeometric function and

Ω =

(
l∏

m=1

Γ(αm)

)−1( s∏
m=1

Γ(βm)

)
. (1.4)

Let Mp be the class of meromorphic functions which are analytic in the punctured
open unit disk U∗ = {z : z ∈ C : 0 < |z| < 1} of the form

f(z) =
1

zp
+

∞∑
n=1

anz
n−p. (1.5)
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For given g(z) = 1
zp +

∞∑
n=1

bnz
n−p ∈Mp, the Hadamard product of f and g is denoted by

(f ∗ g)(z) =
1

zp
+

∞∑
n=1

anbnz
n−p = (g ∗ f)(z), (1.6)

note that f ∗ g ∈Mp which are meromorphic in the open disc U∗.

Recently, following Dziok and Raina [7] Murugusundaramoorthy and Aouf [8] defined
a linear operator for p−valently meromorphic functions as

W l,s
p [α1, A1]f(z) =Wp[(α1, A1), ..., (αl, Al); (β1, B1), ..., (βs, Bs)] :Mp →Mp (1.7)

defined by the Hadamard product

W l,s
p [α1, A1]f(z) :=Wp[(αm, Am)l,s; (βm, Bm)l,s; z] ∗ f(z). (1.8)

If f ∈Mp and is given by (1.5), then we have

W l,s
p [α1, A1]f(z) =

1

zp
+ Ω

∞∑
n=1

∏l
m=1Γ(αm + nAm)∏s
m=1Γ(βm + nBm)n!

anz
n−p, z ∈ U∗, (1.9)

where Ω is given in (1.4). It is easy to verify that

zA1(W l,s
p [α1, A1]f(z))′ = α1W l,s

p [α1 + 1, A1]f(z)− (α1 + pA1)W l,s
p [α1, A1]f(z). (1.10)

From (1.10), we have the following recurrence relation for the operator W l,s
p

zA1(W l,s
p [α1, A1]f(z))j+1

= α1(W l,s
p [α1 + 1, A1]f(z))j − (α1 +A1(j + p))(W l,s

p [α1, A1]f(z))j . (1.11)

In particular, for Am = Bm = 1 (m = 1, ..., l,m = 1, ..., s), we get the linear operator

Hl,sp [α1]f(z) =
1

zp
+

∞∑
n=1

∏l
m=1(αm)n∏s
m=1(βm)nn!

anz
n−p (1.12)

introduced and studied by Liu and Srivastava [9]. It is easy to verify from (1.12) that

z(Hl,sp [α1]f(z))′ = α1Hl,sp [α1 + 1]f(z)− (α1 + p)Hl,sp [α1]f(z). (1.13)

It is of interest to note that for the suitable choices of l, s in turn it includes various
operators (also see [10–12]).Obviously, for l = 2, s = 1, α2 = 1 and p = 1, we get

L[α1, β1]f(z) =
1

z
+

∞∑
n=1

(α1)n
(β1)n

anz
n−1. (1.14)

Majorization problems for the class S∗ = S∗(0) had been investigated by MacGregor
[1], further Altintas et al. [13] investigated a majorization problem for the class S(γ) and
recently using linear operators by [14]. Very recently Goyal and Goswami [15] extended
these results for meromorphic functions . In the present paper we introduce a new subclass
of p−valently meromorphic starlike functions of complex order associated with Wright
hypergeometric functions given by (1.9) and investigate a majorization problem for the
function class .
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2. Majorization Problem for the Class M l,s
p,j(γ)

Definition 2.1. A function f(z) ∈Mp is said to in the class M l,s
p,j(γ) of univalent function

of complex order γ 6= 0 in U∗ if and only if

<

(
1− 1

γ

[
z(W l,s

p [α1, A1]f(z))j+1

W l,s
p [α1, A1]f(z)j

+ j + p

])
> 0 (2.1)

where z ∈ U∗, j ∈ N0 = N ∪ {0}, l ≤ s+ 1, γ ∈ C \ {0}.

