Thai Journal of **Math**ematics Volume 18 Number 2 (2020) Pages 733–743

http://thaijmath.in.cmu.ac.th

Some Common Fixed Point Theorem for Geraghty's Type Contraction Mapping with Two *T*-Metrics in *T*-Metric Spaces with Graph

Chaiporn Thangthong and Phakdi Charoensawan*

Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : cthangthong@hotmail.com (C. Thangthong); phakdi@hotmail.com (P. Charoensawan)

Abstract The purpose of this paper is to present some existence and uniqueness results for common fixed point theorems for Geraghty's type contraction mappings with two *T*-metrics in *T*-metric spaces endowed with a directed graph. In addition, Our results generalize those presented in [J. Martínez-Moreno, W. Sintunavarat, Y.J. Cho, Common fixed point theorems for Geraghty's type contraction mappings using the monotone property with two metrics, Fixed Point Theory Appl. 2015 (2015) 174].

MSC: 47H09; 47H10 Keywords: fixed point; coincidence point; Geraghty; common fixed point; *T*-metrics

Submission date: 18.09.2017 / Acceptance date: 24.09.2018

1. INTRODUCTION AND PRELIMINARIES

Geraghty [1] introduced an interesting class Θ of functions $\theta : [0, \infty) \to [0, 1)$ satisfying that:

$$\theta(t_n) \to 1 \implies t_n \to 0,$$

and obtained some results which is a generalization of the Banach's contraction principle in 1973.

Recently, Martíneez-Moreno et al. [2] gave some new common fixed point theorems for Geraghty's type contraction mappings employing the monotone property with two metrics by using d-compatibility and g-uniform continuity defined as follows.

Definition 1.1 ([3]). Let (X, d) be a metric space, and let $f, g : X \to X$ be two mappings. The mappings g and f are said to be *d*-compatible if

$$\lim_{n \to \infty} d(gfx_n, fgx_n) = 0$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n$.

Published by The Mathematical Association of Thailand. Copyright \bigodot 2020 by TJM. All rights reserved.

^{*}Corresponding author.

Definition 1.2 ([3]). Let (X, d) and (Y, d') be two metric spaces, and let $f: X \to Y$ and $g: X \to X$ be two mappings. A mapping f is said to be *g*-uniformly continuous on X if, for any real number $\epsilon > 0$, there exists $\delta > 0$ such that $d'(fx, fy) < \epsilon$ whenever $x, y \in X$ and $d(gx, gy) < \delta$. If g is the identity mapping, then f is said to be uniformly continuous on X.

Let (X, d) be a metric space, and Δ be a diagonal of $X \times X$. Let G be a directed graph such that the set V(G) of its vertices coincides with X and $\Delta \subseteq E(G)$, where E(G) is the set of the edges of the graph. Assume also that G has no parallel edges and, thus, one can identify G with the pair (V(G), E(G)).

Throughout the paper we shall say that G with the above-mentioned properties satisfies standard conditions.

The fixed point theorem using the context of metric spaces endowed with a graph was initiated by Jachymski [4], which generalizes the Banach contraction principle to mappings on a metric spaces with a graph. Also, the definitions of G-continuous and the property A were given in [4].

Definition 1.3 ([4]). A mapping $f : X \to X$ is called *G*-continuous if for any $x \in X$ such that there exists a sequence $\{x_n\}$ in $X, x_n \to x$ and $(x_n, x_{n+1}) \in E(G)$ for $n \in \mathbb{N}$, then $f(x_n) \to f(x)$.

Definition 1.4 ([4]). Let (X, d) be a metric space, and suppose that G is a directed graph. We say that the triple (X, d, G) has the property A, if for any sequence $\{x_n\}$ in X with $x_n \to x$, and $(x_n, x_{n+1}) \in E(G)$, for $n \in \mathbb{N}$, we have $(x_n, x) \in E(G)$.

Definition 1.5 ([5]). Let (X, d) be a complete metric space, and let E(G) be the set of the edges of the graph. We say that E(G) satisfies the transitivity property if and only if, for all $x, y, a \in X$,

$$(x, a), (a, y) \in E(G) \Rightarrow (x, y) \in E(G).$$

Since then, many authors have studied the problem of existence of a fixed point for single-valued mappings and multi-valued mappings in several spaces with a graph, see [6–13].

