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1. Introduction and Preliminaries

Geraghty [1] introduced an interesting class Θ of functions θ : [0,∞)→ [0, 1) satisfying
that:

θ(tn)→ 1 =⇒ tn → 0,

and obtained some results which is a generalization of the Banach’s contraction principle
in 1973.

Recently, Mart́ıneez-Moreno et al. [2] gave some new common fixed point theorems
for Geraghty’s type contraction mappings employing the monotone property with two
metrics by using d-compatibility and g-uniform continuity defined as follows.

Definition 1.1 ([3]). Let (X, d) be a metric space, and let f, g : X → X be two mappings.
The mappings g and f are said to be d-compatible if

lim
n→∞

d(gfxn, fgxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn.
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Definition 1.2 ([3]). Let (X, d) and (Y, d′) be two metric spaces, and let f : X → Y and
g : X → X be two mappings. A mapping f is said to be g-uniformly continuous on X if,
for any real number ε > 0, there exists δ > 0 such that d′(fx, fy) < ε whenever x, y ∈ X
and d(gx, gy) < δ. If g is the identity mapping, then f is said to be uniformly continuous
on X.

Let (X, d) be a metric space, and ∆ be a diagonal of X×X. Let G be a directed graph
such that the set V (G) of its vertices coincides with X and ∆ ⊆ E(G), where E(G) is
the set of the edges of the graph. Assume also that G has no parallel edges and, thus,
one can identify G with the pair (V (G), E(G)).

Throughout the paper we shall say that G with the above-mentioned properties satisfies
standard conditions.

The fixed point theorem using the context of metric spaces endowed with a graph
was initiated by Jachymski [4], which generalizes the Banach contraction principle to
mappings on a metric spaces with a graph. Also, the definitions of G-continuous and the
property A were given in [4].

Definition 1.3 ([4]). A mapping f : X → X is called G-continuous if for any x ∈ X
such that there exists a sequence {xn} in X, xn → x and (xn, xn+1) ∈ E(G) for n ∈ N,
then f(xn)→ f(x).

Definition 1.4 ([4]). Let (X, d) be a metric space, and suppose that G is a directed
graph. We say that the triple (X, d,G) has the property A, if for any sequence {xn} in
X with xn → x, and (xn, xn+1) ∈ E(G), for n ∈ N, we have (xn, x) ∈ E(G).

Definition 1.5 ([5]). Let (X, d) be a complete metric space, and let E(G) be the set of
the edges of the graph. We say that E(G) satisfies the transitivity property if and only
if, for all x, y, a ∈ X,

(x, a), (a, y) ∈ E(G)⇒ (x, y) ∈ E(G).

Since then, many authors have studied the problem of existence of a fixed point for
single-valued mappings and multi-valued mappings in several spaces with a graph, see
[6–13].

Definition 1.6 ([14]). A binary normed operation is a mapping � : [0,∞) × [0,∞) →
[0,∞) which satisfies the following conditions:

(1) � is associative and commutative;
(2) � is continuous;
(3) a � 0 = a for all a ∈ [0,∞);
(4) a � b ≤ c � d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0,∞).

In 2011, S.Sedghi et.al. [14] introduced the concept of T -metric spaces as follows.

Definition 1.7 ([14]). Let X be a nonempty set. A T -metric on X is a function T :
X2 → R that satisfies the following condition for each x, y, z ∈ X

(1) T (x, y) ≥ 0 and T (x, y) = 0 if and only if x = y;
(2) T (x, y) = T (y, x);
(3) T (x, y) ≤ T (x, z) � T (y, z).

The 3-tuple (X,T, �) is called a T -metric space.
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Example 1.8. Every ordinary metric d is a T -metric with a � b = a+ b.

Definition 1.9 ([14]). Let (X,T, �) be a T -metric space.

(1) A sequence {xn} in X converges to x if T (xn, x) → 0 as n → ∞ and we write
lim

n→∞
xn = x.

(2) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there exists
n0 ∈ N such that T (xn, xm) < ε for all n,m ≥ n0.

(3) The T -metric space (X,T, �) is said to be complete if every Cauchy sequence
is convergent.

