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Abstract In this paper, a modified multistage integral mean value method, for handling the Fredholm

integral equations of the second kind, to improve the accuracy of the solutions, is applied. The application

of the proposed algorithm is based on the applying the multistage schema to the modified integral mean

value method. Also, the equivalency of integral mean value method and degenerate kernel method (DKM)

is established. The efficiency of the approach will be shown by applying the procedure on some prototype

examples. The Mathematica programs based on the procedures in this paper are designed.
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1. Introduction

The solutions of integral equations have a major role in the fields of science and engi-
neering. A physical event can be modeled by the differential equation, an integral equation
(IE) or an integro-differential equation (IDE) or a system of these. Several numerical and
analytical methods were used such as the successive approximation method that some of
them were mentioned in [1]. Fredholm integral equations of the second kind (FIE2s) are
of the form [1, 2]

u(x) = f(x) + λ

∫ b

a

K(x, t)F (u(t))dt, x ∈ [c, d], (1.1)

where F (u(x)) is a function of u(x), λ is a parameter, f(x) is the data function, K(x, t)
is the kernel of the integral equation, and u(x) is the unknown function that will be
determined. For the linear case, it is assumed that F (u(x)) = u(x).
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Recently, a new method, namely integral mean value method (IMVM), for handling the
FIE2s, proposed by Loghmani et al [3, 4]. This method is based on the mean value theorem
for integrals. In this study, we propose a modification of IMVM and a multistage schema
of modifed IMVM, namely modified multistage integral mean value method (MIMVM),
to improve the accuracy of the solutions. To achieve about mentioned modification, we
give an approach of IMVM to reduce the order of the corresponding algebraic system and
we show that IMVM and DKM are equivalent. In the frame of the DKM, IMVM and
MIMVM, for a non-degenerate kernel, we use a degenerate approximation of the kernel
by using Taylor series and Lagrange interpolation.

The remainder of present paper is organized as follows. In Section 2, DKM, traditional
IMVM/MIMVM and modified IMVM/MIMVM are described. Also, in this section, we
show the equivalency of modified IMVM and DKM. Section 3 gives some prototype ex-
amples. Section 4 provides some comparisons of the obtained results with some selected
problems available in the literature. Finally, Section 5 appears our conclusions.

2. Analysis of the Methods

In this section, we first give a brief review of the DKM, then we show equivalency of
DKM and IMVM and finally we propose a multistage schema of the integral mean value
method. Assume that the kernel of Eq. (1.1) is of the form

K(x, t) =

m∑
j=1

gj(x)hj(t). (2.1)

For a non-degenerate kernel, a degenerate approximation is used as (2.1).

2.1. A Brief Review of DKM

The degenerate kernel method (DKM) is a well-known classical method for solving
Fredholm integral equations of the second kind, and it is one of the easiest numerical
methods to define and analyze [5, page 23]. This method for a given degenerate kernel is
called direct computation method (DCM) [6] and [7, page 141].

DKM transforms an integral equation of the second kind, with a degenerate kernel,
to a system of algebraic equations. To handle the Eq. (1.1), by using the DKM, we can
express the procedure as follows:

1. Substituting (2.1) into (1.1) gives

u(x;α) = f(x) + λ

m∑
j=1

αjgj(x), (2.2)

where

αk =

∫ b

a

hk(t)F (u(t))dt, k = 1, 2, ...,m. (2.3)

2. Replacing Eq. (2.2) into (2.3) leads to the following algebraic equation/system

αk =

∫ b

a

hk(t)F

f(t) + λ

m∑
j=1

αjgj(t)

 dt, k = 1, 2, ...,m. (2.4)
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3. Solving the Eq. (2.4) provides the values of αk, k = 1, 2, ...m, for substituting
them into the Eq. (2.2) to obtain the solution of Eq. (1.1).