Definition 1.6 ([14]). A binary normed operation is a mapping $\diamond : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ which satisfies the following conditions:

- (1) \diamond is associative and commutative;
- (2) \diamond is continuous;
- (3) $a \diamond 0 = a$ for all $a \in [0, \infty)$;
- (4) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, \infty)$.

In 2011, S.Sedghi et.al. [14] introduced the concept of *T*-metric spaces as follows.

Definition 1.7 ([14]). Let X be a nonempty set. A T-metric on X is a function $T : X^2 \to \mathbb{R}$ that satisfies the following condition for each $x, y, z \in X$

- (1) $T(x,y) \ge 0$ and T(x,y) = 0 if and only if x = y;
- (2) T(x,y) = T(y,x);
- (3) $T(x,y) \le T(x,z) \diamond T(y,z).$

The 3-tuple (X, T, \diamond) is called a *T*-metric space.

Example 1.8. Every ordinary metric d is a T-metric with $a \diamond b = a + b$.

Definition 1.9 ([14]). Let (X, T, \diamond) be a *T*-metric space.

- (1) A sequence $\{x_n\}$ in X converges to x if $T(x_n, x) \to 0$ as $n \to \infty$ and we write
- $\lim_{n \to \infty} x_n = x.$ (2) A sequence $\{x_n\}$ in X is called a *Cauchy sequence* if for each $\epsilon > 0$, there exists $n_0 \in N$ such that $T(x_n, x_m) < \epsilon$ for all $n, m \ge n_0$.
- (3) The T-metric space (X, T, \diamond) is said to be *complete* if every Cauchy sequence is convergent.

Definition 1.10 ([14]). Let (X, T, \diamond) be a T-metric space. T is said to be continuous if

$$\lim_{n \to \infty} T(x_n, y_n) = T(x, y)$$

wherever

$$\lim_{n \to \infty} T(x_n, x) = \lim_{n \to \infty} T(y_n, y) = 0.$$

Lemma 1.11 ([14]). Let (X, T, \diamond) be a *T*-metric space. Then *T* is a continuous function.

The aim of this paper is to present some existence and uniqueness results for common fixed point theorems for θ contraction mappings with two T-metrics endowed with a directed graph. Furthermore, by using our main results, we are able to generalize the results obtained in [2].

2. Main Results

We introduce the concept of g-Cauchy and edge preserving which are an effective tool as follows:

Definition 2.1 ([3]). Let (X,T,\diamond) be a T-metric space, and let $f,g:X\to X$ be two mappings. The mappings g and f are said to be T-compatible if

$$\lim_{n \to \infty} T(gfx_n, fgx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n$.

Definition 2.2. Let (X, T, \diamond) and (Y, T', \diamond) be two T-metric spaces, and let $f: X \to Y$ and $g: X \to X$ be two mappings. The mapping f is said to be g-Cauchy on X if, for any sequence $\{x_n\}$ in X such that $\{gx_n\}$ is a Cauchy sequence in (X, T, \diamond) , then $\{fx_n\}$ is Cauchy sequence in (Y, T', \diamond) .

Definition 2.3. Let (X, T, \diamond) be a T-metric space, and suppose that G is a directed graph. A mapping $f: X \to X$ is called *G*-continuous if for any $x \in X$ such that there exists a sequence $\{x_n\}$ in $X, T(x_n, x) \to 0$ as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G)$ for $n \in \mathbb{N}$, then $T(f(x_n), f(x)) \to 0$ as $n \to \infty$.

Definition 2.4. Let (X, T, \diamond) be a T-metric space, and suppose that G is a directed graph. We say that the triple (X, T, G) has the property A, if for any sequence $\{x_n\}$ in X with $T(x_n, x) \to 0$ as $n \to \infty$, and $(x_n, x_{n+1}) \in E(G)$, for $n \in \mathbb{N}$, we have $(x_n, x) \in E(G)$. **Definition 2.5.** Let G be a directed graph, and let $f, g : X \to X$ be two mapping. We say that f is g-edge preserving w.r.t G if

$$(gx, gy) \in E(G) \Rightarrow (fx, fy) \in E(G).$$

We now introduce a new class of the Geraghty type contractions in the following definition.