Definition 1.10 ([14]). Let (X,T, �) be a T -metric space. T is said to be continuous if

lim
n→∞

T (xn, yn) = T (x, y),

wherever

lim
n→∞

T (xn, x) = lim
n→∞

T (yn, y) = 0.

Lemma 1.11 ([14]). Let (X,T, �) be a T -metric space. Then T is a continuous function.

The aim of this paper is to present some existence and uniqueness results for common
fixed point theorems for θ contraction mappings with two T -metrics endowed with a
directed graph. Furthermore, by using our main results, we are able to generalize the
results obtained in [2].

2. Main Results

We introduce the concept of g-Cauchy and edge preserving which are an effective tool
as follows:

Definition 2.1 ([3]). Let (X,T, �) be a T-metric space, and let f, g : X → X be two
mappings. The mappings g and f are said to be T -compatible if

lim
n→∞

T (gfxn, fgxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn.

Definition 2.2. Let (X,T, �) and (Y, T ′, �) be two T-metric spaces, and let f : X → Y
and g : X → X be two mappings. The mapping f is said to be g-Cauchy on X if, for
any sequence {xn} in X such that {gxn} is a Cauchy sequence in (X,T, �), then {fxn}
is Cauchy sequence in (Y, T ′, �).

Definition 2.3. Let (X,T, �) be a T -metric space, and suppose that G is a directed
graph. A mapping f : X → X is called G-continuous if for any x ∈ X such that there
exists a sequence {xn} in X, T (xn, x) → 0 as n → ∞ and (xn, xn+1) ∈ E(G) for n ∈ N,
then T (f(xn), f(x))→ 0 as n→∞.

Definition 2.4. Let (X,T, �) be a T -metric space, and suppose that G is a directed
graph. We say that the triple (X,T,G) has the property A, if for any sequence {xn} in X
with T (xn, x)→ 0 as n→∞, and (xn, xn+1) ∈ E(G), for n ∈ N, we have (xn, x) ∈ E(G).
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Definition 2.5. Let G be a directed graph, and let f, g : X → X be two mapping. We
say that f is g-edge preserving w.r.t G if

(gx, gy) ∈ E(G)⇒ (fx, fy) ∈ E(G).

We now introduce a new class of the Geraghty type contractions in the following
definition.

Definition 2.6. Let (X,T, �) be a T-metric space endowed with a directed graph G, and
let f, g : X → X be given mappings. The pair (f, g) is called a θ-contraction w.r.t T if :

(1) f is g-edge preserving w.r.t G;
(2) there exists two functions θ ∈ Θ such that for all x, y ∈ X such that (gx, gy)∈E(G),

T (fx, fy) ≤ θ(M(gx, gy))M(gx, gy), (2.1)

where M(gx, gy) = max

{
T (gx, gy), T (gx, fx), T (gy, fy)

}
.

Let (X, d) be a metric space endowed with a directed graph G satisfying the standard
conditions, and let two mappings f, g : X → X be given.

We define important subsets of X as follows

X(f, g) :={u ∈ X : (gu, fu) ∈ E(G)},

C(f, g) :={u ∈ X : fu = gu},

i.e., the set of all coincidence points of mappings f and g, and

Cm(f, g) :={u ∈ X : fu = gu = u},

i.e., the set of all common fixed points of mappings f and g.
Let T ′, T be two T -metrics on X. By T < T ′ (resp., T ≤ T ′), we mean T (x, y) <

T ′(x, y) (resp., T (x, y) ≤ T ′(x, y)) for all x, y ∈ X.
Now we are ready to present and prove the main results.

Theorem 2.7. Let (X,T ′, �) be a complete T-metric space endowed with a directed graph
G, and let T be another T-metric on X. Suppose that f, g : X → X and (f, g) is a θ-
contraction w.r.t T . Suppose that

(1) g : (X,T ′, �)→ (X,T ′, �) is continuous ;
(2) f(X) ⊆ g(X) and (g(X), T ′, �) be a complete T-metric space ;
(3) E(G) satisfies the transitivity property;
(4) if T � T ′, assume that f : (X,T, �)→ (X,T ′, �) is g-Cauchy on X;
(5) f : (X,T ′, �)→ (X,T ′, �) is G-continuous, and f and g are T ′-compatible.

