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Abstract In this paper, we derive some interesting relations associated with some differential inequalities
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1. Introduction

Let H = H(U) denote the class of analytic functions in U. For n a positive integer and
a ∈ C,

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + . . . }
with H0 ≡ H[0, 1].

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the unit disc U.

Definition 1.1. If f and g are two analytic functions in U, we say that f is said to be
subordinate to g, written symbolically as f ≺ g, if there exists a Schwarz function w,
which (by definition) is analytic in U, with w(0) = 0, and |w(z)| < 1 for all z ∈ U, such
that f(z) = g(w(z)), z ∈ U.

If the function g is univalent in U, then we have the following equivalence (c.f [1, 2]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Definition 1.2. Let Q denote the set of all functions q that are analytic and injective
on ∂U\E(q), where
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E(q) = {ζ ∈ ∂U : limz→ζ q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q). Further, let the subclass of Q for Q(0) ≡ a
be denoted by Q(a) and Q(1) ≡ Q1.

In the present paper, we obtain some interesting relations associated with some dif-
ferential inequalities in U. These relations extend and generalize earlier results. Some
applications of the main results are also obtained.

2. Preliminaries

To prove our results, we need the following results due to Miller and Mocanu [2].

Lemma 2.1. [2, p. 24] Let q ∈ Q, with q(0) = a, and let p(z) = a+anz
n+an+1z

n+1+. . .
be analytic in U with p(z) 6≡ a and k ≥ 1. If p is not subordinate to q, then there exists
points z0 = r0e

iθ0 ∈ U and ζ0 ∈ ∂U\E(q) and k ≥ n ≥ 1 for p(Ur0) ⊂ q(U),
(i) p(z0) = q(ζ0),
(ii) z0p

′(z0) = kζ0q
′(ζ0).

Lemma 2.2. [2, p. 26] Let p ∈ H[a, n], with p(z) 6≡ a and k ≥ 1. If z0 ∈ U and

Re(p(z0)) = min{Re(p(z)) : |z| ≤ |z0|},
then

z0p
′(z0) ≤ −k

2

|p(z0)− a|2

Re(a− p(z0))
.

3. Main Results

Unless and otherwise mentioned throughout the paper σ ≥ 0, 0 ≤ β ≤ 1, a ∈ C with
Re(a) > 0 and all the powers are the principal ones.

Theorem 3.1. Let p(z) be an analytic in U with p(0) = 1 and∣∣∣∣Im([ap(z)− λ]

[
zp′(z)

p(z)
+ ap(z)− 1

])∣∣∣∣ < T
(Re(a)

√
(λ+ 2λRe(a) + 2Re(a))λ)

,

(3.1)

where

T = λ
(
2|a|λRe(a) + 2Re(a)|a|+ λ|a|+

√
((λ+ 2λRe(a) + 2Re(a))λ)Im(a)

)
,
(3.2)

(λ > 0) then Re(ap(z)) > 0.

Proof. Let us define both q(z) and h(z) as follows

q(z) = ap(z)

and

h(z) =
a+ āz

1− z
, Re(a) > 0,

where q(z) and h(z) are analytic functions in U with g(0) = h(0) = a ∈ C and
h(U) = {w : Re(w) > 0}.
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Now, we suppose that q(z) 6≺ h(z), then by using Lemma 2.1 there exists z0 ∈ U and
ζ0 ∈ ∂U\{1} such that

q(z0) = h(ζ0) = iβ and z0q
′(z0) = kζ0h

′(ζ0), k > 1

Also, we note that

z0q
′(z0) =

−|q(z0)− a|2

2Re(a− q(z0))
.

Now, ∣∣∣∣Im((ap(z0)− λ)

(
z0p
′(z0)

p(z0)
+ ap(z0)− 1

))∣∣∣∣
=

∣∣∣∣Im(kζ0h′(ζ0h(ζ0)
(h(ζ0)− λ) + h(ζ0)(h(ζ0)− λ)− (h(ζ0)− λ)

)∣∣∣∣
≥
∣∣∣∣Im(ζ0h′(ζ0h(ζ0)

(h(ζ0)− λ) + h(ζ0)(h(ζ0)− λ)− (h(ζ0)− λ)

)∣∣∣∣
=

∣∣∣∣Im(−|iβ − a|22Re(a)iβ
(iβ − λ) + iβ(iβ − λ)− (iβ − λ)

)∣∣∣∣
=

∣∣∣∣−λ(|a|2 + β2 − 2Im(a)β)

2βRe(a)
− λβ − β

∣∣∣∣
≥ −λ(|a|2 + β2 − 2Im(a)β)

2βRe(a)
− λβ − β = Q(β),

where Q(β) is a function of β, and it attains a minimum at

β∗ =
−
√

(λ+ 2λRe(a) + 2Re(a))λ)|a|
(λ+ 2λRe(a) + 2Re(a))

.