Definition 2.6. Let (X, T, \diamond) be a T-metric space endowed with a directed graph G, and let $f, g: X \to X$ be given mappings. The pair (f, g) is called a θ -contraction w.r.t T if :

- (1) f is g-edge preserving w.r.t G;
- (2) there exists two functions $\theta \in \Theta$ such that for all $x, y \in X$ such that $(gx, gy) \in E(G)$,

$$T(fx, fy) \le \theta(M(gx, gy))M(gx, gy),$$
where $M(gx, gy) = \max\left\{T(gx, gy), T(gx, fx), T(gy, fy)\right\}.$

$$(2.1)$$

Let (X, d) be a metric space endowed with a directed graph G satisfying the standard conditions, and let two mappings $f, g: X \to X$ be given.

We define important subsets of X as follows

$$X(f,g) := \{ u \in X : (gu, fu) \in E(G) \},\$$
$$C(f,g) := \{ u \in X : fu = gu \},\$$

i.e., the set of all coincidence points of mappings f and g, and

 $Cm(f,g) := \{ u \in X : fu = gu = u \},\$

i.e., the set of all common fixed points of mappings f and g.

Let T', T be two T-metrics on X. By T < T' (resp., $T \leq T'$), we mean T(x, y) < T'(x, y) (resp., $T(x, y) \leq T'(x, y)$) for all $x, y \in X$.

Now we are ready to present and prove the main results.

Theorem 2.7. Let (X, T', \diamond) be a complete T-metric space endowed with a directed graph G, and let T be another T-metric on X. Suppose that $f, g : X \to X$ and (f, g) is a θ -contraction w.r.t T. Suppose that

(1) $g: (X, T', \diamond) \to (X, T', \diamond)$ is continuous ;

(2) $f(X) \subseteq g(X)$ and $(g(X), T', \diamond)$ be a complete T-metric space ;

(3) E(G) satisfies the transitivity property;

(4) if $T \geq T'$, assume that $f: (X, T, \diamond) \to (X, T', \diamond)$ is g-Cauchy on X;

(5) $f: (X, T', \diamond) \to (X, T', \diamond)$ is G-continuous, and f and g are T'-compatible.

Then, under these conditions,

 $X(f,g) \neq \emptyset$ if and only if $C(f,g) \neq \emptyset$.

Proof. (\Leftarrow) Suppose that $C(f,g) \neq \emptyset$. Let $u \in C(f,g)$. We have fu = gu. Then $(gu, fu) = (gu, gu) \in \Delta \subset E(G)$. Hence $(gu, gu) = (gu, fu) \in E(G)$ which means that $u \in X(f,g)$ and thus $X(f,g) \neq \emptyset$.

(⇒) Suppose now $X(f,g) \neq \emptyset$. Let $x_0 \in X$ such that $(gx_0, fx_0) \in E(G)$. By the assumption that $f(X) \subseteq g(X)$ and $f(x_0) \in X$, it easy to construct a sequences $\{x_n\}$ in X for which

$$gx_n = fx_{n-1},$$

for all $n \in \mathbb{N}$. If $gx_{n_0} = gx_{n_0-1}$ for some $n_0 \in \mathbb{N}$, then x_{n_0-1} is a coincidence point of the mappings g and f. Therefore, we assume that, for each $n \in \mathbb{N}$, $gx_n \neq gx_{n-1}$ holds.