2.2. A Brief Review of IMVM

In this subsection, considering the discussion of Section 3 of [8], we first give a brief
review of traditional IMVM, and then we propose a modification of IMVM to show the
equivalency of this method with DKM. From Eqs. (1.1) and (2.1) we find that

u(x) = f(x) + λ

m∑
i=1

gi(x)

∫ b

a

hi(t)F (u(t))dt. (2.5)

Applying the one dimensional mean value theorem for Eq. (2.5) yields

u(x) = f(x) + λ

m∑
i=1

gi(x)(b− a)hi(ci)F (u(ci)). (2.6)

Using the traditional IMVM, we find the following algebraic system
u(cj) = f(cj) + λ

m∑
i=1

gi(cj)(b− a)hi(ci)F (u(ci)),

u(cj) = f(cj) + λ
m∑
i=1

gi(cj)
∫ b

a
hi(t)F

(
f(t) + λ

m∑
r=1

gr(t)(b− a)hr(cr)F (u(cr))

)
dt.

(2.7)

Solving algebraic system (2.7) provides the values of ci and u(ci), i = 1, 2, ...,m, for
substituting them into the Eq. (2.6) to obtain the solution/solutions of Eq. (2.5). Now,
we propose a modification of IMVM. From (2.7) we find that

u(cj) = f(cj) + λ
m∑
i=1

gi(cj)(b− a)hi(ci)F (u(ci)),

(b− a)hi(ci)F (u(ci)) =
∫ b

a
hi(t)F

(
f(t) + λ

m∑
r=1

gr(t)(b− a)hr(cr)F (u(cr))

)
dt,

(2.8)

where j = 1, 2, ...,m. Now, by assuming αj = (b− a)hj(cj)F (u(cj)), j = 1, 2, ...,m, Eqs.
(2.6) and (2.8) become as follows:

u(x;α) = f(x) + λ

m∑
i=1

gi(x)αi, (2.9)

and 
u(cj) = f(cj) + λ

m∑
i=1

gi(cj)(b− a)hi(ci)F (u(ci)), j = 1, 2, ...,m,

αi =
∫ b

a
hi(t)F

(
f(t) + λ

m∑
r=1

gr(t)αr

)
dt, i = 1, 2, ...,m,

(2.10)

respectively. According to the (2.9), there is no need to calculate (ci, u(ci)), i = 1, 2, ...,m,
then, the first mth equations of Eq. (2.10) are extra and therefore the 2m× 2m algebraic
system given by Eq. (2.10) reduces to the following m×m algebraic system

αi =

∫ b

a

hi(t)F

(
f(t) + λ

m∑
r=1

gr(t)αr

)
dt, i = 1, 2, ...,m. (2.11)
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It is clear that (2.9) and (2.11) are exactly the same results of applying the DKM for Eq.
(2.5) ((2.9) and (2.11) are exactly (2.2) and (2.4) respectively), then DKM and MIVM
are equivalent.

2.3. Multistage Integral Mean Value Method

In multistage schema,we often can make a more accurate approximation by breaking
up the integral region, interval [a, b], into some number n of subintervals, then applying
the mean value theorem for each sub-integral. Bearing this in mind and using the results
of pervious subsection, for handling the Eq. (1.1), the modified MIMVM, structured on
modified IMVM can be applied as follows.

1. Breaking up the integral region, the Eq. (2.5) yields

u(x) = f(x) + λ

m∑
j=1

gj(x)

n∑
i=1

∫ ai

ai−1

hj(t)F (u(t))dt, x ∈ [c, d], (2.12)

where a0 = a, ai = a0 + ih and h = b−a
n .

