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1. Introduction

The g-frame theory is an emerging mathematical theory that provides a natural frame-
work for performing hierarchical data processing. A g-frame is a frame-like collection of
operators on a Hilbert space, thereby generalizing the concept of a frame for signal rep-
resentation. Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [1],
reintroduced in 1986 by Daubechies, Grossmann, and Meyer [2]. Frames are a generaliza-
tion of the orthonormal bases and g-frames are a generalization of frames in Hilbert spaces
which were introduced by W. Sun in [3]. Related approaches with a different focus were
undertaken by Casazza and Kutyniok in [4]. G-Frames and fusion frames play important
roles in many applications in mathematics, science, and engineering, including coding
theory [5], compressed sensing [6], filter bank theory [7], applications to sensor networks
[8], construction methods [9–11], and many other areas. The restricted isometry property
is one of the cornerstones of compressed sensing. Today, compressed sensing is one of the
most active areas of research in applied analysis and so we refer the reader to the tutorials
[12] and their references for a background in the area. Our goal here is to use tools from
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compressed sensing, namely operators with the restricted isometry property, to construct
fusion frames with very strong properties.

The paper is organized as follows: Section 2, contains an extension of the restricted
isometry property to the g-frame situation. In this section, we will show how to use
tight g-frames which have the restricted isometry property to construct fusion frames. In
Section 3, we study the conditions which under removing some element from a g-frame,
again we obtain another g-frame.

Throughout this paper, H,K are separable Hilbert spaces and IH is the identity oper-
ator on H. I, J, Ji denote the countable (or finite) index sets and {Wi}i∈I is a sequence
of closed subspaces of K. Also B(H,Wi) is the collection of all bounded linear operators
from H into Wi.

We start by recalling the definition of frames for H. A frame for H is an indexed set
of vectors {fi : i ∈ I} ⊆ H for which there exist positive constants 0 < A ≤ B < ∞ so
that for all f ∈ H we have

A‖f‖2 ≤
∑
i∈I
|〈f, fi〉|2 ≤ B‖f‖2. (1.1)

The numbers A,B are called lower (respectively, upper) frame bounds for the frame. If we
only have the right-hand inequality of (1.1), then F is called a Bessel sequence. If A = B
it is an A-tight frame, and if A = B = 1, it is a Parseval frame. If ‖fi‖ = c for all i ∈ I this
is an equal norm frame, and if c = 1 it is a unit norm frame. The synthesis operator for
F is the bounded linear operator TF : `2(I)→ H, given by TF ({ci}i∈I) =

∑
i∈I cifi. The

analysis operator for F is T ∗F and is given by T ∗Ff = {〈f, fi〉}i∈I . The frame operator is the
positive self-adjoint invertible operator SF = TFT

∗
F and satisfies SFf =

∑
i∈I〈f, fi〉fi.

Reconstruction is given by

f =
∑
i∈I
〈f, fi〉S−1

F fi =
∑
i∈I
〈f, S−

1
2

F fi〉S
− 1

2

F fi ∀f ∈ H.

In particular, {S−
1
2

F fi}i∈I is a Parseval frame for H.

Definition 1.1. Let Λi ∈ B(H,Wi) for all i ∈ I. Then a family of operators Λ = {Λi}i∈i
is called a g-frame for H with respect to {Wi}i∈I if there exist constants 0 < C ≤ D <∞
such that

C‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ D‖f‖2 ∀f ∈ H. (1.2)

The constants C and D are called g-frame bounds and supi∈I Λi is the multiplicity of Λ.
A g-frame is called tight if C and D can be chosen to be equal, Parseval if C = D = 1 and
ε-g-frame if C = 1

1+ε and D = 1 + ε for some ε > 0. If the right-hand side of (1.2) holds,

then Λ is said a g-Bessel sequence for H with respect to {Wi}i∈I . Moreover if {Wi}i∈I be
a family of closed subspaces of H and Λi = πWi be the orthogonal projection of H onto
Wi for all i ∈ I. Then {Wi}i∈I is said a fusion frame for H. The representation space
associated with a g-Bessel sequence Λ = {Λi}i∈I is defined by(∑

i∈I
⊕Wi

)
`2

=
{
{gi}i∈I |gi ∈Wi and

∑
i∈I
‖gi‖2 <∞

}
. (1.3)
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The synthesis operator of Λ given by

TΛ :
(∑
i∈I
⊕Wi

)
`2
→ H TΛ({gi}i∈I) =

∑
i∈I

Λ∗i gi.

