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Numerical Solution
of a Partial Differential Equation Model

of Heat Flow through the Boundary Surfaces
of Poultry Shed

P. Chanthaweeroj, S. Koonprasert and E. J. Moore

Abstract : This paper provides a practical overview of the Crank-Nicolson
method for obtaining numerical solutions to one-dimensional, time-dependent heat
conduction problems. The method has been used to determine the heat flow
through the boundary surfaces of a poultry shed for the two cases of constant
air temperatures outside the shed and for known time varying air temperatures
outside the shed. The heat flow has also been determined for several different wall
materials. The results can be used to select suitable materials for shed walls that
can help maintain the good health of the poultry in the shed.
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1 Introduction

A well-designed poultry shed is an important factor in maintaining the temper-
ature conditions necessary for the good health of the poultry in the shed. Two
factors influencing the temperature in the shed are the outside air temperature and
the conduction of heat through the wall. Another important factor is, of course,
proper ventilation of the shed. In this paper we look at the problem of the heat
conduction through the wall.

The mathematical model of heat conduction through the wall of a poultry
shed involves a set of coupled ordinary and partial differential equations subject
to complicated boundary conditions. Gordan and Zarmi [1], [2], Feuermann et al.
[3] and Bhandori and Bansal [4] have solved the differential equations governing
heat flows but still assume steady-state heat transfer and zero heat capacitance
in building elements. Boland [5], [6] have simplified the solution of the differential
equations which describe heat flows in domestic dwellings and have given an ana-
lytic solution of the differential equations describing heat flow in houses. In this
paper, we use the Crank-Nicolson method to obtain a numerical solution. This
method is a well-known reliable method for solving heat conduction problems.
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2 The Model Equations

The coupled partial and ordinary differential equations which describe heat trans-
fer through a shed wall between the air outside the shed and the air inside the
shed are as follows :

∂

∂t
v(x, t) = κ

∂2

∂x2
v(x, t) , 0 < x < ` (2.1)

K
∂

∂x
v(0, t) + Hin[s(t)− v(0, t)] = 0 (2.2)

−K
∂

∂x
v(`, t) + Hout[vout(t)− v(`, t)] = 0 (2.3)

v(x, 0) = f(x) (2.4)

Mc
d

dt
s(t) + AHin[s(t)− v(0, t)] = 0 (2.5)

Here, κ, ` , K and A represent diffusivity (m2/s) , width (m2) , heat conductivity
(W/◦Cm) and area (m2) of the wall, respectively. v(x, t) is wall temperature at
dept into the wall at time t(◦C), Hin, Hout are the combined radiative-convective
heat transfer coefficients (W/◦Cm2) at the inside and outside wall surfaces, re-
spectively. s(t) is the air temperature inside the shed (◦C), and M and c are the
mass(kg) and specific heat kJ/kg◦C) of the air inside the shed. vout(t) is the air
temperature outside the shed (◦C).

3 The Numerical Method

3.1 Crank-Nicolson Method for Partial Differential Equa-
tions

Crank and Nicolson [1] suggested a modified implicit finite-difference method for
solving parabolic partial differential equations. To illustrate this method we con-
sider the heat conduction equation (3.6).

∂

∂t
v(x, t) = κ

∂2

∂x2
v(x, t) ; 0 < x < `, t > 0 (3.1)

The first step is to replace the partial derivatives in equation (3.1) by finite differ-
ence approximations. The x and t domains are divided into small steps ∆x and
∆t, as illustrated in figure 1, so that the values of x and t are :

x = i∆x, i = 0, 1, 2, ... n

t = j∆t, j = 0, 1, 2, ...

where n =
`

∆x
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Then the temperature v(x, t) at a location xi and time tj is denoted by the symbol
vj

i that is
v(xi, tj) = v(i∆x, j∆t) = vj

i (3.2)

The Crank-Nicolson method is based on numerical approximations for solutions
of equation (3.1) at points (xi, tj + ∆t

2 ) that lie between the rows in the grid, as
illustrated in figure 2. Specifically, the approximation used for ∂

∂tv(x, t + ∆t
2 ) is

obtained from the central-difference formula

∂

∂t
v(x, t +

∆t

2
) =

v(x, t + ∆t)− v(x, t)
∆t

+ O[(∆t)2] (3.3)

Figure 1 : Subdivision of the domain into intervals of ∆x and ∆t for finite-
difference representation of the one-dimensional, time-dependent heat conduction
equation.