Theorem 2.2. Let f(z) ∈Mp and g(z) ∈M l,s
p,j(γ) if (W l,s

p [α1, A1]f(z))j is majorized by

(W l,s
p [α1, A1]g(z))j in U∗ then

|(W l,s
p [α1, A1]f(z))j | ≤ |(W l,s

p [α1, A1]g(z))j |, |z| ≤ r1, (2.2)

where r1 = r1(A,B, α1, A1, γ, ρ) is the smallest root of the equation

|α1B−A1γ(A−B)|r3−[α1+2ρA1|B|]r2−[|α1B−A1γ(A−B)|+2ρA1]r+α1 = 0. (2.3)

Proof. Let

h(z) = 1− 1

γ

[
z(W l,s

p [α1, A1]g(z))j+1

W l,s
p [α1, A1]g(z)j

+ j + p

]
. (2.4)

Since g(z) ∈M l,s
p,j(γ), we have <(h(z)) > 0 and

h(z) =
1 +Aω(z)

1 +Bω(z)
, (2.5)

where

ω(z) = c1z + c2z
2 + ...

and w denotes the well known class of bounded analytic functions in U∗ and satisfies the
conditions ω(0) = 0, and |ω(z)| ≤ |z|, (z ∈ U∗) making use of (2.4) and (2.5), we get

z(W l,s
p [α1, A1]g(z))j+1

(W l,s
p [α1, A1]g(z))j

= − (B(j + p) + γ(A−B))(w(z)) + (j + p)

1 +B(z)
. (2.6)

Hence

|(W l,s
p [α1, A1]g(z))j | ≤ A1(1 + |B||z|)

α1 − |α1B − (A1γ(A−B)||z|

∣∣∣∣α1

A1
(W l,s

p [α1 + 1, A1]g(z))j
∣∣∣∣ .
(2.7)

Since (W l,s
p [α1, A1]f(z))j is majorized by (W l,s

p [α1, A1]g(z))j in U∗, then

(W l,s
p [α1, A1]f(z))j = φ(z)(W l,s

p [α1, A1]g(z))j (2.8)

and

z((W l,s
p [α1, A1]f(z))j+1 = zφ′(z)(W l,s

p [α1, A1]g(z))j+zφ(z)(W l,s
p [α1, A1]g(z))j+1.

Noting that the Schwarz function φ(z) satisfies∣∣∣φ′
(z)
∣∣∣ ≤ 1− |φ(z)|2

1− |z|2
(2.9)
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and using (1.10), (2.7) and (2.9) in (2.8) we have∣∣∣∣α1

A1
(W l,s

p [α1 + 1, A1]f(z))j
∣∣∣∣ ≤ (|φ(z)|+ (1−|φ(z)|2)

(1−|z|2)
A1(1+|B||z|)

α1−|α1B−(A1γ(A−B)||z|

)
×
∣∣∣∣α1

A1
(W l,s

p [α1 + 1, A1]g(z))j
∣∣∣∣ .

Setting |z| = r and |φ(z)| = ρ, 0 ≤ ρ ≤ 1∣∣∣∣α1

A1
(W l,s

p [α1 + 1, A1]f(z))j
∣∣∣∣ ≤ ψ(ρ)| α1

A1
(W l,s

p [α1 + 1, A1]g(z))j |
(1− r2)(α1 − |α1B − (A1γ(A−B)|r)

, (2.10)

where

ψ(ρ) = ρ(1− r2)(α1 − |α1B − (A1γ(A−B)|r) + (1− ρ2)A1(1 + |B|r)r

takes its maximum value at ρ = 1. Furthermore, if 0 ≤ σ ≤ r1, the function ϕ(ρ) defined
by

ϕ(ρ) = ρ(1− σ2)(α1 − |α1B − (A1γ(A−B)|σ) + (1− ρ2)A1(1 + |B|σ)σ

is an increasing function if

(1− σ2)(α1 − |α1B − (A1γ(A−B)|σ) > 2ρA1(1 + |B|σ)σ

(0 ≤ ρ ≤ 1), so that

ϕ(ρ) ≤ ϕ(1) = (1− σ2)(α1 − |α1B − (A1γ(A−B)|σ), 0 ≤ ρ ≤ 1, 0 ≤ σ ≤ r1. (2.11)

Therefore, from this fact (2.10) gives the inequality (2.2). This completes the proof of
Theorem 2.2.

3. Consequences and Corollaries

By taking A = 1 and B = −1 and ρ = 1 in Theorem 2.2, we state the following
corollary without proof.