The adjoint operator of TΛ, which is called the analysis operator also obtain as follows

T ∗Λ : H →
(∑
i∈I
⊕Wi

)
`2

T ∗Λf = {Λif}i∈I .

By composing TΛ with its adjoint T ∗Λ, we obtain the fusion frame operator

SΛ : H → H SΛf = TΛT
∗
Λf =

∑
i∈I

Λ∗iΛif,

which is a bounded, self-adjoint, positive and invertible operator and CIH ≤ SΛ ≤ DIH.

The canonical dual g-frame for {Λi}i∈I is defined by {Λ̃i}i∈I where Λ̃i = ΛiS
−1
Λ , which

is also a g-frame for H with g-frame bounds 1
D and 1

C , respectively. Also we have

f =
∑
i∈I

Λ∗i Λ̃if =
∑
i∈I

Λ̃∗iΛif ∀f ∈ H.

For more details about the theory and applications of frames we refer the readers to
[1, 2, 13, 14] and for fusion frames to [4, 11], about g-frames to [3, 15].

2. G-Frames with the Restricted Isometry Property

In this section we generalize the restricted isometry property for g-frames, we will show
how to use tight g-frames which have the ε-restricted isometry property to construct fusion
frames. We denote HN for a Hilbert space with dimension N and {ej}Nj=1 an orthonormal
basis for HN . Moreover, the Hilbert-Schmidt norm of operator T ∈ B(HN ,K) is defined

by ‖T‖2HS =
∑N
j=1 ‖Tej‖2.

Proposition 2.1. Let {Λi}i∈I be a g-Bessel sequence for H with respect to {Wi}i∈I .
Then

(i) If H is finite-dimensional, then {‖Λi‖2HS}i∈I is summable.
(ii) If H is finite-dimensional and α = ‖Λi‖ = ‖Λj‖ for all i, j ∈ I. Then {Λi}i∈I

is a finite sequence.
(iii) If H is finite-dimensional and Λ = {Λi}i∈I is a g-frame for H with g-frame

bounds A and B. Then

A ≤
∑
i∈I ‖Λi‖2HS
dimH

≤ B.

Proof. (i) Let B be the g-Bessel bound for {Λi}i∈I and let {ej}Nj=1 be an orthonormal
basis for H. Then we have∑

i∈I
‖Λi‖2HS =

∑
i∈I

N∑
j=1

‖Λiej‖2 =

N∑
j=1

∑
i∈I
‖Λiej‖2

≤ B
N∑
j=1

‖ej‖2 = BN.



706 Thai J. Math. Vol. 18 (2020) /M. S. Asgari and G. Kavian

(ii) Since ‖Λi‖HS ≥ ‖Λi‖ = α hence from the part (i) follows that {Λi}i∈I is finite.

(iii) Since
∑
i∈I ‖Λi‖2HS =

∑N
j=1〈SΛej , ej〉 and AIH ≤ SΛ ≤ BIH thus we obtain

AdimH = A

N∑
j=1

‖ej‖2 ≤
N∑
j=1

〈SΛej , ej〉 ≤ B
N∑
j=1

‖ej‖2 = B dimH.

This yields

AdimH ≤
∑
i∈I
‖Λi‖2HS ≤ B dimH.

From this the claim follows immediately.

Theorem 2.2. Let Λ = {Λi}Mi=1 be a g-frame for HN with respect to {Wi}Mi=1. Then

(i) The optimal bounds of Λ are the smallest and biggest eigenvalues of g-frame
operator SΛ.

(ii) If {λi}Ni=1 is a representation of eigenvalues of SΛ. Then

N∑
j=1

λj =

M∑
i=1

‖Λi‖2HS and λj =

M∑
i=1

‖Λiej‖2,

where {ej}Nj=1 is the orthonormal basis consisting of eigenvectors of SΛ.