The approximation used for ∂2

∂x2 v(x, t + ∆t
2 ) is the average of the approxima-

tions for ∂2

∂x2 v(x, t) and ∂2

∂x2 v(x, t + ∆t). These approximations, which have an
accuracy of the order O[(∆x)2], are

∂2

∂x2
v(x, t) =

v(x−∆x, t)− 2v(x, t) + v(x + ∆x, t)
(∆x)2

+ O[(∆x)2] (3.4)

∂2

∂x2
v(x, t + ∆t) =

v(x−∆x, t + ∆t)− 2v(x, t + ∆t) + v(x + ∆x, t + ∆t)
(∆x)2

+ O[(∆x)2] (3.5)
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Figure 2 : A computational molecule for the Crank-Nicolson method.

Therefore the approximation for ∂2

∂x2 v(x t + ∆t
2 ) becomes

∂2

∂x2
v(x, t +

∆t

2
) =

1
2

[
v(x−∆x, t)− 2v(x, t) + v(x + ∆x, t)

(∆x)2

+
v(x−∆x, t + ∆t)− 2v(x, t + ∆t) + v(x + ∆x, t + ∆t)

(∆x)2

]

+ O[(∆x)2] (3.6)

Then using the notation v(xi, tj) = vj
i and v(xi, tj+1) = vj+1

i in equation (3.3) we
obtain the equation

∂v

∂t

∣∣∣∣
i,j+ 1

2

=
vj+1

i − vj
i

∆t
+ O[(∆t)2] (3.7)

Also introducing the notation

v(x, t) = vj
i ; v(x−∆x, t) = vj

i−1 ; v(x + ∆x, t) = vj
i+1

v(x, t + ∆t) = vj+1
i ; v(x−∆x, t + ∆t) = vj+1

i−1 ; v(x + ∆x, t + ∆t) = vj+1
i+1

into equation (3.6) we obtain

∂2v

∂x2

∣∣∣∣
i,j+ 1

2

=
1
2

[
vj

i−1 − 2vj
i + vj

i+1

(∆x)2
+

vj+1
i−1 − 2vj+1

i + vj+1
i+1

(∆x)2

]
+O[(∆x)2] (3.8)

Then, introducing equations (3.7) and equation (3.8) into equation (3.1) and ne-
glecting the error terms O[(∆x)2] and O[(∆t)2] , we obtain the difference equation

vj+1
i − vj

i

∆t
=

κ

2

[
vj

i−1 − 2vj
i + vj

i+1

(∆x)2
+

vj+1
i−1 − 2vj+1

i + vj+1
i+1

(∆x)2

]
(3.9)
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This equation can be rearranged in the form

−λvj+1
i−1 + (2 + 2λ)vj+1

i − λvj+1
i+1 = λvj

i−1 + (2− 2λ)vj
i + λvj

i+1; (3.10)

for i = 1, 2, ..., n, where λ = κ∆t
(∆x)2

The left side of equation (3.10) contains the unknown v at the nodes i− 1, i and
i+1 at the time step j +1, that is vj+1

i−1 , vj+1
i and vj+1

i+1 . The temperature, v , on
the right-hand side of equation at these three nodes are known at the time step j,
that is vj

i−1, vj
i and vj

i+1 are known. The computational molecule corresponding
to equation (3.10) is shown in figure 3. Equation (3.10) correspond to a matrix
equation AV = B,
where A represents the coefficient square matrix of order n + 1

V represents an unknown vector of order n + 1 at step j + 1
And B represents a known vector of order n + 1, that is the value of V at step j.
An important feature of the matrix A that makes the system easier to solve is that
A is close to a tridiagonal matrix.

Figure 3 : Schematic form of the Crank-Nicolson method.

3.2 Central Difference Approximations for the Boundary
Conditions

The boundary conditions at the outer and inner surfaces of the shed wall are :

A1v(0, t) + B1
∂

∂x
v(0, t) = F1 (3.11)

A2v(`, t) + B2
∂

∂x
v(`, t) = F2 (3.12)
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The finite-difference representation of boundary conditions (16) and (17) using
central-differences are given, respectively, as

A1v
j
0 + B1

(
vj
1 − vj

−1

2∆x

)
= F1 (3.13)

A2v
j
n + B2

(
vj

n+1 − vj
n−1

2∆x

)
= F2 (3.14)

where vj
−1 and vj

n+1 are fictitious temperatures outside the xt domain.

