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1. Introduction

The Banach contraction principle [1], which is a useful tool in the study of many
branches of mathematics and mathematical sciences, is one of the earlier and fundamental
result in fixed point theory. Because of its importance in nonlinear analysis, a number
of mathematicians have improved, generalized and extended this basic result either by
defining a new contractive mappings in the context of a complete metric space or by
investigating the existing contractive mappings in various abstract spaces; see, e.g., [2–8]
and references therein. When a mapping from a metric space into itself has no fixed
points, it could be interesting to study the existence and uniqueness of some points that
minimize the distance between the origin and its corresponding image. These points are
known as best proximity points and were introduced by [9] and modified by Sadiq Basha
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in [10]. Best proximity point theorems for several types of non-self mappings have been
derived in [10–18].

Recently, Geraghty [3] obtained a generalization of the Banach contraction principle in
the setting of complete metric spaces by considering an auxiliary function. Later, Amini-
Harandi and Emami [19] characterized the result of Geraghty in the context of a partially
ordered complete metric space. This result is of particular interest since many real world
problems can be identified in a partially ordered complete metric space. Cabellero et al.
[20] discussed the existence of a best proximity point of Geraghty contraction. After the
introduction of new notion about Generalized Geraghty-Suzuki contraction the existence
and uniqueness of best proximity point has also been proved by using different conditions,
see references [1]-[31]. In this paper, we obtained the best proximity point theorems and
fixed point theorems for generalized Geraghty-Suzuki contractions in the setting of a
complete metric space by replacing the P -property of [25] with another suitable property
which is weaker than P -property. Also, motivated by [32] results, we generalized some
results and contractions. We present example to prove the validity of our main result.
Our results extended and unify many existing results in the literature.

2. Preliminaries

In this section, we collect some notions and notations which will be used throughout
the rest of this work.

Definition 2.1 ([23]). Let X be a metric space, A and B two nonempty subsets of X.
Define

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = d(A,B)},
B0 = {b ∈ B : there exists some a ∈ A such that d(a, b) = d(A,B)}.

In [26], the authors present sufficient conditions which determine when the sets A0 and
B0 are nonempty. We denote by F the class of all functions β : [0,∞)→ [0, 1) satisfying
β(tn)→ 1, implies tn → 0 as n→∞.

Definition 2.2 ([3]). Let (X, d) be a metric space. A map f : X → X is called Geraghty
contraction if there exists β ∈ F such that for all x, y ∈ X,

d(fx, fy) ≤ β(d(x, y))d(x, y).

Theorem 2.3 ([3]). Let (X, d) be a complete metric space. Mapping f : X → X is
Geraghty contraction. Then f has a fixed point x ∈ X, and {fnx1} converges to x.

Cho et al. [27] generalized the concept of Geraghty contraction to α-Geraghty contrac-
tion and prove the fixed point theorem for such contraction.

Definition 2.4 ([27]). Let (X, d) be a metric space and α : X ×X → R a function. A
map f : X → X is called α-Geraghty contraction if there exists β ∈ F such that for all
x, y ∈ X,

α(x, y)d(fx, fy) ≤ β(d(x, y))d(x, y).
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Definition 2.5 ([26]). Let (A,B) be a pair of nonempty subsets of a metric space (X,d)
with A0 6= ∅. Then the pair (A,B) is said to have the P -property if and only if for any
x1, x2, x3, x4 ∈ A0,

d(x1, fx3) = d(A,B)
d(x2, fx4) = d(A,B)

}
⇒ d(x1, x2) = d(fx3, fx4).

Definition 2.6 ([21]). Let (A,B) be a part of nonempty subsets of a metric space (X,d)
with A0 6= ∅. Then the pair (A,B) is said to have weak P -property if and only if for any
x1, x2 ∈ A0 and y1, y2 ∈ B0

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) ≤ d(y1, y2).

Also [26] showed that any pair of nonempty closed convex subset of real Hilbert space
satisfies the P -property. Also one can see that the pair (A,A) has also P -property.

Theorem 2.7 ([20]). Let A,B be two nonempty closed subsets of a complete metric space
(X, d) such that A0 is nonempty, and α : A×A→ R a function. Define a map f : A→ B
satisfying the following conditions:

(1) f is continuous Geraghty contraction with f(A0) ⊆ B0;
(2) the pair (A,B) has the weak P -property.

Then there exists a unique x∗ in A such that d(x∗, fx∗) = d(A,B).