Proof. To prove (i) see that since SΛ is a self-adjoint operator on HN , thus HN has
an orthonormal basis include eigenvectors of SΛ. Let {ej}Nj=1 be an orthogonal basis of

HN include of eigenvectors of SΛ. Let {λj}Nj=1 be eigenvalues of {ej}Nj=1. Then for any
f ∈ HN we have

M∑
i=1

‖Λif‖2 = 〈SΛf, f〉 =
〈 N∑
j=1

〈f, ej
〉
SΛej , f〉

=

N∑
j=1

〈f, ej〉〈SΛej , f〉 =

N∑
j=1

〈f, ej〉〈λjej , f〉

=

N∑
j=1

λj |〈f, ej〉|2.

Since for any 1 ≤ i ≤ N we have λmin ≤ λi ≤ λmax, thus

λmin‖f‖2 ≤
M∑
i=1

‖Λif‖2 ≤ λmax‖f‖2.



G-Frames, Fusion Frames and the Restricted Isometry Property 707

To prove (ii) we have:

N∑
j=1

λj =

N∑
j=1

〈λjej , ej〉 =

N∑
j=1

〈SΛej , ej〉

=

N∑
j=1

M∑
i=1

‖Λiej‖2 =

M∑
i=1

N∑
j=1

‖Λiej‖2

=

M∑
i=1

‖Λi‖2HS .

Also we obtain
M∑
i=1

‖Λiej‖2 = 〈SΛej , ej〉 = 〈λjej , ej〉 = λj .

Corollary 2.3. Let {Λi}Mi=1 be a A-tight g-frame with unit Hilbert-Schmidt norm for HN
with respect to {Wi}Mi=1, then A = M

N .

Proof. This is a direct result from section (iii) in Proposition 2.1.

Definition 2.4. Let Λi ∈ B(H,Wi) for all i ∈ I. Then

(i) {Λi}i∈I is called an orthonormal g-system for H with respect to {Wi}i∈I , if
ΛiΛ

∗
jgj = δijgj for all i, j ∈ I, gj ∈Wj .

(ii) If H = span{Λ∗i (Wi)}i∈I , then we say that {Λi}i∈I is g-complete.
(iii) We say that {Λi}i∈I is a g-orthonormal basis for H with respect to {Wi}i∈I ,

if it is a g-orthonormal g-complete system for H with respect to {Wj}j∈J .
(iv) If {Λi}i∈I is g-complete and there are positive constants A and B such that

for any finite subset J ⊂ I and gj ∈Wj ,

A
∑
j∈J
‖gj‖2 ≤

∥∥∑
j∈J

Λ∗jgj
∥∥2 ≤ B

∑
j∈J
||gj ||2.

Then {Λi}i∈I is called a g-Riesz basis for H with respect to {Wi}i∈I . Moreover,
{Λi}i∈I is called a ε-g-Riesz basis for H if A = 1

1+ε and B = 1 + ε for some

ε > 0. Also {Λi}i∈I is a ε-g-Riesz sequence if {Λi}i∈I is a ε-g-Riesz basis for
span{Λ∗i (Wi)}i∈I .

The next proposition is similar to a result of Bodmann, Cahill and Casazza [16] to the
situation of g-frames.

Proposition 2.5. Let {Λi}i∈I be a ε-g-Riesz sequence for H with respect to {Wi}i∈I
and let {Ij}Lj=1 be a partition of I. Then for every 1 ≤ j ≤ L and for any sequence

{gjk}k∈Ij ∈
(∑

k∈Ij ⊕Wk

)
`2

1

1 + ε

L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2 ≤

L∑
j=1

∑
k∈Ij

‖gjk‖2 ≤ (1 + ε)

L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2
.

Also,

1

(1 + ε)2

L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2 ≤

∥∥∥ L∑
j=1

∑
k∈Ij

Λ∗kgjk

∥∥∥2

≤ (1 + ε)2
L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2
.
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Proof. For each 1 ≤ j ≤ L and any sequence {gjk}k∈Ij ∈
(∑

k∈Ij ⊕Wk

)
`2

we have

1

1 + ε

L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2 ≤ 1

1 + ε

L∑
j=1

(1 + ε)
∑
k∈Ij

‖gjk‖2 =

L∑
j=1

∑
k∈Ij

‖gjk‖2

≤
L∑
j=1

(1 + ε)
∥∥∑
k∈Ij

Λ∗kgjk
∥∥2

= (1 + ε)

L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2
.