2. Applying the mean value theorem for each integral in Eq. (2.12), gives

u(x) = f(x) + λ

m∑
j=1

gj(x)h

n∑
i=1

hj(ci)F (u(ci)), (2.13)

where ci ∈ [ai−1, ai]. Assume αij = hhj(ci)F (u(ci)), i = 1, 2, ..., n,
j = 1, 2, ...,m, (2.13) leads to

u(x;α) = f(x) + λ

m∑
j=1

n∑
i=1

αijgj(x). (2.14)

3. From (2.12) and (2.14) we obtain the following algebraic system

αij =

∫ ai

ai−1

hj(t)F

(
f(t) + λ

m∑
r=1

n∑
k=1

αkrgr(t)

)
dt. (2.15)

4. Solving the Eq. (2.15) provides the values of αij , i = 1, 2, ..., n, j = 1, 2, ...,m,
for substituting them into the Eq. (2.14) to obtain the solution/solutions of
Eq. (2.5). For this respect, we first try to find the exact solution/solutions of
the algebraic system Eqs. (2.15), by using a solver tool of Mathematica,
namely Solve/Reduce. However, the Newton’s method is used to obtain the
numerical solution/solutions of the above mentioned algebraic system.

Remark 2.1. For the traditional MIMVM (2.14) and (2.15) become as follows:

u(x) = f(x) + λh

m∑
j=1

n∑
i=1

gj(x)(b− a)hj(ci,j)F (u(ci,j)). (2.16)

Using the traditional IMVM proses, we find the following algebraic system

u(cr,k) = f(cr,k) + λh
m∑
j=1

n∑
i=1

gj(cr,k)(b− a)hj(ci,j)F (u(ci,j)),

u(cr,k) = f(cr,k) + λ
m∑
i=1

gi(cr,k)∫ b

a
hi(t)F (f(t) + λh

m∑
l=1

n∑
p=1

gl(t)(b− a)hl(cp,l)F (u(cp,l)))dt,

(2.17)
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respectively.

Remark 2.2. It is clear that for value of n = 1 the multistage integral mean value
method reduces to the integral mean value method.

Remark 2.3. The main step of the modified and traditional MIMVM/IMVM, in handling
a Fredholm integral equation of the second kind, say Eq. (1.1), is to solve/handel the
corresponding algebraic system. Therefore, the methods break down when the mentioned
step comes to a deadlock.

Remark 2.4. To handel the Eq. (1.1) with a non-degenerate kernel, by means of the
DKM, IMVM and MIMVM, it is necessary to approximate its kernel by a degenerate
kernel of the form (2.1). In this study, we use an m-order degenerate approximation of
the kernel by using Taylor series and Lagrange interpolation as follows

K(x, t) ∼=
m∑
j=0

{
1

j!

(
(x− x0)

∂

∂x
+ (t− t0)

∂

∂t

)j

K(x, t)

}
x=x0,t=t0

, (2.18)

and

K(x, t) ∼=
m∑
j=1

Lj(x)K(xj , t), (2.19)

respectively. In (2.19), Lj(x) and xj , k = 1, ...,m, are Lagrange polynomials and col-
location nodes respectively. For Taylor series approximation, denoted by (2.18), we set
x0 = t0 = 0. It is well known that an arbitrary L2-kernel can be approximated in norm
by a degenerate kernel [9].

3. Test Examples

To show the efficiency of the present algorithm, modified MIMVM described in the
previous part, we present some prototype examples. The computations will be performed
using the program MMIMVMforOneDimenFIE2 reported in the Appendix. This
program was designed in a general manner.

We use approximate solution given by MIMVM, for m = l, the order of degenerate
kernel, and n = k by ul,k(x) corresponding to the exact solution u(x). For comparison
the solution given by MIMVM with the exact solution, we report the absolute error which
is defined by

Error(l, k) = |u(x)− ul,k(x)| , (3.1)

and the maximum error which is defined by

‖El,k‖ = max
x∈[a,b]

Error(l, k). (3.2)

Example 3.1. Consider the following linear Fredholm integral equation of the second
kind with a non-degenerate kernel [9]

u(x) = ex − x−
∫ 1

0

x(ext − 1)u(t)dt, x ∈ [0, 1]. (3.3)

The exact solution is u(x) = 1.