Definition 2.8 ([25]). Let (X, d) be a metric space. A mapping f : A → B is called
generalized Geraghty-Suzuki contraction (GS-contraction) if there exists β ∈ F such that
for all x, y ∈ A,

1

2
d∗(x, fx) ≤ d(x, y)⇒ d(fx, fy) ≤ β(M(x, y))[M(x, y)− d(A,B)], (2.1)

whereA,B ⊆ X, d∗(x, y)=d(x, y)−d(A,B) andM(x, y)=max{d(x, y), d(x, fx), d(y, fy)}.

Definition 2.9 ([17]). Given a non-self mapping f : A→ B, then an element x∗ is called
best proximity point of the mappings if this condition satisfied:

d(x∗, fx∗) = d(A,B),

where BPP (f) denotes the set of best proximity points of f.

Definition 2.10. Let (X, d) be a metric space. Then a function p : X ×X → [0,∞) is
called w-distance on X if the following are satisfied:

(1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X;
(2) for any x ∈ X, p(x, .) : X → [0,∞) is lower semi continuous;
(3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ

d(x, y) ≤ ε.

Definition 2.11 ([32]). Let (X, d) be a metric space. A set valued mapping T : X → X
is called weakly contractive if there exists a w-distance p on X and r ∈ [0, 1) such that
for any x1, x2 ∈ X and y1 ∈ Tx1 there is y2 ∈ Tx2 with p(y1, y2) ≤ rp(x1, x2).

In this paper, motivated by [21, 25, 32] and Suzuki [30] in which he proved fixed point
theorem that is generalization of the Banach contraction principle and characterized the
metric completeness, by using such type of Suzuki mapping, we ensures the existence and
uniqueness of the best proximity points and fixed points.
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3. Best Proximity Point Theorems for S-Weakly Contraction

In this part of research paper we introduced some new notions and contractions by
using [32] results. Further more, find out best proximity point for such contractions.

Definition 3.1. Let (X, d) be a metric space. Then a function p : X × X → [0,∞) is
called ws-distance on X if the following are satisfied:

(1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X;
(2) p(x, y) ≥ 0, for any x, y ∈ X;
(3) if {xm} and {ym} be any sequences in X such that xn → x, yn → y as n→∞,

then p(xn, yn)→ p(x, y) as x→∞;
(4) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ

d(x, y) ≤ ε.

Example 3.2. Let X = R endowed with Euclidean metric d = |.| and s a positive
constant. Define p : X ×X → R by p(x, y) = ys, for all x, y ∈ X.

Proof. To prove triangular inequality, let us take x, y, z ∈ X. then p(x, z) = zs ≤ ys+zs =
p(x, y) + p(y, z). So, 1st axiom of Definition 3.1 holds and 2nd, 3rd are proved easily. For
4th axiom of Definition 3.1. Let us take ε > 0 and put δ = εs. Suppose that p(x, y) ≤ δ

and p(z, y) ≤ δ. It follows that d(x, y) = |x− y| ≤ max{x, y} ≤ {δ 1
s , δ

1
s } = ε.

Definition 3.3. Let X be a metric space, A and B two nonempty subsets of X. Define

p(A,B) = inf{p(a, b) : a ∈ A, b ∈ B},
A0,p = {a ∈ A : there exists some b ∈ B such that p(a, b) = p(A,B)},
B0,p = {b ∈ B : there exists some a ∈ A such that p(a, b) = p(A,B)}.

Example 3.4. Let X = N and A,B ⊂ X where

A = {(1, 0), (4, 5), (5, 4)},
B = {(2, 0), (0, 4), (4, 0)}.

Then, p(A,B) = 1 with A0,p = {(1, 0)} and B0,p = {(2, 0)}.

Definition 3.5. Let (X, d) be a metric space, A,B ⊆ X and A0,p 6= φ. A set valued
mapping T : A→ B with T (A0,p) ⊆ B0,p is called S-weakly contractive or Pp-contractive
if there exists a ws-distance p on A and r ∈ [0, 1) such that for any x1, x2 ∈ A and
y1 ∈ Tx1 in B there is y2 ∈ Tx2 in B with p(y1, y2) ≤ rp(x1, x2).

Definition 3.6. Let (A,B) be a part of nonempty subsets of a metric space (X, d)
with A0,p 6= ∅. Then the pair (A,B) is said to have Pp-property if and only if for any
x1, x2 ∈ A0,p and y1, y2 ∈ B0,p

p(x1, y1) = p(A,B)
p(x2, y2) = p(A,B)

}
⇒ p(x1, x2) = p(y1, y2).

Definition 3.7. Given a non-self mapping f : A→ B, then an element x∗ is called p-best
proximity point of the mappings if this condition satisfied:

p(x∗, fx∗) = p(A,B),
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Now, we are defining next example to show the existence of p-best proximity point
with the help of Pp-property.