This yields

1

(1 + ε)2

L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2 ≤ 1

1 + ε

L∑
j=1

∑
k∈Ij

‖gjk‖2 ≤
∥∥∥ L∑
j=1

∑
k∈Ij

Λ∗kgjk

∥∥∥2

≤ (1 + ε)

L∑
j=1

∑
k∈Ij

‖gjk‖2 ≤ (1 + ε)2
L∑
j=1

∥∥∑
k∈Ij

Λ∗kgjk
∥∥2
.

It is known that if {Λi}i∈I is a g-Riesz basis for H with respect to {Wi}i∈I with g-Riesz
constants A and B, then {Λi}i∈I is a g-frame for H with respect to {Wi}i∈I with same
bounds A and B. The next lemma is analogous to Lemma 3.3 in [16] to the situation of
g-frames.

Lemma 2.6. Let Λ = {Λi}i∈I be a ε-g-Riesz basis for H with respect to {Wi}i∈I . Then
for all n ∈ N

1

(1 + ε)n
IH ≤ SnΛ ≤ (1 + ε)nIH and

1

(1 + ε)n
IH ≤ S−nΛ ≤ (1 + ε)nIH.

Proof. Since {Λi}i∈I is a ε-g-Riesz basis for H with respect to {Wi}i∈I , so this family
is a g-frame for H with bounds 1

1+ε , 1 + ε respectivelt. Hence 1
1+ε ≤ ‖SΛ‖ ≤ (1 + ε)

and 1
1+ε ≤ ‖S

−1
Λ ‖ ≤ (1 + ε). On the other hand for any f ∈ H and n ∈ N we have

‖S−1
Λ ‖−n‖f‖ ≤ ‖SnΛf‖ ≤ ‖SΛ‖n‖f‖ which implies that ‖S−1

Λ ‖−nIH ≤ SnΛ ≤ ‖SΛ‖nIH.
Consequently

1

(1 + ε)n
IH ≤ ‖S−1

Λ ‖
−nIH ≤ SnΛ ≤ ‖SΛ‖nIH ≤ (1 + ε)nIH.

This shows that 1
(1+ε)n IH ≤ S

n
Λ ≤ (1 + ε)nIH and so 1

(1+ε)n IH ≤ S
−n
Λ ≤ (1 + ε)nIH.

Proposition 2.7. Let {Λi}i∈I be a ε-g-Riesz sequence for H with respect to {Wi}i∈I .
Then for all partition {I1, I2} of I and f ∈ span{Λ∗i (Wi)}i∈I1 , g ∈ span{Λ∗i (Wi)}i∈I2 with
‖f‖ = ‖g‖ = 1, |〈f, g〉| ≤ 2ε+ ε2.

Proof. For all finite subsets F1 ⊆ I1, F2 ⊆ I2 and arbitrary vectors gi ∈ Wi(i ∈ F1

⋃
F2),

suppose that ϕ =
∑
i∈F1

Λ∗i gi and ψ =
∑
i∈F2

Λ∗i gi with conditions ||ϕ|| = ||ψ|| = 1.

Then for any |λ| = 1 we have

(〈ϕ,λψ〉) =
2(〈ϕ, λψ〉) + 2

2
− 1 =

‖ϕ+ λψ‖2

2
− 1

≤ (1 + ε)

2

∑
i∈F1∪F2

‖gi‖2 − 1 =
(1 + ε)

2

(∑
i∈F1

‖gi‖2 +
∑
i∈F2

‖gi‖2
)
− 1

≤ (1 + ε)2

2
(‖ϕ‖2 + ‖ψ‖2)− 1 = 2ε+ ε2.
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This yields

|〈ϕ,ψ〉| = max
|λ|=1
〈ϕ, λψ〉 ≤ 2ε+ ε2,

which implies that |〈f, g〉| ≤ 2ε+ ε2.