Since $(gx_0, fx_0) = (gx_0, gx_1) \in E(G)$ and f is edge preserving w.r.t g, we have $(fx_0, fx_1) = (gx_1, gx_2) \in E(G)$. Continue inductively, we obtain that $(gx_{n-1}, gx_n) \in E(G)$ for each $n \in \mathbb{N}$. Hence it follows from the contractive condition that

$$T(gx_{n+1}, gx_{n+2}) = T(fx_n, fx_{n+1}) \leq \theta(M(gx_n, gx_{n+1}))M(gx_n, gx_{n+1}) < M(gx_n, gx_{n+1}).$$
(2.2)

On the other hand, we get

$$M(gx_n, gx_{n+1}) = \max\left\{T(gx_n, gx_{n+1}), T(gx_n, fx_n), T(gx_{n+1}, fx_{n+1})\right\}$$
$$= \max\left\{T(gx_n, gx_{n+1}), T(gx_{n+1}, gx_{n+2})\right\}.$$

If $M(gx_n, gx_{n+1}) = T(gx_{n+1}, gx_{n+2})$, then by (2.2), we obtain that

$$T(gx_{n+1}, gx_{n+2}) < T(gx_{n+1}, gx_{n+2})$$

which is a contradiction. So, for all $n \ge 1$, we have

$$M(gx_n, gx_{n+1}) = T(gx_n, gx_{n+1}).$$
(2.3)

Notice that in view of (2.2), we have

$$T(gx_{n+1}, gx_{n+2}) < T(gx_n, gx_{n+1}), \ \forall n \in \mathbb{N}.$$

Hence, we deduce that the sequence $\{T(gx_n, gx_{n+1})\}$ is nonnegative and increasing. Consequently, there exists $r \ge 0$ such that $\lim_{n \to \infty} T(gx_n, gx_{n+1}) = r$. We claim that r = 0. Suppose, on the contrary, that r > 0. Then, due to (2.2), we have

$$\frac{T(gx_{n+1}, gx_{n+2})}{T(gx_n, gx_{n+1})} = \frac{T(gx_{n+1}, gx_{n+2})}{M(gx_n, gx_{n+1})} \le \theta(M(gx_n, gx_{n+1})) < 1$$

It follows that $\lim_{n \to \infty} \theta(M(gx_n, gx_{n+1})) = 1$. Owing to the fact that $\theta \in \Theta$, we get $\lim_{n \to \infty} T(gx_n, gx_{n+1}) = \lim_{n \to \infty} M(gx_n, gx_{n+1}) = 0$, a contradiction. So, we conclude that

$$\lim_{n \to \infty} T(gx_n, gx_{n+1}) = 0.$$
(2.4)

We assert that $\{gx_n\}$ is a Cauchy sequence. Suppose, on the contrary, that $\{gx_n\}$ is not a Cauchy sequence. Thus, there exists $\epsilon > 0$ such that, for all $k \in \mathbb{N}$, there exists $n(k), m(k) \in \mathbb{N}$ such that $n(k) > m(k) \ge k$ with the smallest number satisfying the condition below

$$T(gx_{n(k)}, gx_{m(k)}) \ge \epsilon$$
 and $T(gx_{n(k)-1}, gx_{m(k)}) < \epsilon$.

Then, we have

$$\epsilon \leq T(gx_{m(k)}, gx_{n(k)})$$

$$\leq T(gx_{m(k)}, gx_{n(k)-1}) \diamond T(gx_{n(k)-1}, gx_{n(k)})$$

$$\leq \epsilon \diamond d(gx_{n(k)-1}, gx_{n(k)}).$$

Letting $k \to \infty$ in the above inequality. By (2.4), we have

$$\lim_{n \to \infty} \epsilon \diamond T(gx_{n(k)-1}, gx_{n(k)}) = \epsilon \diamond 0 = \epsilon$$

and

$$\lim_{n \to \infty} T(gx_{m(k)}, gx_{n(k)}) = \epsilon > 0.$$

$$(2.5)$$

By the transitivity property of E(G), we get $(gx_{m(k)}, gx_{n(k)}) \in E(G)$ for all k. Thus, we have

$$T(gx_{m(k)+1}, gx_{n(k)+1}) = T(fx_{m(k)}, fx_{n(k)}) \\ \leq \theta(M(gx_{m(k)}, gx_{n(k)}))M(gx_{m(k)}, gx_{n(k)}),$$

where

$$M(gx_{m(k)}, gx_{n(k)}) = \max\left\{T(gx_{m(k)}, gx_{n(k)}), T(gx_{m(k)}, fx_{m(k)}), T(gx_{n(k)}, fx_{n(k)})\right\}$$
$$= \max\left\{T(gx_{m(k)}, gx_{n(k)}), T(gx_{m(k)}, gx_{m(k)+1}), T(gx_{n(k)}, gx_{n(k)+1})\right\}.$$