Example 3.8. Let X = {0, 1, 12 ,
1
3 , ...}. Assume that A,B ⊂ X where A = {0, 13 ,

1
5 , ...}.

Then, p(A,B) = 0 and A0,p = {0} and B0,p = {0}. Define T : A → B as Tx = x
1+x , for

all x and d, p : X×X → X by d, p(x, y) = 0 for x = y and d, p(x, y) = max{x, y} if x 6= y.
Here p(A,B) = 0 and p(x, Tx) = 0 = p(A,B). So, p(0, T0) = p(A,B) = 0, thus it has a
unique p-best proximity point and that is 0, also Pp-property satisfies.

Theorem 3.9. Let (X, d) be a complete metric space, A and B nonempty closed subsets
of X and T : A → B a continuous set valued S-weakly contractive or pp-contractive
mapping with (A,B) satisfying the Pp-property where p is the ws-distance. Then T has
unique p-best proximity point.

Proof. Since T is S-weakly-contractive mapping, so A0,p is nonempty and T (A0,p) ⊆ B0,p,
we take x0 ∈ A0,p, there exists x1 ∈ A0,p such that

p(x1, Tx0) = p(A,B). (3.1)

Again, since T (A0,p) ⊆ B0,p, there exists x2 ∈ A0,p such that

p(x2, Tx1) = p(A,B). (3.2)

Repeating this process, we get a sequence {xn} in A0,p satisfying

p(xn+1, Txn) = p(A,B),

for any n ∈ N.
Since (A,B) has Pp-property, we have that

p(xn, xn+1) ≤ p(Txn−1, Txn),

for any n ∈ N.
Note that T is S-weakly-contractive mapping and (A,B) has Pp-property. So for any
n ∈ N, we have that

p(xn, xn+1) = p(Txn−1, Txn)

≤ rp(xn−1, xn)

< p(xn−1, xn),

where 0 ≤ r < 1. This means

p(xn, xn+1) < p(xn−1, xn).

So, {p(xn, xn+1)} is strictly decreasing sequence of nonnegative real numbers.
Suppose that there exists n0 ∈ N such that p(xn0 , xn0+1) = 0. In this case,

0 = p(xn0 , xn0+1) = p(Txn0−1, Txn0),

and consequently
Txn0−1 = Txn0

.

Therefore,
p(A,B) = p(xn0

, Txn0−1) = p(xn0
, Txn0

).

Note that xn0
∈ A0, Txn0−1 ∈ B0, and xn0

= Txn0−1 for any n0 ∈ N. So, A
⋂
B is

nonempty. Then p(A,B) = 0. Thus in this case, there exists unique p-best proximity
point, i.e., there exists unique x∗ in A such that p(x∗, Tx∗) = p(A,B).
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In the contrary case, suppose that p(Txn0 , Txn0−1) > 0. This implies that p(xn, xn+1) >
0, for any n ∈ N . Since {p(xn, xn+1)} is strictly decreasing sequence of nonnegative real
numbers, there exists k ≥ 0 such that

lim
n→∞

p(xn, xn+1) = k.

We have to show that k=0. Let k 6= 0 and k > 0. From

p(x, y) = lim
n→∞

p(xn, xn+1)

and

p(x, y) ≤ lim inf
n→∞

p(x, xn+1) ≤ 0,

we have

lim
n→∞

p(xn, xn+1) = 0,

for any n ∈ N. This yields that

lim
n→∞

p(xn−1, xn) = 0.

Hence k = 0 and this contradicts our assumption that k > 0. Therefore,

lim
n→∞

p(xn, xn+1) = 0.

Since p(xn+1, Txn) = p(A,B), for any n ∈ N and for fixed p, q ∈ N, we have

p(xp, Txp−1) = p(xq, Txq−1) = p(A,B).

Since (A,B) satisfies weak Pp-property, so

p(xp, xq) ≤ p(Txp−1, Txq−1).

Now we have to show that {xn} is a Cauchy sequence.
On contrary, we suppose that {xn} is not a Cauchy sequence. Then there exists ε > 0
such that for all k > 0, there exists m(k) > n(k) > k with (the smallest number satisfying
the condition below)

p(xm(k), xn(k)) ≥ ε and p(xm(k)−1, xn(k)) < ε.

Then, we have

ε ≤ p(xm(k), xn(k))

≤ p(xm(k), xm(k)−1) + p(xm(k)−1, xn(k))

< p(xm(k, xm(k)−1) + ε.