Definition 2.8. For every 1 ≤ i ≤ M , let Λi ∈ B(HN ,Wi). Then we say that the
family {Λi}Mi=1 has the restricted isometry property with constant 0 < ε < 1 for sets of
size s ≤ N , if for every I ⊆ {1, 2, ...,M} with |I| ≤ s, the family {Λi}i∈I is a ε-g-Riesz
sequence for HN with respect to {Wi}i∈I .

The next theorem is a generalization of Theorem 4.2 in [16] to the g-frames situation.

Theorem 2.9. Let {Λi}Mi=1 be a tight g-frame for HN with respect to {Wi}Mi=1 with
the restricted isometry property with constant 0 < ε < 1 for sets of size s ≤ N . Sup-
pose that {Ij}Lj=1 is an arbitrary partition of {1, 2, ...,M} with |Ij | ≤ s. Define Vj =

span{Λ∗i (Wi)}i∈Ij for all 1 ≤ j ≤ L, then {Vj}Lj=1 is a fusion frame for HN with fusion

frame bounds
∑M

i=1 ‖Λi‖2HS

(1+ε)N ,
(1+ε)

∑M
i=1 ‖Λi‖2HS

N and

1

1 + ε

∑
i∈Ij

‖Λif‖2 ≤ ‖πVj
f‖2 ≤ (1 + ε)

∑
i∈Ij
‖Λif‖2.

Proof. By the hypothesis {Λi}i∈Ij is a g-frame for Vj with respect to {Wi}i∈Ij with g-

frame bounds 1
1+ε , 1 + ε respectively, for all 1 ≤ j ≤ L. Let Sj be g-frame operator of

{Λi}i∈Ij , which is a self-adjoint operator on HN . Suppose that {ei}Ni=1 is an orthonormal

basis of eigenvectors for Sj with eigenvalues {λi}Ni=1, then λi = 0 for all |Ij | < i ≤ N and
1

1+ε ≤ λ1 ≤ λ2 ≤ · · · ≤ λ|Ij | ≤ 1 + ε. Since {ei}
|Ij |
i=1 is an orthonormal basis for Vj , hence

πVj
f =

∑|Ij |
i=1〈f, ei〉ei, for any f ∈ HN . We also have

Sjf = Sj
( N∑
i=1

〈f, ei〉ei
)

=

N∑
i=1

〈f, ei〉Sjei =

|Ij |∑
i=1

〈f, ei〉λiei,

which implies that 〈Sjf, f〉 =
∑|Ij |
i=1 λi|〈f, ei〉|2. Thus we have

1

1 + ε

∑
i∈Ij

‖Λif‖2 =
1

1 + ε
〈Sjf, f〉 =

∑
i∈Ij

λi
1 + ε

|〈f, ei〉|2

≤ ‖πVj‖2 ≤
∑
i∈Ij

λi(1 + ε)|〈f, ei〉|2

= (1 + ε)〈Sjf, f〉 = (1 + ε)
∑
i∈Ij

‖Λif‖2.

It follows that

1

1 + ε

L∑
j=1

∑
i∈Ij

‖Λif‖2 ≤
L∑
j=1

‖πVjf‖2 ≤ (1 + ε)

L∑
j=1

∑
i∈Ij

‖Λif‖2.

Now by Proposition 2.1 we have∑M
i=1 ‖Λi‖2HS
(1 + ε)N

‖f‖2 ≤
L∑
i=1

‖πVj
f‖2 ≤

(1 + ε)
∑M
i=1 ‖Λi‖2HS
N

‖f‖2.
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Corollary 2.10. Under the assumptions of Theorem 2.9 if {1, 2, · · · , L} ⊆ {1, 2, · · · ,M}
and there exists a family {Jj}Lj=1 such that

∑L
j=1 |Jj | ≤ s and Jj ⊆ Ij for all 1 ≤ j ≤ L.

Then

1

(1 + ε)2

L∑
j=1

‖
∑
i∈Jj

Λ∗i gi‖2 ≤
∥∥∥ L∑
j=1

∑
i∈Jj

Λ∗i gi

∥∥∥2

≤ (1 + ε)2
L∑
j=1

‖
∑
i∈Jj

Λ∗i gi‖2.

Proof. This follows from the Proposition 2.5.