3.3 Using the Crank-Nicolson method to Calculate
a Numerical Solution

The following is the steps in finding the numerical solution of equations (2.1)-(2.5).
The (x, t) domain is divided into intervals ∆x, ∆t such that

xi = i∆x ; i = 0, 1, 2, ..., n
tj = j∆t ; i = 0, 1, 2, ...

where n = l
∆x . We also consider fictitious nodal points i = −1 and i = n + 1

outside the region as illustrated in figure 4. The differential equation (2.1) is
represented in finite differences using the Crank-Nicolson method, according to
equation (3.10). The initial condition (2.4) is written as

v0
i = f(i∆x) ≡ fi ; i = 0 , 1 , 2 , ... , n

Using a central difference for the boundary condition (2) we have

K

(
vj
1 − vj

−1

2∆x

)
+ Hin(sj − vj

0) = 0 (3.15)

Figure 4 : Fictitious nodes i = −1 and i = n + 1.
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Solving equation (3.15) for vj
−1 we obtain

vj
−1 = vj

1 +
2∆xHin

K
(sj − vj

0) (3.16)

and

vj+1
−1 = vj+1

1 +
2∆xHin

K
(sj+1 − vj+1

0 ) (3.17)

For i = 0 we introduce equations (3.16) and equation (3.17) into equation (3.10)
and obtain

(2 + 2λ +
2λ∆xHin

K
)vj+1

0 − 2λvj+1
1 − 2λ∆xHin

K
sj+1 = (2− 2λ− 2λ∆xHin

K
)vj

0

+2λvj
1 +

2λ∆xHin

K
sj

(3.18)

The finite-difference representation of the boundary condition (2.3) using a central
difference is given as

−K

(
vj

n+1 − vj
n−1

2∆x

)
+ Hout(v

j
out − vj

n) = 0 (3.19)

Equation (3.19) can be solved for vj
n+1 to obtain

vj
n+1 = vj

n−1 +
2∆xHout

K
(vj

out − vj
n) (3.20)

and then

vj+1
n+1 = vj+1

n−1 +
2∆xHout

K
(vj+1

out − vj+1
n ) (3.21)

For i = n we introduce equations (3.20) and (3.21) into equation (3.10) to obtain

−2λvj+1
n−1 + (2 + 2λ +

2λ∆xHout

K
)vj+1

n = 2λvj
n−1 + (2− 2λ− 2λ∆xHout

K
) vj

n

+
2λ∆xHout

K
(vj

out + vj+1
out ) (3.22)

Using the Crank-Nicolson method for equation (3.10), we find

Mc

(
sj+1 − sj

∆t

)
+

1
2
AHin[(sj+1 − vj+1

0 ) + (sj − vj
0)] = 0 (3.23)

This equation can be rearranged in the form

−1
2
AHin vj+1

0 +(
Mc

∆t
+

1
2
AHin) sj+1 =

1
2
AHin vj

0 +(
Mc

∆t
− 1

2
AHin) sj (3.24)
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Values of vj+1
0 , vj+1

1 , ...vj+1
n and sj+1 can be calculated from equations (3.18),

(3.24), (3.10) and (3.22), respectively. We obtain
for i = 0 ;

(2 + 2λβ 1)v
j+1
0 − 2λvj+1

1 − 2λγ1s
j+1 = (2− 2λβ 1)v

j
0 + 2λvj

1 + 2λγ1s
j (3.25)

for i = 1, 2, 3, ..., n− 1 ;

−η 1v
j+1
0 + (η2 + η1)sj+1 = η 1v

j
0 + (η2 − η1)sj (3.26)

for i = n ;

−λvj+1
i−1 + (2 + 2λ)vj+1

i − λvj+1
i+1 = λvj

i−1 + (2− 2λ)vj
i + λvj

i+1 (3.27)