The results of applying the modified MIMVM for Eq. (3.3) are shown in Table 1 and
Fig. 1.
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Table 1. The maximum errors for Example 3.1, by using modified MIMVM
corresponding to the Lagrange interpolation approximation, with equally-
spaced/Chebychev collocation nodes, and Taylor series approximation to the
kernel.

Equally-spaced nodes Chebychev nodes Taylor approximation

l ‖El,1‖ ‖El,1‖ ‖El,1‖
5 4.59546×10−05 2.80684×10−05 1.37865×10−03

7 1.06648×10−07 4.21565×10−08 2.45259×10−05

9 1.60152×10−10 3.52286×10−11 2.72328×10−07

11 1.66618×10−13 2.09832×10−14 2.06350×10−09

13 3.44169×10−15 7.77156×10−16 1.13437×10−11
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Figure 1. The absolute error of the approximate solutions given by modified
MIMVM corresponding to the 13-order degenerate approximation of the kernel
of Eq. (3.3), Example 3.1. Left: Lagrange interpolation approximation with
equally-spaced collocation nodes, right: Lagrange interpolation approximation
with Chebychev collocation nodes, and center: Taylor series approximation.

Example 3.2. Consider the following linear Fredholm integral equation of the first kind
with a degenerate kernel [10]

u(x) = cos(2πx) +
1

2
sin(4πx)−

∫ 1

0

sin(4πx+ 2πt)u(t)dt, x ∈ [0, 1]. (3.4)

The exact solution is u(x) = cos(2πx).
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By applying the modified MIMVM, for n = 1, the solution of the corresponding alge-
braic system is{

α1,1 = − 1
2

α1,2 = 0.
(3.5)

And also

u(x;α) = α1,1 sin(4πx) + α1,2 cos(4πx) +
1

2
sin(4πx) + cos(2πx). (3.6)

Substituting (3.5) into the (3.6) gives

u(x) = cos(2πx). (3.7)

Therefore, modified MIMVM by n = 1 (modified IMVM) gives the exact solution of Eq.
(3.4).

Example 3.3. Consider the following nonlinear Fredholm integral equation of the second
kind [11]

u(x) = ex+1 −
∫ 1

0

ex−2tu3(t)dt, 0 ≤ x < 1. (3.8)

The reported exact solution in [11] is u(x) = ex.

Applying the modified MIMVM, for n = 1, the solutions of the corresponding algebraic
system are

α1,1 = e− 1,
1

2

(
1− e± i

√
−1− 2e+ 3e2,

)
. (3.9)

where i2 = −1. And also

u(x;α) = exα1,1 + ex+1. (3.10)

Substituting (3.9) into the (3.10) gives

u(x) = ex,
ex
(
1− e± i

√
−1− 2e+ 3e2

)
2(−1 + e)

. (3.11)

Therefore, modified MIMVM by n = 1 (modified IMVM) gives the exact solutions of Eq.
(3.8).

Example 3.4. Consider the following nonlinear Fredholm integral equation of the second
kind [11]

u(x) = ex − 1

9

(
1 + 2e3

)
x+

∫ 1

0

xtu3(t)dt, 0 ≤ x < 1. (3.12)

The reported exact solution in [11] is u(x) = ex.

Applying the modified MIMVM, for n = 1, the solutions of the corresponding algebraic
system are

α1,1 =
1

9

(
1 + 2e3

)
,

1

648

(
−29088 + 9720e+ 144e3 ± iβ

)
, (3.13)

where i2 = −1 and β =
√
−853979760 + 566870400e− 92903760e2. And also

u(x;α) = xα1,1 −
1

9

(
1 + 2e3

)
x+ ex. (3.14)
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Substituting (3.13) into the (3.14) gives

u(x) = ex, 15ex− 45x+ ex ± 1

2
ix
√

15(360− 59e)e− 8135. (3.15)

Therefore, modified MIMVM by n = 1 (modified IMVM) gives all exact solutions of Eq.
(3.12).