The following theorem will give another method for obtaining a fusion frame from an
unit norm tight frame for HN without having the restricted isometry property. Another
form of this result can be found in [16] Theorem 4.2.

Theorem 2.11. Let {fi}Mi=1 be an unit norm tight frame of vectors for HN and let {Ij}Lj=1

be a partition of {1, 2, · · · ,M}. Define Wj = span{fi}i∈Ij , then the family {Wj}Lj=1 is a

fusion frame for HN with fusion frame bounds AM
N and BM

N where

A = min
1≤j≤L

min
1≤k≤dimWj

1

λjk
, B = max

1≤j≤L
max

1≤k≤dimWj

1

λjk
,

and {λjk}
dimWj

k=1 is the family of eigenvalues of frame operator associated to {fi}i∈Ij .

Proof. Let Sj be the frame operator associated to {fi}i∈Ij and let {ejk}Nk=1 be the or-

thonormal basis for HN of eigenvectors of Sj with eigenvalues {λjk}Nk=1. Then λjk = 0

for any dimWj < k ≤ N and {ejk}
dimWj

k=1 is a orthonormal basis for Wj , which implies

that 〈Sjf, f〉 =
∑dimWj

k=1 λjk|〈f, ek〉|2. Now for any f ∈ HN we have

min
1≤k≤dimWj

1

λjk

∑
i∈Ij

|〈f, fi〉|2 = min
1≤k≤dimWj

1

λjk
〈Sjf, f〉

=

dimWj∑
k=1

λjk
max1≤k≤dimWj λjk

|〈f, ejk〉|2

≤ ‖πWj‖2 ≤
dimWj∑
k=1

λjk
min1≤k≤dimWj λjk

|〈f, ejk〉|2

= max
1≤k≤dimWj

1

λjk
〈Sjf, f〉

= max
1≤k≤dimWj

1

λjk

∑
i∈Ij

|〈f, fi〉|2.

This yields

L∑
j=1

∑
i∈Ij

min
1≤k≤dimWj

1

λjk
|〈f, fi〉|2 ≤

L∑
j=1

‖πWjf‖2 ≤
L∑
j=1

∑
i∈Ij

max
1≤k≤dimWj

1

λjk
|〈f, fi〉|2.

Put A = min1≤j≤L min1≤k≤dimWj

1
λjk

, B = max1≤j≤L max1≤k≤dimWj

1
λjk

. Then

AM

N
‖f‖2 ≤

L∑
j=1

‖πWj
f‖2 ≤ BM

N
‖f‖2.
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The next corollary generalizes Theorem 2.11 to the g-frames situation which the proof
leave to interested readers.

Corollary 2.12. Let {Λi}Mi=1 be a tight g-frame for HN with respect to {Wi}Mi=1 and
let {Ij}Lj=1 be a partition of {1, 2, · · · ,M}. Define Vj = span{Λ∗i (Wi)}i∈Ij , then the

family {Vj}Lj=1 is a fusion frame for HN with fusion frame bounds
A

∑M
i=1 ‖Λi‖2HS

N and
B

∑M
i=1 ‖Λi‖2HS

N where

A = min
1≤j≤L

min
1≤k≤dimWj

1

λjk
, B = max

1≤j≤L
max

1≤k≤dimWj

1

λjk
,

and {λjk}
dimWj

k=1 is the family of eigenvalues of g-frame operator associated to {Λi}i∈Ij .

3. Excess of G-Frames

Our purpose of this section is to study the conditions which under removing some
element from a g-frame, again we obtain another g-frame. The next theorem gives a
erasure result of g-frames so that Theorem 4.3 obtained in [11] is a special case of it.

Theorem 3.1. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I with g-
frame bounds C and D and let J ⊂ I. Then {Λi}i∈I−J is a g-frame for H with respect to

{Wi}i∈I−J with bounds C2

D

∥∥(IH−
∑
i∈J S

−1
Λ Λ∗iΛi)

−1
∥∥−2

and D if and only if the operator

IH −
∑
i∈J S

−1
Λ Λ∗iΛi is bounded and invertible on H.