Then, under these conditions,

X(f, g) 6= ∅ if and only if C(f, g) 6= ∅.

Proof. (⇐) Suppose that C(f, g) 6= ∅. Let u ∈ C(f, g). We have fu = gu. Then
(gu, fu) = (gu, gu) ∈ ∆ ⊂ E(G). Hence (gu, gu) = (gu, fu) ∈ E(G) which means that
u ∈ X(f, g) and thus X(f, g) 6= ∅.
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(⇒) Suppose now X(f, g) 6= ∅. Let x0 ∈ X such that (gx0, fx0) ∈ E(G). By the
assumption that f(X) ⊆ g(X) and f(x0) ∈ X, it easy to construct a sequences {xn} in
X for which

gxn = fxn−1,

for all n ∈ N. If gxn0
= gxn0−1 for some n0 ∈ N, then xn0−1 is a coincidence point of the

mappings g and f . Therefore, we assume that, for each n ∈ N, gxn 6= gxn−1 holds.
Since (gx0, fx0) = (gx0, gx1) ∈ E(G) and f is edge preserving w.r.t g, we have

(fx0, fx1) = (gx1, gx2) ∈ E(G). Continue inductively, we obtain that (gxn−1, gxn) ∈
E(G) for each n ∈ N. Hence it follows from the contractive condition that

T (gxn+1, gxn+2) = T (fxn, fxn+1)

≤ θ(M(gxn, gxn+1))M(gxn, gxn+1)

< M(gxn, gxn+1). (2.2)

On the other hand, we get

M(gxn, gxn+1) = max

{
T (gxn, gxn+1), T (gxn, fxn), T (gxn+1, fxn+1)

}

= max

{
T (gxn, gxn+1), T (gxn+1, gxn+2)

}
.

If M(gxn, gxn+1) = T (gxn+1, gxn+2), then by (2.2), we obtain that

T (gxn+1, gxn+2) < T (gxn+1, gxn+2)

which is a contradiction. So, for all n ≥ 1, we have

M(gxn, gxn+1) = T (gxn, gxn+1). (2.3)

Notice that in view of (2.2), we have

T (gxn+1, gxn+2) < T (gxn, gxn+1), ∀n ∈ N.

Hence, we deduce that the sequence {T (gxn, gxn+1)} is nonnegative and increasing.
Consequently, there exists r ≥ 0 such that lim

n→∞
T (gxn, gxn+1) = r. We claim that r = 0.

Suppose, on the contrary, that r > 0. Then, due to (2.2), we have

T (gxn+1, gxn+2)

T (gxn, gxn+1)
=
T (gxn+1, gxn+2)

M(gxn, gxn+1)
≤ θ(M(gxn, gxn+1)) < 1.

It follows that lim
n→∞

θ(M(gxn, gxn+1)) = 1. Owing to the fact that θ ∈ Θ, we get

lim
n→∞

T (gxn, gxn+1) = lim
n→∞

M(gxn, gxn+1) = 0, a contradiction. So, we conclude that

lim
n→∞

T (gxn, gxn+1) = 0. (2.4)

We assert that {gxn} is a Cauchy sequence. Suppose, on the contrary, that {gxn} is
not a Cauchy sequence. Thus, there exists ε > 0 such that, for all k ∈ N, there exists
n(k),m(k) ∈ N such that n(k) > m(k) ≥ k with the smallest number satisfying the
condition below

T (gxn(k), gxm(k)) ≥ ε and T (gxn(k)−1, gxm(k)) < ε.
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Then, we have

ε ≤ T (gxm(k), gxn(k))

≤ T (gxm(k), gxn(k)−1) � T (gxn(k)−1, gxn(k))

≤ ε � d(gxn(k)−1, gxn(k)).

Letting k →∞ in the above inequality. By (2.4), we have

lim
n→∞

ε � T (gxn(k)−1, gxn(k)) = ε � 0 = ε

and

lim
n→∞

T (gxm(k), gxn(k)) = ε > 0. (2.5)

By the transitivity property of E(G), we get (gxm(k), gxn(k)) ∈ E(G) for all k. Thus,
we have

T (gxm(k)+1, gxn(k)+1) = T (fxm(k), fxn(k))

≤ θ(M(gxm(k), gxn(k)))M(gxm(k), gxn(k)),

where

M(gxm(k), gxn(k)) = max

{
T (gxm(k), gxn(k)), T (gxm(k), fxm(k)), T (gxn(k), fxn(k))

}

= max

{
T (gxm(k), gxn(k)), T (gxm(k), gxm(k)+1), T (gxn(k), gxn(k)+1)

}
.