Hence, we conclude that

$$\frac{T(gx_{m(k)+1}, gx_{n(k)+1})}{M(gx_{m(k)}, gx_{n(k)})} \le \theta(M(gx_{m(k)}, gx_{n(k)})) < 1.$$
(2.6)

Keeping (2.4),(2.5) in mind and letting $k \to \infty$, we derive that

$$\lim_{k \to \infty} M(gx_{m(k)}, gx_{n(k)}) = \epsilon > 0.$$

By inequality (2.6), we get

$$\lim_{k \to \infty} \theta(M(gx_{m(k)}, gx_{n(k)})) = 1$$

and hence $\lim_{k\to\infty} M(gx_{m(k)}, gx_{n(k)}) = 0$, a contradiction. So, we conclude that $\{gx_n\}$ is a Cauchy sequence in (X, T, \diamond) .

Next, we claim that $\{gx_n\}$ is a Cauchy sequence with respect to T'.

If $T \geq T'$, it is trivial. Thus, suppose $T \not\geq T'$. Let $\varepsilon > 0$. Since $\{gx_n\}$ is a Cauchy sequence in (X, T, \diamond) and f is g-Cauchy on X, we have $\{fx_n\}$ is Cauchy sequence in (X, T', \diamond) . Then there exists $N_0 \in \mathbb{N}$ with

$$T'(gx_{n+1}, gx_{m+1}) = T'(fx_n, fx_m) < \varepsilon,$$

whenever $n, m \ge N_0$. So $\{gx_n\}$ is a Cauchy sequence with respect to T'.

Since $(g(X), T', \diamond)$ is a complete T-metric space, there exists $u = gx \in g(X)$ such that

$$\lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_n = u.$$

Now, since $f: (X, T', \diamond) \to (X, T', \diamond)$ is G-continuous, and f and g are T'-compatible, we have

$$\lim_{n \to \infty} T'(gfx_n, fgx_n) = 0.$$
(2.7)

Using the triangle inequality, we have

 $T'(gu, fu) \leq T'(gu, gfx_n) \diamond T'(gfx_n, fgx_n) \diamond T'(fgx_n, fu).$

Letting $n \to \infty$, from (2.7), f is G-continuous and the continuity of g and \diamond , we have

$$\lim_{n \to \infty} T'(gu, gfx_n) \diamond T'(gfx_n, fgx_n) \diamond T'(fgx_n, fu) = 0 \diamond 0 \diamond 0 = 0.$$

It follows that T'(gu, fu) = 0 which implies that gu = fu. So u is a coincidence point of f and g.

If T = T', we have the following theorem.

Theorem 2.8. Let (X,T,\diamond) be a complete T-metric space endowed with a directed graph G. Suppose that $f,g: X \to X$ and (f,g) is a θ -contraction w.r.t T. Moreover, suppose that:

- (1) g is continuous;
- (2) $f(X) \subseteq g(X)$ and $(g(X), T, \diamond)$ be a complete T-metric space;
- (3) E(G) satisfies the transitivity property;
- (4) assume that (a) f is G-continuous and f and g are T-compatible or (b) (X, T, G) has the property A.

Then, under these conditions,

$$X(f,g) \neq \emptyset$$
 if and only if $C(f,g) \neq \emptyset$.

Proof. In order to avoid the repetition, following from the same proof in Theorem 2.7,we can only consider (b) of the condition (3). Since $\{gx_n\}$ is a Cauchy sequence in (X, T, \diamond) and $(g(X), T, \diamond)$ is a complete T-metric space, there exists $u \in X$ such that

$$\lim_{n \to \infty} gx_n = gu = \lim_{n \to \infty} fx_n.$$
(2.8)