4. Comparison and Discussion

In this part, a comparison between the results given by modified MIMVM and tra-
ditional MIMVM, to check the accuracy of the modified MIMVM, is given. For this
respect, in this section, we discuss about applying the traditional MIMVM to the all
examples of the previous section. The computations will be performed using the program
TMIMVMforOneDimenFIE2 reported in the Appendix. Applying the traditional
MIMVM, for n = 1 to Examples 3.3 and 3.4 gives the real valued exact solutions. Fig.
2 shows the results of applying traditional MIMVM to Example 3.2. These results show
that, traditional MIMVM for n = 3 gives the exact solution. For Eq. (3.3), traditional
MIMVM does not give suitable numerical solution (see Fig. 3). Unfortunately, by in-
creasing the order of degenerate kernel and value of n, the volume of the computations
increases considerably.
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Figure 2. The absolute error of the approximate solutions given by tradi-
tional MIMVM for Eq. (3.4), Example 3.2.
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Figure 3. The absolute error of the approximate solutions given by tradi-
tional MIMVM for Eq. (3.3), Example 3.1.
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It is well known that accuracy of the interpolation can be obtained by the selection of
the proper collocation nodes to be related to the selection of the interpolation functions
[12]. In the case of Lagrange interpolation, a Chebychev collocation is needed. It is
important to notice that, IMVM/MIMVM for handling the FIE2s with non-degenerate
kernels or degenerate kernel with more terms may need significant more computation time
and computer hardware requirements.

We finish this section by promoting the modified IMVM/MIMVM to the Lagrange-
collocation method. In [13, 14] it was shown that DKM, on the condition that the
source function is approximated by the same way of producing degenerate kernel, becomes
as a projection method. Therefore, by approximating the source function by the same
way of producing degenerate kernel by using the Lagrange interpolation method, IMVM
is promoted to the Lagrange-collocation method. We prefer to use this promotion of
modified IMVM/MIMVM for Eq. (3.3). By choosing three Chebychev/equally collocation
nodes, to make a degenerate approximation of the kernel as well as an approximation of
same order to the source function, we find that approximate solution obtained by modified
IMVM (MIMVM) gives the exact solution of Eq. (3.3).

5. Concluding Remarks

In this paper, a multistage schema of the integral mean value method, namely modified
multistage integral mean value method, was proposed as a reliable treatment of the one-
dimensional Fredholm integral equations of the second kind. The proposed algorithm
showed reliability in handling these problems. For a non-degenerate kernel, the choice of
Lagrange polynomials is related to the fact that the making the approximate degenerate
kernel is based on approximation generated by interpolation. The alternative of using
Bernstein polynomials and sinc functions are also possible. Finally, extensions of the
methods to higher order and dimensional can be accommodated.
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Appendix (Mathematica Programs)

All programs provided in Mathematica 9.

Program. 1: A Sample Mathematica Program of Modified MIMVM

MMIMVMforOneDimenFIE2 is a sample Mathematica program for solving FIE2s by
using MIMVM. The general command is

MMIMVMforOneDimenFIE2[functionF,functionf,Type,n2]

in which the user must define the function F (u) by functionF, source function, f(x), by func-
tionf, the integral region, IntRegion={a,b}, and a degenerate kernel as kernelg={gj(x)}mj=1

and kernelh={hj(t)}mj=1. For a non-degenerate kernel, denoted by GivenKernel, user must de-
fine Taylor series or interpolation approximations by using the programs TylorApproximation
and LagrangeInterpolation respectively. Also, user must define the number of subintervals
by n2, and the type of handling the corresponding algebraic system by Type (for exact so-
lution take Type=exact, for numerical solutions without initial guesses take Type=nexact



760 Thai J. Math. Vol. 18 (2020) /A. Molabahrami and S. Niasadegh

and for numerical solution by Newton method take Type=numerical). The program mon-
itors given/approximate equation, number of the subintervals, unknowns, algebraic system,
u(x;Unknowns) and solution(s) of the given equation. For the numerical case, the program
requests to input the exact solution for monitoring the plot and table of the absolute error as
well as maximum error.