Corollary 3.1. Let the function f ∈ Mp and g(z) ∈ M l,s
p,j(γ) if (W l,s

p [α1, A1]f(z))j is

majorized by (W l,s
p [α1, A1]g(z))j in U then

|(W l,s
p [α1, A1]f(z))j | ≤ |(W l,s

p [α1, A1]g(z))j |, |z| ≤ r1,

where r1 = r1(α1, A1, γ) is the smallest positive root of the equation

{|α1 + 2A1γ|}r3 − {α1 + 2A1}r2 − {|α1 + 2A1γ|+ 2A1}r + α1 = 0,

r1 =
L1 −

√
L2
1 − 4α1|α1 + 2A1γ|

2|α1 + 2A1γ|
(3.1)

and L1 = α1 + 2A1 + |α1 + 2A1γ|.

Since, W l,s
p [1, 1]f(z) = f(z) from Corollary 3.1, we state the following corollary.

Corollary 3.2. Let the function f ∈Mp and g(z) ∈Mp,j(γ) if (f(z))(j) is majorized by

(g(z))(j) in U∗ then

|(f(z))(j)| ≤ |(g(z))(j)|, |z| ≤ r2,
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where r2 = r2(1, 1, γ) is the smallest positive root of the equation

{|1 + 2γ|}r3 − 3r2 − {|1 + 2γ|+ 2}r + 1 = 0,

r2 =
L2 −

√
L2
2 − 4|1 + 2γ|

2|1 + 2γ|
(3.2)

and L2 = 3 + |1 + 2γ|.

By setting α1 = 1, A1 = 1 and γ = p − δ in Corollary 3.1, we state the following
corollary.

Corollary 3.3. Let the function f ∈Mp and g(z) ∈M l,s
p,j(δ) if (f(z))(j) is majorized by

(g(z))(j) in U∗, then

|(f(z))(j)| ≤ |(g(z))(j)|, |z| ≤ r3,

where r3 = r3(1, 1, (p− δ)) is the smallest positive root of the equation

|1 + 2(p− δ)|r3 − 1 + 2(p− δ)r2 − {|1 + 2(p− δ)|+ 2}r + 1 = 0,

r3 =
L3 −

√
L2
3 − 4|1 + 2(p− δ)|

2|1 + 2(p− δ)|
(3.3)

and L3 = 3 + |1 + 2(p− δ)|.

By taking j = 1 , Corollary 3.3 yields results of Goyal and Gosami [15].
By taking γ = (p− δ)cos λe−iλ ((|λ| < π

2 , δ(0 ≤ δ < p),) in Corollary 3.1, we state the
following corollary without proof.

Corollary 3.4. Let f ∈ Mp and g(z) ∈ M l,s
p,j(λ, δ) if (W l,s

p [α1, A1]f(z))(j) is majorized

by (W l,s
p [α1, A1]g(z))(j) in U∗, then

|(W l,s
p f(z))(j)| ≤ |(W l,s

p g(z))(j)|, |z| ≤ r4, (3.4)

where r4 = r4(L4, λ) is given by

r4 =
L4 −

√
L2
4 − 4α1|α1 + 2A1(p− δ)cosλ e−iλ

2|α1 + 2A1(p− δ)cosλ e−iλ|
(3.5)

and

L4 = (α1 + 2A1) + |α1 + 2A1(p− δ)cosλe−iλ|,

the smallest positive root of the equation

|α1 + 2A1(p− δ)cosλ e−iλ|r3 − α1 + 2A1r
2

− |α1 + 2A1(p− δ)cosλ e−iλ|+ 2A1r + α1 = 0.

Concluding Remarks

Further specializing the parameters l, s one can define the various other interesting
subclasses of Mp involving the various differential operators (see [9–12]) and the corre-
sponding corollaries as mentioned above can be derived easily.
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[13] O. Altintaş, Ö. Özkan, H.M. Srivastava, Majorization by starlike functions of complex
order, Complex Variables Theory Appl. 46 (2001) (3) 207–218.

[14] G. Murugusundaramoorthy, K. Thilagavathi, Majorization of starlike and convex
functions of complex order involving linear operators, Math. Slovaca. 66 (1) (2016)
127–134.

[15] S.P. Goyal, P. Goswami, Majorization for certain classes of meromorphic func-
tions defined by integral operator, Annales. Univ. Marie-Curie-Sklod. Math. Lett.
66 (2012) (2) 57–62.


	Introduction
	Majorization Problem for the Class Ml,sp,j()
	Consequences and Corollaries 