This implies that

ε ≤ p(xm(k), xn(k)) < p(xm(k), xm(k)−1) + ε. (3.3)

Let k →∞ in the above inequality, we have

lim
k→∞

p(xm(k), xn(k)) = ε. (3.4)

Now by using Triangular inequality, we have

p(xm(k), xn(k)) ≤ p(xm(k), xm(k)−1) + p(xm(k)−1, xn(k)−1) + p(xn(k)−1, nk).
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Take limit on both sides, we get

lim
k→∞

p(xm(k)−1, xn(k)−1) ≥ lim
k→∞

p(xm(k), xn(k)) − lim
k→∞

p(xm(k), xm(k)−1)

− lim
k→∞

p(xn(k)−1, xn(k)).

We obtain

lim
k→∞

p(xm(k)−1, xn(k)−1) = ε.

We have

p(xm(k), xn(k)) = p(Txm(k)−1, Txn(k)−1)

≤ rp(xn(k)−1, xm(k)−1).

Thus,

lim
n→∞

p(xn(k)−1, xm(k)−1) = 0.

Hence ε = 0, which contradicts our supposition that ε > 0. So we conclude that {xn} is a
Cauchy sequence in A. Since {xn} ⊆ A and A is closed subset of a complete metric space
(X, d). There is x∗ ∈ A such that xn → x∗ as n→∞. Since T is continuous, we have

Txn → Tx∗.

So, p(xn+1, Txn) → p(x∗, Tx∗). Taking into account that {p(xn+1, Txn)} is a constant
sequence with a value p(A,B), we deduce

p(x∗, Tx∗) = p(A,B),

i.e., x∗ is best proximity point of T .
For uniqueness of p-best proximity point.
Since p is a w-distance, also T is Pp-contractive, then p(Tx, Ty) ≤ rp(x, y), for every
x, y ∈ A of X. We suppose that given mapping T has two distinct p-best proximity
points x0, x1 ∈ A, that is p(x0, Tx0) = p(x1, Tx1) = p(A,B), Since T has Pp-property,
then

p(x0, x1) = p(Tx0, Tx1)

≤ rp(x0, x1),

which shows

p(x0, y0) ≤ rp(x0, y0).

It contradicts towards our assumption and so we get x0 = y0.
Therefore, T has unique p-best proximity point.

4. Some Results about Generalized α-Geraghty Suzuki
Contraction

In this section, we show the existence and uniqueness of best proximity point in our
main result for generalized α-Geraghty-Suzuki contraction by using weak P -property in
the field of a complete metric space.
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Definition 4.1. Let (X, d) be a metric space. A mapping f : A→ B is called generalized
α-Geraghty Suzuki contraction (α−GS-contraction) if there exists β ∈ F and a function
α : A×A→ R+ such that α(x, y) ≥ 1, for all x, y ∈ A,

1

2
d∗(x, fx) ≤ d(x, y)⇒ α(x, y)d(fx, fy) ≤ β(M(x, y))[M(x, y)− d(A,B)], (4.1)

whereA,B ⊆ X, d∗(x, y)=d(x, y)−d(A,B) andM(x, y)=max{d(x, y), d(x, fx), d(y, fy)}.

Now, we are in a position to prove our main result.

Theorem 4.2. Let (A,B) be the pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Define a mapping f : A → B satisfying the
following conditions:

(1) f is generalized α-Geraghty Suzuki contraction with f(A0) ⊆ B0;
(2) for each x, y ∈ A0 satisfying d(x, f(y)) = d(A,B) implies α(x, y) ≥ 1;
(3) the pair (A,B) has the weak P -property.

Then there exists x∗ in A such that d(x∗, fx∗) = d(A,B).

Proof. Since A0 is nonempty, we take x0 ∈ A0. Since f(A0) ⊆ B0, there exists x1 ∈ A0

such that

d(x1, fx0) = d(A,B) with α(x0, x1) ≥ 1. (4.2)

Again, since f(A0) ⊆ B0, there exists x2 ∈ A0 such that

d(x2, fx1) = d(A,B) implies α(x1, x2) ≥ 1. (4.3)

Repeating this process, we get a sequence {xn} in A0 satisfying

d(xn+1, fxn) = d(A,B) for any n ∈ N ∪ {0}, (4.4)

with α(xn, xn+1) ≥ 1, for any n ∈ N.
Since (A,B) has the weak P -property, we have that

d(xn, xn+1) ≤ d(fxn−1, fxn), for any n ∈ N. (4.5)

Now by (4.4), we get

d(xn−1, fxn−1) ≤ d(xn−1, xn) + d(xn, fxn−1) = d(xn−1, xn) + d(A,B). (4.6)

Now from (4.4) and (4.6), we obtain

d(xn, fxn) ≤ d(xn, xn+1) + d(xn+1, fxn)

= d(A,B) + d(xn, xn+1).