(∗ − −−−−−−−−−The Main Block of Modified MIMVM−−−−−−−−−−∗)
ClearAll[Global̀*]

MMIMVMforOneDimenFIE2[functionF , functionf ,Type ,n2 ]:=Module[{}, a = IntRegion[[1]];

b = IntRegion[[2]];

h = b−a
n2

;

a1i :=a+ hi;

F (u ):=functionF;

n1 = First[Dimensions[kernelg]];

u1(x) =
∑n1
j=1

∑n2
i=1 αi,jkernelg[[j]] + functionf;

Eqi ,j :=αi,j −
∫ a1i
a1i−1

kernelh[[j]](F (u)/. {u→ (u1(x)/.x→ t)}) dt;
EqsSys = Flatten

[
Table

[{
Eqi,j

}
, {i, 1,n2}, {j, 1,n1}

]]
;

Unknowns = Flatten [Join [Table [αi,j , {i, 1,n2}, {j, 1,n1}]]] ;

nn1 = First[Dimensions[Unknowns]];

Which[Type===numerical ∧ a 6= −∞∧ b 6=∞, {NewtonInitialGuess1 = b;

NewtonInitialGuess2 = Table[NewtonInitialGuess1, {k, 1, nn1}];
NewtonInitialGuess3 = Riffle[Unknowns,NewtonInitialGuess2];

NewtonInitialGuess = Partition[Flatten[NewtonInitialGuess3], 2]}];
Which[Type===numerical,Module[{s = 0, e = 0},
{FindRoot[EqsSys,NewtonInitialGuess, StepMonitor :→ s++,EvaluationMonitor :→ e++,

WorkingPrecision→ 60]}],Type===exact,Solve[EqsSys = 0,Unknowns],

Type===nexact,NSolve[EqsSys = 0,Unknowns]]]

(∗ − −−−−−−−The End of Main Block of Modified MIMVM−−−−−−∗)

(∗ − −−−−−−−The Main Block of Lagrange Interpolation−−−−−−−−∗)
LagrangeInterpolation[function , a , b , order , type :=Module[{},h1:= b−a

order−1
;

x2j :=a+ h1(j − 1);

x1j :=N
[
1
2

(
(b− a) cos

(
π(2j−1)
2order

)
+ a+ b

)
, 60
]

;

roots22 = N [Solve[Porder(x) = 0, x,R], 60];

u23 = Table[x, {i, 1, 1}];
x21i :=Sort[Flatten[u23//. roots22],Less][[i]];

x22i := 1
2

((b− a)x21i + a+ b) ;

Which
[
type===Equal1, x3j :=x2j , type===Cheby, x3j :=x1j , type===Legendre, x3j :=x22j

]
;

Lagr1(p , i , x ):=If
[
p 6= i, x−x3i

x3p−x3i
, 1
]

;

LagrangeBase(p ,n , x ):=
∏n
i=1 Lagr1(p, i, x);

kernelg = Flatten[Table[LagrangeBase(p, order, x), {p, 1, order}]];
kernelh = Flatten [Table [function/.x→ x3i, {i, 1, order}]] ;

ApproxFunc = Inner[Times, kernelg, kernelh,Plus]];

(∗ − −−−−−−−The End of Main Block of Lagrange Interpolation−−−−−−∗)

(∗ − −−−−−−−The Main Block of Tylor Approximation−−−−−−−−∗)
TylorApproximation[function , order ]:=Module[{},
TaylorSeries = Series[GivenKernel, {t, 0, order}, {x, 0, order}];
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kernelg = Table [xn, {n, 0, order}] ;

kernelh = CoefficientList[TaylorSeries, x];