Proof. Since Λ = {Λi}i∈I is a g-frame for H with respect to {Wi}i∈I , for any f ∈ H we
have

f =
∑
i∈I

S−1
Λ Λ∗iΛif =

∑
i∈J

S−1
Λ Λ∗iΛif +

∑
i∈I−J

S−1
Λ Λ∗iΛif

Therefore, IH −
∑
i∈J S

−1
Λ Λ∗iΛi =

∑
i∈I−J S

−1
Λ Λ∗iΛi. Moreover we have∥∥(IH −

∑
i∈J

S−1
Λ Λ∗iΛi)f

∥∥ =
∥∥∥ ∑
i∈I−J

S−1
Λ Λ∗iΛif

∥∥∥ = sup
‖g‖=1

∣∣〈 ∑
i∈I−J

S−1
Λ Λ∗iΛif, g〉

∣∣
= sup
‖g‖=1

∣∣ ∑
i∈I−J

〈Λif,ΛiS−1
Λ g〉

∣∣
≤ sup
‖g‖=1

∑
i∈I−J

‖Λif‖‖ΛiS−1
Λ g‖

≤ sup
‖g‖=1

( ∑
i∈I−J

‖Λif‖2
) 1

2
( ∑
i∈I−J

‖ΛiS−1
Λ g‖2

) 1
2

≤ sup
‖g‖=1

√
D‖S−1

Λ g‖
( ∑
i∈I−J

‖Λif‖2
) 1

2

≤
√
D

C

( ∑
i∈I−J

‖Λif‖2
) 1

2 .
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Also, if IH −
∑
i∈J S

−1
Λ Λ∗iΛi is invertible on H, then

C2

D

∥∥∥(IH −∑
i∈J

S−1
Λ Λ∗iΛi

)−1
∥∥∥−2

‖f‖2 ≤ C2

D

∥∥∥(IH −∑
i∈J

S−1
Λ Λ∗iΛi

)
f
∥∥∥2

≤
∑
i∈I−J

‖Λif‖2 ≤
∑
i∈I
‖Λif‖2 ≤ D‖f‖2.

From this the conclusion follows. To Prove the opposite direction, we first show that
the operator IH −

∑
i∈J S

−1
Λ Λ∗iΛi is injective. Let (IH −

∑
i∈J S

−1
Λ Λ∗iΛi)f = 0. Then∑

i∈I−J S
−1
Λ Λ∗iΛif = 0 hence

∑
i∈I−J Λ∗iΛif = 0. It follows that

C‖f‖2 ≤
∑
i∈I−J

‖Λif‖2 =
∑
i∈I−J

〈Λif,Λif〉 =
〈 ∑
i∈I−J

Λ∗iΛif, f
〉

= 0,

which implies that f = 0. Moreover, if(
IH −

∑
i∈J

Λ∗iΛiS
−1
Λ

)
f =

(
IH −

∑
i∈J

S−1
Λ Λ∗iΛi

)∗
f = 0,

then
∑
i∈I−J Λ∗iΛiS

−1
Λ f = 0 and therefore S−1

Λ f = 0, it follows that f = 0. This finishes
the proof.

Corollary 3.2. Let {Λi}i∈I be a g-frame for H with respect to {Wi}i∈I and let J ⊂ I. If
there exists 0 6= f0 ∈ H such that

∑
i∈J S

−1
Λ Λ∗iΛif0 = f0, then {Λi}i∈I−J is not a g-frame

for H.

Proof. Assume that there exists 0 6= f0 ∈ H such that
∑
i∈J S

−1
Λ Λ∗iΛif0 = f0. Then∑

i∈I−J S
−1
Λ Λ∗iΛif0 = 0, hence

∑
i∈I−J Λ∗iΛif0 = 0. It follows that∑

i∈I−J
‖Λif0‖2 =

∑
i∈I−J

〈Λif0,Λif0〉 =
〈 ∑
i∈I−J

S−1
Λ Λ∗iΛif0, f0

〉
= 0

Therefore {Λi}i∈I−J is not a g-frame.

Corollary 3.3. Let {Λi}i∈I be a A-tight g-frame for H with respect to {Wi}i∈I and let
J ⊂ I. If there exists 0 6= f0 ∈ H such that

∑
i∈J Λ∗iΛif0 = Af0, then {Λi}i∈I−J is not a

g-frame for H.
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