Now, we show that u is a coincidence point of f and g. Suppose, on the contrary, that $fu \neq gu$. Then T(fu, gu) > 0. Since (X, T, G) has the property A, we have $(gx_n, gu) \in E(G)$ for each $n \in \mathbb{N}$. We have

$$T(gu, fu) \le T(gu, fx_{n(k)}) \diamond T(fx_{n(k)}, fu)$$

which implies that

$$T(gu, fu) \leq T(gu, fx_{n(k)}) \diamond T(fx_{n(k)}, fu)$$

$$\leq T(gu, fx_{n(k)}) \diamond \theta(M(gx_{n(k)}, gu))M(gx_{n(k)}, gu).$$
(2.9)

Letting $k \to \infty$ in inequality (2.9), by the property of ϕ , \diamond is continuous and (2.8), we obtain that

$$\lim_{k \to \infty} T(gu, fu) \leq \lim_{k \to \infty} \{T(gu, fx_{n(k)}) \diamond \theta(M(gx_{n(k)}, gu))M(gx_{n(k)}, gu)\}$$

$$= 0 \diamond \lim_{k \to \infty} \theta(M(gx_{n(k)}, gu))M(gx_{n(k)}, gu)$$

$$= \lim_{k \to \infty} \theta(M(gx_{n(k)}, gu))M(gx_{n(k)}, gu), \qquad (2.10)$$

where

$$M(gx_{n(k)}, gu) = \max\left\{T(gx_{n(k)}, gu), T(gx_{n(k)}, fx_{n(k)}), T(gu, fu)\right\}.$$

From (2.8), we obtain that

$$\lim_{k \to \infty} M(gx_{n(k)}, gu) = T(gu, fu) > 0.$$

From (2.10), we obtain that $\lim_{k\to\infty} \theta(M(gx_{n(k)}, gu)) = 1$ so $\lim_{k\to\infty} M(gx_{n(k)}, gu) = T(gu, fu) = 0$, a contradiction. Therefore fu = gu. Consequently, we conclude that f and g have a coincidence point.

Theorem 2.9. In addition to the hypotheses of Theorem 2.7 (Theorem 2.8), assume that (K) for any $x, y \in C(f, g)$ such that $gx \neq gy$, we have $(gx, gy) \in E(G)$. If $X(f, g) \neq \emptyset$, then $Cm(f, g) \neq \emptyset$.

Proof. Theorem 2.7 implies that there exists a coincidence point $x \in X$, that is, gx = fx. Suppose that there exists another coincidence point $y \in X$ such that gy = fy. Assume that $gx \neq gy$. By assumption (K), $(gx, gy) \in E(G)$, we have

$$T(fx, fy) \le \theta(M(gx, gy))M(gx, gy)$$

$$< M(gx, gy) = T(fx, fy),$$

which is a contradiction. Therefore, gx = gy. Starting from $x_0 = x$, choose the sequences $\{x_n\}$ satisfying $gx_n = fx_{n-1}$ for each $n \in \mathbb{N}$. Taking into account the properties of coincidence points, it is easy to see that it can be done so that $x_n = x$, i.e.,

$$gx_n = fx_n$$

for all $n \in \mathbb{N}$. Now, let p = gx. Hence we have gp = ggx = gfx. By the definition of the sequence $\{x_n\}$, we have $gx_n = fx = fx_{n-1}$ for all $n \in \mathbb{N}$ so

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = fx$$

with respect to T'. Since g and f are T'-compatible, we have

$$\lim_{n \to \infty} T'(gfx_n, fgx_n) = 0,$$

that is, gfx = fgx. Therefore, we have gp = gfx = fgx = fp. This implies that p is another coincidence point of the mappings f and g. By the property we have just proved, it follows that fp = gp = gx = p and so p is a common fixed point of g and f. This completes the proof.

Let Φ denote the class of all functions $\phi : [0, \infty) \to [0, \infty)$ which satisfy the following conditions:

Definition 2.10. Let (X, T, \diamond) be a T-metric space endowed with a directed graph G, and let $f, g: X \to X$ be given mappings. The pair (f, g) is called a θ - ϕ -contraction w.r.t T if :

- (1) f is g-edge preserving w.r.t G;
- (2) there exist two functions $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$ such that $(gx, gy) \in E(G)$,

$$\phi(T(fx, fy)) \le \theta(T(gx, gy))\phi(T(gx, gy)). \tag{2.11}$$

Applying the similar argument as in the proof of Theorem 2.7 and 2.8, we have the following theorem.