Therefore,∣∣∣∣Im((ap(z0)− λ)

(
z0p
′(z0)

p(z0)
+ ap(z0)− 1

))∣∣∣∣ ≥ Q(β∗)

=
T

(Re(a)
√

((λ+ 2λRe(a) + 2Re(a))λ))

where T is defined by (3.2) and hence, we obtain a contradiction to the assumption (3.1).
Therefore, q(z) ≺ h(z) and Re(ap(z)) > 0.

Theorem 3.2. Let B(z) be a complex valued function in U with Re(aB(z)) ≤ Im(ap(z)).If
p(z) is an analytic function in U with p(0) = 1 and

Re

(
1 +

zp′(z)B(z)

p(z)2

)
>

−K
2|a|2Re(a)2,

(3.3)

where

K = |a|(1 +Re(a)6) + 2Im(a)Re(a)|a|2 (3.4)

+|a|Im(a)2Re(a)2(2Re(a)2 + Im(a)2)− 2Re(a)2|a|2,

then Re(ap(z)) > 0.
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Proof. Let us define both g(z) and h(z) as follows

g(z) = ap(z)

and

h(z) =
a+ āz

1− z
,Re(a) > 0

where g(z) and h(z) are analytic functions in U with g(0) = h(0) = a ∈ C and
h(U) = {w : Re(w) > 0}.
Now, suppose g(z) 6≺ h(z) by Lemma 2.1 there exists z0 ∈ U and ζ0 ∈ ∂U\{1} such that

g(z0) = h(ζ0) = iγ and z0g
′(z0) = kζ0h

′(ζ0).

Also, from Lemma 2.2 we have

z0g
′(z0) ≤ −k|iγ − a|

2

2Re(a)
, k ≥ 1.

Next,

Re

(
1 +

z0p
′(z0)B(z0)

p(z0)2

)
(3.5)

= 1 +Re

(
z0g
′(z0)aB(z0)

g(z0)2

)
= 1 +Re

(
kζ0h

′(ζ0)aB(z0)

h(ζ0)2

)
≤ 1−Re

(
k|iγ − a|2aB(z0)

2Re(a)(iγ)2

)
≤ 1 +

(|a|2 − 2Im(a)γ + γ2)Re(aB(z0))

2Re(a)γ2

≤ 1 +
(|a|2 − 2Im(a)γ + γ2)γ

2Re(a)γ2
= f(γ),

where the function f(γ) attains the maximum at |a|. Therefore,

Re

(
1 +

z0p
′(z0)B(z0)

p(z0)2

)
≤ f(|a|) =

−K
2|a|2Re(a)2

,

where K is defined by (3.4). Hence we obtain a contradiction to (3.3). Therefore g(z) ≺
h(z) or Re(ap(z)) > 0.

4. Applications and Examples

Letting a = 1 in Theorem 3.1, we have the following Corollary

Corollary 4.1. Let p(z) be an analytic in U with p(0) = 1 and∣∣∣∣Im((p(z)− λ)

(
zp′(z)

p(z)
+ p(z)− 1

))∣∣∣∣ <√(3λ+ 2)λ (λ > 0),

then Re(p(z)) > 0.
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By taking p(z) = zf ′(z)
f(z) in the above Corollary, we get the following result due to Xu

and Yang [3, Theorem 2, pp 586]

Corollary 4.2. If f ∈ A satisfies f ′(z)f(z) 6= 0 in 0 < |z| < 1 and∣∣∣∣Im(z2f ′′(z)f(z)
− λzf ′′(z)

f ′(z)

)∣∣∣∣ <√(3λ+ 2)λ for (λ > 0),

then Re( zf
′(z)

f(z) ) > 0.

Letting λ = 1 in the above Corollary 4.2, we have the following result which is an
improvement of the result which were earlier proved by Lin and Owa [4] and Obradovic
[5] respectively

Corollary 4.3. If f ∈ A satisfies f ′(z)f(z) 6= 0 in 0 < |z| < 1 and∣∣∣∣Im(z2f ′′(z)f(z)
− zf ′′(z)

f ′(z)

)∣∣∣∣ < √5,

then Re( zf
′(z)

f(z) ) > 0.

Letting p(z) = zf ′(z)
f(z) and B(z) = 1 in Theorem 3.2, we obtain the following Corollary

Corollary 4.4. If f ∈ A satisfies zf ′(z)
f(z) 6= 0 and Re

(
1+

zf′′(z)
f′(z)

zf′(z)
f(z)

)
> 0, then Re( zf

′(z)
f(z) ) > 0.

By taking p(z) = f ′(z) and B(z) = 1 in Theorem 3.2, we obtain the following Corollary

Corollary 4.5. If f ∈ A and Re

(
1 + zf ′′(z)

f ′(z)2

)
> 0, then Re(f ′(z)) > 0, hence f is

univalent in U.
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