Hence, we conclude that

T (gxm(k)+1, gxn(k)+1)

M(gxm(k), gxn(k))
≤ θ(M(gxm(k), gxn(k))) < 1. (2.6)

Keeping (2.4),(2.5) in mind and letting k →∞, we derive that

lim
k→∞

M(gxm(k), gxn(k)) = ε > 0.

By inequality (2.6), we get

lim
k→∞

θ(M(gxm(k), gxn(k))) = 1

and hence lim
k→∞

M(gxm(k), gxn(k)) = 0, a contradiction. So, we conclude that {gxn} is a

Cauchy sequence in (X,T, �).
Next, we claim that {gxn} is a Cauchy sequence with respect to T ′.
If T ≥ T ′, it is trivial. Thus, suppose T � T ′. Let ε > 0. Since {gxn} is a Cauchy

sequence in (X,T, �) and f is g-Cauchy on X, we have {fxn} is Cauchy sequence in
(X,T ′, �). Then there exists N0 ∈ N with

T ′(gxn+1, gxm+1) = T ′(fxn, fxm) < ε,

whenever n,m ≥ N0. So {gxn} is a Cauchy sequence with respect to T ′.
Since (g(X), T ′, �) is a complete T-metric space, there exists u = gx ∈ g(X) such that

lim
n→∞

gxn = lim
n→∞

fxn = u.
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Now, since f : (X,T ′, �)→ (X,T ′, �) is G-continuous, and f and g are T ′-compatible,
we have

lim
n→∞

T ′(gfxn, fgxn) = 0. (2.7)

Using the triangle inequality, we have

T ′(gu, fu) ≤ T ′(gu, gfxn) � T ′(gfxn, fgxn) � T ′(fgxn, fu).

Letting n→∞, from (2.7), f is G-continuous and the continuity of g and �, we have

lim
n→∞

T ′(gu, gfxn) � T ′(gfxn, fgxn) � T ′(fgxn, fu) = 0 � 0 � 0 = 0.

It follows that T ′(gu, fu) = 0 which implies that gu = fu. So u is a coincidence point
of f and g.

If T = T ′, we have the following theorem.

Theorem 2.8. Let (X,T, �) be a complete T-metric space endowed with a directed graph
G. Suppose that f, g : X → X and (f, g) is a θ-contraction w.r.t T . Moreover, suppose
that:

(1) g is continuous;
(2) f(X) ⊆ g(X) and (g(X), T, �) be a complete T-metric space;
(3) E(G) satisfies the transitivity property;
(4) assume that (a) f is G-continuous and f and g are T -compatible or (b) (X,T,G)

has the property A.

Then, under these conditions,

X(f, g) 6= ∅ if and only if C(f, g) 6= ∅.

Proof. In order to avoid the repetition, following from the same proof in Theorem 2.7,we
can only consider (b) of the condition (3). Since {gxn} is a Cauchy sequence in (X,T, �)
and (g(X), T, �) is a complete T-metric space, there exists u ∈ X such that

lim
n→∞

gxn = gu = lim
n→∞

fxn. (2.8)

Now, we show that u is a coincidence point of f and g. Suppose, on the contrary,
that fu 6= gu. Then T (fu, gu) > 0. Since (X,T,G) has the property A, we have
(gxn, gu) ∈ E(G) for each n ∈ N. We have

T (gu, fu) ≤ T (gu, fxn(k)) � T (fxn(k), fu)

which implies that

T (gu, fu) ≤ T (gu, fxn(k)) � T (fxn(k), fu)

≤ T (gu, fxn(k)) � θ(M(gxn(k), gu))M(gxn(k), gu). (2.9)

Letting k → ∞ in inequality (2.9), by the property of φ, � is continuous and (2.8), we
obtain that

lim
k→∞

T (gu, fu) ≤ lim
k→∞

{T (gu, fxn(k)) � θ(M(gxn(k), gu))M(gxn(k), gu)}

= 0 � lim
k→∞

θ(M(gxn(k), gu))M(gxn(k), gu)

= lim
k→∞

θ(M(gxn(k), gu))M(gxn(k), gu), (2.10)
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where

M(gxn(k), gu) = max

{
T (gxn(k), gu), T (gxn(k), fxn(k)), T (gu, fu)

}
.