Theorem 2.11. Let (X, T', \diamond) be a complete T-metric space endowed with a directed graph G, and let T be another T-metric on X. Suppose that $f, g: X \to X$ and (f, g) is a θ - ϕ -contraction w.r.t T. Suppose that

- (1) $g: (X, T', \diamond) \to (X, T', \diamond)$ is continuous;
- (2) $f(X) \subseteq g(X)$ and $(g(X), T', \diamond)$ be a complete T-metric space;
- (3) E(G) satisfies the transitivity property;
- (4) if $T \geq T'$, assume that $f: (X, T, \diamond) \to (X, T', \diamond)$ is g-Cauchy on X;
- (5) $f: (X, T', \diamond) \to (X, T', \diamond)$ is G-continuous, and f and g are T'-compatible.

Then, under these conditions,

 $X(f,g) \neq \emptyset$ if and only if $C(f,g) \neq \emptyset$.

Theorem 2.12. Let (X, T, \diamond) be a complete *T*-metric space endowed with a directed graph *G*. Suppose that $f, g : X \to X$ and (f, g) is a θ - ϕ -contraction w.r.t d. Moreover, suppose that:

- (1) g is continuous;
- (2) $f(X) \subseteq g(X)$ and $(g(X), T, \diamond)$ be a complete T-metric space;
- (3) E(G) satisfies the transitivity property;
- (4) assume that (a) f is G-continuous and f and g are T-compatible or (b) (X, T, G) has the property A.

Then, under these conditions,

 $X(f,g) \neq \emptyset$ if and only if $C(f,g) \neq \emptyset$.

Remark 2.13. Put $E(G) = \{(x, y) \in X \times X : x \leq y\}, \phi(t) = t \text{ and } a \diamond b = a + b \text{ in Theorem 2.11. In this case, we obtain the results of [2].$

Example 2.14. Let $X = [0, \infty) \subseteq \mathbb{R}$ and the *T*-metrics $T, T' : X \times X \to [0, \infty)$ be defined by $T(x, y) = (x - y)^2$ and $T'(x, y) = L(x - y)^2$ where *L* is a real number such that $L \in (0, 1)$ and $a \diamond b = (\sqrt{a} + \sqrt{b})^2$.

Now, we consider E(G) given by

 $E(G) = \{(x,y) : x = y \text{ or } [x,y \in [0,1/9] \text{ with } x \le y]\},\$

where \leq is the usual order.

Consider the mappings $f: X \to X$ and $g: X \to X$ defined by

$$gx = x^2, \quad fx = x^4,$$

for all $x \in X$, respectively.

Next, we show that the conditions (1)-(2) in Definition 2.10 hold as follows:

(1) Let $(gx, gy) \in E(G)$, if gx = gy then fx = fy and $(fx, fy) \in E(G)$, if $gx, gy \in E(G)$ with $gx \leq gy$, then we obtain $gx = x^2$, $gy = y^2 \in [0, 1/9]$ and $x^2 = gx \leq gy = y^2$, we have $fx = x^4 \leq fy = y^4$ and $fx, fy \in [0, 1/9]$. This implies that $(fx, fy) \in E(G)$;

(2) Let $\theta \in \Theta$ be defined by

$$\theta(t) = \begin{cases} \frac{1}{20}, & \text{if } 0 \le t < 1, \\ t^2 + 4, & \text{if } t \ge 1. \end{cases}$$

Let x, y be arbitrary points in X and $(gx, gy) \in E(G)$. If gx = gy, we have x = y and hence the contractive condition (2.1) holds for this case. In another case, we have

$$gx = x^2, \ gy = y^2 \in [0, 1/9] \text{ with } gx \le gy.$$

Then we obtain $x^2 + y^2 \in [0, 2/9]$ and $x \leq y$. Also, we have

$$T(fx, fy) = (x^{4} - y^{4})^{2}$$

$$= (x^{2} + y^{2})^{2}(x^{2} - y^{2})^{2}$$

$$\leq \frac{1}{20}(x^{2} - y^{2})^{2}$$

$$= \theta((x^{2} - y^{2})^{2})(x^{2} - y^{2})^{2}$$

$$= \theta(T(gx, gy))T(gx, gy)$$

$$\leq \theta(T(gx, gy))M(gx, gy),$$

$$= M(ax, ay) = \max \begin{cases} T(ax, gy) \ T(ax, fx) \ T(ay, fx) \end{cases}$$

where $M(gx, gy) = \max\left\{T(gx, gy), T(gx, fx), T(gy, fy)\right\}$.