ApproxFunc = Inner[Times, kernelg, kernelh,Plus]];

(∗ − −−−−−−−The End of Main Block of Tylor Approximation−−−−−−∗)

(∗ − −−−−−−−−−−−−−− Commands to our Examples−−−−−−−−−−∗)
(∗ − −−−−−−−−−−−−−Example 1−−−−−−−−−−−−−−− ∗)
n2 = 1;

order = 5; IntRegion = {0, 1};
functionf = Exp[x]− x;

GivenKernel = −x(Exp[tx]− 1);

LagrangeInterpolation[GivenKernel, 0, 1, order,Cheby];

{functionF,Type} = {u, numerical};
(∗ − −−−−−−−−−−−−−Example 2−−−−−−−−−−−−−−− ∗)
n2 = 1;

kernelg = {Sin[4πx], Cos[4πx]};
kernelh = {−Cos[2πt],−Sin[2πt]};
IntRegion = {0, 1};
{functionF, functionf,Type} =

{
u, 1

2
Sin[4πx] + Cos[2πx], exact

}
;

(∗ − −−−−−−−−−−−−−Example 3−−−−−−−−−−−−−−− ∗)
n2 = 1;

kernelg = {Exp[x]};
kernelh = {−Exp[−2t]};
IntRegion = {0, 1};
{functionF, functionf,Type} =

{
u3, Exp[x+ 1], exact

}
;

(∗ − −−−−−−−−−−−−−Example 4−−−−−−−−−−−−−−− ∗)
n2 = 1;

kernelg = {x};
kernelh = {t};
IntRegion = {0, 1};
{functionF, functionf,Type} =

{
u3, Exp[x]− 1

9
(2Exp[3] + 1)x, exact

}
;

(∗ − −−−Common Commands for Monitoring the Results−−−−−−∗)
Style[”Equation: One Dimensional FIE2”, ”Title”, 20]

Style[”Method: Modified MIMVM”, ”Title”, 20]

Print[" ↓ − −−−−−−−−− ", Style["Given Equation",Red,Bold], "−−−−−−−−−− ↓ "];

GivenKernel1 = Inner[Times, kernelh, kernelg,Plus];

Print["u(x)=",TraditionalForm[functionf], "+",

DisplayForm[SubsuperscriptBox["
∫
", IntRegion[[1]], IntRegion[[2]]]],

TraditionalForm[GivenKernel1] ∗ (functionF/.u→ "u(t)"), "dt"]

Print [" ↓ − −−−−−−−−−−−−", Style ["Unknowns",Blue,Bold] , "−−−−−−−− ↓ "]

Sol = MMIMVMforOneDimenFIE2[functionF, functionf,Type, n2];

Sol//TraditionalForm

Print[" ↓ − −−−−−−− ",Style["Algebraic system/equation",Blue,Bold],"−−−−−−− ↓ "]

For[i = 1, i < nn1 + 1, i++,Print["Equation", i, ":",TraditionalForm[Simplify[EqsSys[[i]]]], "=0"]]

Print[" ↓ − −−−−−−−−−−− ", Style["u(x;Unknowns)",Blue,Bold],"−−−−−−−− ↓ "]

Print["u(x;Unknowns)=",TraditionalForm[u1[x]]]

Print[" ↓ − −−−−−−−−−−− "Style["Solution(s)",Blue,Bold],"−−−−−−−−−−− ↓ "]

Sol1 = Simplify[u1[x]//.Sol];

Print["u(x)=",TraditionalForm[Simplify[Sol1]]]
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Which[Type===numerical,Module[{},
ExactSolution =Input["Please input the exact solution of the equation for monitoring

the plot & table of the error?"]/.{Global`x→ x};
Framed[Print[Style["For the Following Plot and Table the Given Exact Solution is: u(x)=",

Red,Bold], Style[ExactSolution//TraditionalForm,Red,Bold]]];