−2λvj+1
n−1+ (2+2λβ 2)vj+1

n = 2λvj
n−1+(2−2λβ 2)vj

n+2λγ2(v
j
out+vj+1

out ) (3.28)

where
β 1 = 1 + ∆xHin

K ; β 2 = 1 + ∆xHout

K

γ1 = ∆xHin

K ; γ2 = ∆xHout

K

η1 = 1
2AHin ; η2 = Mc

∆t
Equations (3.25) to (3.28) are (n+2) simultaneous algebraic equations for (n+2)
unknown nodal point temperatures vj+1

0 , vj+1
1 , ...vj+1

n and sj+1 at the time level
(j+1) in term of the (n+2) known temperatures vj

0, vj
1, ... vj

n and sj of the previous
time level j. Values of vj

out and vj+1
out can be calculated directly. Equations (3.25)

to (3.28) can be written in the matrix form as




2 + 2λβ1 −2λ 0 0 · · · 0 0 0 −2λγ1

−η1 0 0 0 · · · 0 0 0 η2 + η1

−λ 2 + 2λ −λ 0 · · · 0 0 0 0
0 −λ 2 + 2λ −λ · · · 0 0 0 0
...

...
0 0 0 0 · · · −λ 2 + 2λ −λ 0
0 0 0 0 · · · 0 −2λ 2 + 2λβ2 0







vj+1
0

vj+1
1

vj+1
2

vj+1
3
...

vj+1
n

sj+1




=




2− 2λβ1 2λ 0 0 · · · 0 0 0 2λγ1

η1 0 0 0 · · · 0 0 0 η2 − η1

λ 2− 2λ λ 0 · · · 0 0 0 0
0 λ 2− 2λ λ · · · 0 0 0 0
...

...
0 0 0 0 · · · λ 2− 2λ λ 0
0 0 0 0 · · · 0 2λ 2− 2λβ2 0







vj
0

vj
1

vj
2

vj
3
...

vj
n

sj



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+




0
0
0
0
...
0

2λγ2(v
j
out + vj+1

out )




(3.29)

where j = 0, 1, 2, ...

Figure 5 : Boundary condition and values needed for computation at time j + 1 .

The values vj+1
0 , vj+1

1 , ...vj+1
n and sj+1 can be found from this system and can

be solved using MATLAB.
The truncation error associated with the finite difference representation of

the heat-conduction problem using the Crank-Nicolson method for the differential
equation (2.1) and the boundary condition (2.5) is of the order of (∆t)2+(∆x)2 and
∆t)2, respectively. Also, using the central-differences for the boundary conditions
(2.2) and (2.3) gives a truncation error of the order (∆x)2. Therefore, the Crank-
Nicolson is called a ′second− orderaccurate′ method.
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3.4 Numerical solution to heat-conduction problems

We have used the Crank-Nicolson method to obtain solutions for the coupled set
of ordinary and partial differential equations in a model of heat flow through the
walls of a poultry shed. We have obtained solutions for both a constant and a
time varying outside air temperature. We have also obtained numerical solutions
for walls with values for thermal conductivity in the range 0.11-1.28 W/◦Cm (see
Chanthaweeroj [9]).

An example of the solutions obtained is given in figure 7 for parameter values:
κ = 0.66×10−6 m2/s, ` = 0.1 m, K = 1.28 W/◦Cm,Hin = 8.29 W/◦Cm2

Hout = 22.7 W/◦Cm2, A = 32 m2, M = 226.0608 kg, c = 1.0057 kJ/kg◦C ,
and for outside air temperature given by the periodic function vout(t) = 27 +
4 sin( t

14400 ) shown in figure 6

3.5 Conclusions

The Crank-Nicolson method is a useful method for solving the set of coupled
ordinary and partial differential equations in a model for heat flow through the
walls of a poultry shed. The results can be used to assist in the design of sheds
suitable for housing poultry or animals.

Figure 6 : Graph of function vout(t) = 27 + 4 sin( t
14400 ) when 0 6 t 6 172800 s.

The numerical solution for 0 6 t 6 172800 s . is shown in figure 7.
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(a) ∆x = 0.02 , ∆t = 0.005

(a) ∆x = 0.01 , ∆t = 0.0025

(a) ∆x = 0.005 , ∆t = 0.000125

Figure 7 : Temperature in wall in three-dimension (left) and two-dimension for
some (right).
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