Therefore, (f, g) is a θ -contraction w.r.t T.

Next, we show that the conditions (1)-(5) in Theorem 2.7 hold as follows:

(1) We can easily check that $g: (X, T', \diamond) \to (X, T', \diamond)$ is continuous;

(2) By the definition of f and g, we can see that f(X) = g(X) and it is easy to see that $(g(X), T', \diamond)$ is a complete T-metric space;

(3) It is easy to see that E(G) satisfies the transitivity property;

(4) It is easy to see that $T \ge T'$. So, we have nothing to show this condition;

(5) We will prove that $f : (X, T', \diamond) \to (X, T', \diamond)$ is *G*-continuous, and *f* and *g* are *T'*-compatible. It is easy to see that $f : (X, T', \diamond) \to (X, T', \diamond)$ is *G*-continuous. So we will only show that *f* and *g* are *T'*-compatible. Suppose that $\{x_n\}$ is a sequence in *X* such that

$$\lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_n = a,$$

for some $a \in X$. Now, we have

$$T'(gfx_n, fgx_n) = L(x_n^8 - x_n^8)^2 = 0,$$

for all $n \in \mathbb{N}$. This implies that $T'(gfx_n, fgx_n) \to 0$ as $n \to \infty$.

We have $0 \in X$ such that $(0,0) = (g0, f0) \in E(G)$, then $X(f,g) \neq \emptyset$. Consequently, all the conditions of Theorem 2.7 hold. Therefore, g and f have a coincidence point and, further, the points 0 and 1 are common fixed points of the mappings g and f.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgements

This research was supported by Chiang Mai University.

References

- [1] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604–608.
- [2] J. Martínez-Moreno, W. Sintunavarat, Y.J. Cho, Common fixed point theorems for Geraghty's type contraction mappings using the monotone property with two metrics, Fixed Point Theory Appl. 2015 (2015) Article no. 174.
- [3] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986) 771–779.
- [4] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc. 136 (2008) 1359–1373.
- [5] S. Suantai, P. Charoensawan, T.A. Lampert, Common coupled fixed point theorems for θ - ψ contraction mappings endowed with a directed graph, Fixed Point Theory Appl. 2015 (2015) Article no. 224.
- [6] M.R. Alfuraidan, The contraction principle for multivalued mappings on a modular metric space with a graph, Canad. Math. Bull. 59 (1) (2016) 3–12.
- [7] M.R. Alfuraidan, Remarks on monotone multivalued mappings on a metric space with a graph, J. Ineq. Appl. 2015 (2015) Article no. 202.
- [8] M.R. Alfuraidan, M.A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstr. Appl. Anal. 2014 (2014) Article ID 303484.
- [9] M.R. Alfuraidan, Remarks on Caristi's fixed point theorem in metric spaces with a graph, Fixed Point Theory Appl. 2014 (2014) Article no. 240.
- [10] I. Beg, A.R. Butt, S. Radojević, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010) 1214–1219.
- [11] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal. 75 (9) (2012) 3895–3901.
- [12] R. Suparatulatorn, W. Cholamjiak, S. Suantai, A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs, Numerical Algorithms 77 (2018) 479–490.
- [13] P. Cholamjiak, Fixed point theorems for Banach type contraction on Tvs-cone metric spaces endowed with a graph, J. Comput. Anal. Appl 16 (2014) 338–345.
- [14] S. Sedghi, N. Shobe, K.P.R. Rao and J.R. Prasad, Extensions of Fixed Point Theorems with Respect to w-T-distance, IJASEAT 2 (6) (2011).