From (2.8), we obtain that

lim
k→∞

M(gxn(k), gu) = T (gu, fu) > 0.

From (2.10), we obtain that lim
k→∞

θ(M(gxn(k), gu))=1 so lim
k→∞

M(gxn(k), gu) = T (gu, fu)

= 0, a contradiction. Therefore fu = gu. Consequently, we conclude that f and g have
a coincidence point.

Theorem 2.9. In addition to the hypotheses of Theorem 2.7 (Theorem 2.8), assume that
(K) for any x, y ∈ C(f, g) such that gx 6= gy, we have (gx, gy) ∈ E(G).

If X(f, g) 6= ∅, then Cm(f, g) 6= ∅.

Proof. Theorem 2.7 implies that there exists a coincidence point x ∈ X, that is, gx = fx.
Suppose that there exists another coincidence point y ∈ X such that gy = fy. Assume
that gx 6= gy. By assumption (K), (gx, gy) ∈ E(G), we have

T (fx, fy) ≤ θ(M(gx, gy))M(gx, gy)

< M(gx, gy) = T (fx, fy),

which is a contradiction. Therefore, gx = gy. Starting from x0 = x , choose the sequences
{xn} satisfying gxn = fxn−1 for each n ∈ N. Taking into account the properties of
coincidence points, it is easy to see that it can be done so that xn = x, i.e.,

gxn = fx,

for all n ∈ N. Now, let p = gx. Hence we have gp = ggx = gfx. By the definition of the
sequence {xn}, we have gxn = fx = fxn−1 for all n ∈ N so

lim
n→∞

fxn = lim
n→∞

gxn = fx

with respect to T ′. Since g and f are T ′-compatible, we have

lim
n→∞

T ′(gfxn, fgxn) = 0,

that is, gfx = fgx. Therefore, we have gp = gfx = fgx = fp. This implies that p is
another coincidence point of the mappings f and g. By the property we have just proved,
it follows that fp = gp = gx = p and so p is a common fixed point of g and f . This
completes the proof.

Let Φ denote the class of all functions φ : [0,∞) → [0,∞) which satisfy the following
conditions:

(φ1): φ is nondecreasing;
(φ2): φ is continuous;
(φ3): φ(t) = 0⇔ t = 0;
(φ4): φ(t � s) ≤ φ(t) � φ(s).

Definition 2.10. Let (X,T, �) be a T-metric space endowed with a directed graph G,
and let f, g : X → X be given mappings. The pair (f, g) is called a θ-φ-contraction w.r.t
T if :
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(1) f is g-edge preserving w.r.t G;
(2) there exist two functions θ ∈ Θ and φ ∈ Φ such that for all x, y ∈ X such that

(gx, gy) ∈ E(G),

φ(T (fx, fy)) ≤ θ(T (gx, gy))φ(T (gx, gy)). (2.11)

Applying the similar argument as in the proof of Theorem 2.7 and 2.8 , we have the
following theorem.

Theorem 2.11. Let (X,T ′, �) be a complete T-metric space endowed with a directed
graph G, and let T be another T-metric on X. Suppose that f, g : X → X and (f, g) is a
θ-φ-contraction w.r.t T . Suppose that

(1) g : (X,T ′, �)→ (X,T ′, �) is continuous;
(2) f(X) ⊆ g(X) and (g(X), T ′, �) be a complete T-metric space;
(3) E(G) satisfies the transitivity property;
(4) if T � T ′, assume that f : (X,T, �)→ (X,T ′, �) is g-Cauchy on X;
(5) f : (X,T ′, �)→ (X,T ′, �) is G-continuous, and f and g are T ′-compatible.

Then, under these conditions,

X(f, g) 6= ∅ if and only if C(f, g) 6= ∅.