Print[" ↓ − −−−−−−−−− ", Style["The Plot of the Error",Blue,Bold],"−−−−−−−− ↓ "];

Print[Plot[Abs[Sol1− ExactSolution], {x, IntRegion[[1]], IntRegion[[2]]},Frame→ True,Axes→ False,

FrameLabel→ {x,Error[order, n2]}]];
Print[" ↓ − −−−−−−−−", Style["The Table of the Error",Blue,Bold],"−−−−−−−− ↓ "];

TableForm[Table[{x,First[Abs[Sol1− ExactSolution]]//ScientificForm},
{x,IntRegion[[1]],IntRegion[[2]],0.1}],

TableHeadings→ {None, {"x",DisplayForm[Error[order, n2]]//TraditionalForm,

DisplayForm["Exact Solution="]DisplayForm[ExactSolution//TraditionalForm]}}]]]
Print[Style[The maximum value of the error is:,Red,Bold]];

NMaximize[{|First[Sol1]− ExactSolution| , IntRegion[[1]] ≤ x ≤ IntRegion[[2]]}, x]]//ScientificForm

Print[" ↑ − −−−−−−− ",Style["The end of the Results",Red,Bold], "−−−−−−−−− ↑ "]

Program. 2: A Sample Mathematica Program of Traditional MIMVM

TMIMVMforOneDimenFIE2 is a sample Mathematica program for solving FIE2s by using
DCM. The general command is

TMIMVMforOneDimenFIE2[functionF,functionf,Type,n2]

The descriptions of needed definitions are similar to Problem. 1. Here, we set cj = u(ξj). For
Example 3.2, user must set Type=numerical.

ClearAll[Global̀*]

TMIMVMforOneDimenFIE2(functionF , functionf ,Type , n2 ):=Module[{}, a = IntRegion[[1]];

b = IntRegion[[2]];

n1 = First[Dimensions[kernelg]];

h = b−a
n2

;

a1i :=a+ hi;

C1 = Join [Table [ci,j , {i, 1, n2}, {j, 1, n1}]] ;

ξ1 = Join [Table [ξi,j , {i, 1, n2}, {j, 1, n1}]] ;

F (u ):=functionF; u1(x) = h
∑n1
j=1

∑n2
i=1 kernelg[[j]] (F (u)/.u→ ci,j) (kernelh[[j]]/. t→ ξi,j)+functionf;

u11 = u1(x)/.x→ t;

Eq1i ,j := (u11/. t→ ξi,j)− ci,j ;
Eq2i ,j :=

∑n1
r1=1 (kernelg[[r1]]/.x→ ξi,j)

∫ b
a kernelh[[r1]](F (u)/.u → u11) dt + (functionf/.x→ ξi,j) −

ci,j ;

EqsSys = Flatten
[
Join

[
Table

[{
Eq1i,j ,Eq2i,j

}
, {i, 1, n2}, {j, 1,n1}

]]]
;

Unknowns = Flatten[Join[ξ1,C1]];

nn1 = First[Dimensions[Unknowns]];

Which[Type===numerical ∧ a 6= −∞∧ b 6=∞, {NewtonInitialGuess(i ):= 1
2

(a1i−1 + a1i) ;

NewtonInitialGuess1(i ):=a1i;

NewtonInitialGuess2 = Table[NewtonInitialGuess1(i), {i, 1, nn1}];
NewtonInitialGuess3 = Riffle[Unknowns,NewtonInitialGuess2];

NewtonInitialGuess = Partition[Flatten[NewtonInitialGuess3], 2]}];
Which[Type===numerical,Module[{s = 0, e = 0}, {FindRoot[EqsSys,

NewtonInitialGuess, StepMonitor :→ s++,EvaluationMonitor :→ e++,WorkingPrecision→
MachinePrecision]}],Type===exact, Solve[EqsSys = 0,Unknowns,R],

Type===nexact,NSolve[EqsSys = 0,Unknowns,R]]]
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