Theorem 2.12. Let (X,T, �) be a complete T-metric space endowed with a directed graph
G. Suppose that f, g : X → X and (f, g) is a θ-φ-contraction w.r.t d. Moreover, suppose
that:

(1) g is continuous;
(2) f(X) ⊆ g(X) and (g(X), T, �) be a complete T-metric space;
(3) E(G) satisfies the transitivity property;
(4) assume that (a) f is G-continuous and f and g are T -compatible or (b) (X,T,G)

has the property A.
Then, under these conditions,

X(f, g) 6= ∅ if and only if C(f, g) 6= ∅.

Remark 2.13. Put E(G) = {(x, y) ∈ X × X : x � y}, φ(t) = t and a � b = a + b in
Theorem 2.11. In this case, we obtain the results of [2].

Example 2.14. Let X = [0,∞) ⊆ R and the T -metrics T, T ′ : X × X → [0,∞) be
defined by T (x, y) = (x − y)2 and T ′(x, y) = L(x − y)2 where L is a real number such

that L ∈ (0, 1) and a � b = (
√
a+
√
b)2.

Now, we consider E(G) given by

E(G) = {(x, y) : x = y or [x, y ∈ [0, 1/9] with x ≤ y]},
where ≤ is the usual order.

Consider the mappings f : X → X and g : X → X defined by

gx = x2, fx = x4,

for all x ∈ X, respectively.
Next, we show that the conditions (1)–(2) in Definition 2.10 hold as follows:

(1) Let (gx, gy) ∈ E(G),
if gx = gy then fx = fy and (fx, fy) ∈ E(G),
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if gx, gy ∈ E(G) with gx ≤ gy, then we obtain gx = x2, gy = y2 ∈ [0, 1/9] and
x2 = gx ≤ gy = y2, we have fx = x4 ≤ fy = y4 and fx, fy ∈ [0, 1/9]. This implies that
(fx, fy) ∈ E(G);

(2) Let θ ∈ Θ be defined by

θ(t) =

{
1
20 , if 0 ≤ t < 1,

t2 + 4, if t ≥ 1.

Let x, y be arbitrary points in X and (gx, gy) ∈ E(G). If gx = gy, we have x = y and
hence the contractive condition (2.1) holds for this case. In another case, we have

gx = x2, gy = y2 ∈ [0, 1/9] with gx ≤ gy.

Then we obtain x2 + y2 ∈ [0, 2/9] and x ≤ y. Also, we have

T (fx, fy) = (x4 − y4)2

= (x2 + y2)2(x2 − y2)2

≤ 1

20
(x2 − y2)2

= θ((x2 − y2)2)(x2 − y2)2

= θ(T (gx, gy))T (gx, gy)

≤ θ(T (gx, gy))M(gx, gy),

where M(gx, gy) = max

{
T (gx, gy), T (gx, fx), T (gy, fy)

}
.

Therefore, (f, g) is a θ-contraction w.r.t T .
Next, we show that the conditions (1)–(5) in Theorem 2.7 hold as follows:
(1) We can easily check that g : (X,T ′, �)→ (X,T ′, �) is continuous;
(2) By the definition of f and g, we can see that f(X) = g(X) and it is easy to see

that (g(X), T ′, �) is a complete T-metric space;
(3) It is easy to see that E(G) satisfies the transitivity property;
(4) It is easy to see that T ≥ T ′.So, we have nothing to show this condition;
(5) We will prove that f : (X,T ′, �) → (X,T ′, �) is G-continuous, and f and g are

T ′-compatible. It is easy to see that f : (X,T ′, �) → (X,T ′, �) is G-continuous. So we
will only show that f and g are T ′-compatible. Suppose that {xn} is a sequence in X
such that

lim
n→∞

gxn = lim
n→∞

fxn = a,

for some a ∈ X. Now, we have

T ′(gfxn, fgxn) = L(x8n − x8n)2 = 0,

for all n ∈ N. This implies that T ′(gfxn, fgxn)→ 0 as n→∞.

We have 0 ∈ X such that (0, 0) = (g0, f0) ∈ E(G), then X(f, g) 6= ∅. Consequently,
all the conditions of Theorem 2.7 hold. Therefore, g and f have a coincidence point and,
further, the points 0 and 1 are common fixed points of the mappings g and f .
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