Therefore, we have

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, fxn−1), d(xn, fxn)}
≤ max{d(xn−1, xn), d(xn, xn+1)}+ d(A,B). (4.7)

Clearly, if there exists n0 ∈ N such that d(xn0
, xn0+1) = 0, then we have nothing to

prove. The conclusion is immediate. So

0 = d(xn0
, xn0+1) ≤ d(fxn0−1, fxn0

),

this implies 0 = d(fxn0−1, fxn0
) and consequently, fxn0−1 = fxn0

. Thus, we conclude
that

d(A,B) = d(xn0
, fxn0−1) = d(xn0

, fxn0
).
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For the rest of proof, we suppose that 0 < d(fxn−1, fxn). It shows that d(xn, xn+1) > 0,
for any n ∈ N ∪ {0}. Now from (4.1), we deduce that

1

2
d∗(xn−1, fxn−1) ≤ d∗(xn−1, fxn−1) ≤ d(xn, xn−1)

and by (4.5), we get

d(xn, xn+1) ≤ d(fxn−1, fxn)

≤ α(xn, xn−1)d(fxn−1, fxn)

≤ β(M(xn−1, xn))[M(xn−1, xn)− d(A,B)]

< M(xn−1, xn)− d(A,B). (4.8)

By (4.7) and (4.8), we obtain

d(xn, xn+1) < M(xn−1, xn)− d(A,B) ≤ max{d(xn−1, xn), d(xn, xn+1)}.
Now, if max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then

d(xn, xn+1) < d(xn, xn+1),

which is a contradiction. Thus

M(xn−1, xn) ≤ max{d(xn−1, xn), d(xn, xn+1)}+ d(A,B) = d(xn−1, xn) + d(A,B).

Therefore, we get

d(xn, xn+1) ≤ d(fxn−1, fxn)

≤ α(xn, xn−1)d(fxn−1, fxn)

≤ β(M(xn−1, xn))d(xn−1, xn)

< d(xn−1, xn), (4.9)

for all n ∈ N. Consequently, {d(xn, xn+1)} is a decreasing sequence and bounded below
and so

lim
n→∞

d(xn, xn+1) = L.

Suppose L > 0. From (4.9), we have

d(xn+1, xn+2)

d(xn, xn+1)
≤ β(M(xn, xn+1)) ≤ 1,

for any n ≥ 0, which implies that

lim
n→∞

β(M(xn, xn+1)) = 1.

On the other hand, since β ∈ F , we get

lim
n→∞

M(xn, xn+1) = 0.

That is,

L = lim
n→∞

d(xn, xn+1) = 0.

Since d(xn, fxn−1) = d(A,B) holds, for all n ∈ N, and the pair (A,B) satisfies the weak
P -property, then for all m,n ∈ N, we can write d(xm, xn) ≤ d(fxm−1, fxn−1).
Using the fact that

d(xl, fxl) ≤ d(xl, xl+1) + d(xl+1, fxl) = d(xl, xl+1) + d(A,B),
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for all l ∈ N, we deduce easily

M(xm, xn) ≤ max{d(xm, xn), d(xm, fxm), d(xn, fxn)}
≤ max{d(xm, xn), d(xm, xm+1), d(xn, xn+1)}+ d(A,B).

Since, limn→∞ d(xn, xn+1) = 0, then we have

lim
m,n→∞

M(xm, xn) ≤ lim
m,n→∞

d(xm, xn) + d(A,B). (4.10)

We shall show that {xn} is a Cauchy sequence. If not, then we get

lim
m,n→∞

d(xm, xn) > 0.

Thus, without loss of generality, we can assume that

ε = lim
m,n→∞

d(xm, xn) > 0. (4.11)

By using the triangular inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm). (4.12)

Now, since limn→∞ d(xn, xn+1) = 0, then

d(A,B) ≤ lim
m→∞

d(xm, fxm)

≤ lim
m→∞

[d(xm, xm+1) + d(xm+1, fxm)

= lim
m→∞

[d(xm, xm+1) + d(A,B)] = d(A,B),

which implies limm→∞ d(xm, fxm) = d(A,B), that is

lim
m→∞

1

2
d∗(xm, fxm) = lim

m→∞

1

2
[d(xm, fxm)− d(A,B)] = 0.

On the other hand, from (4.1), it follows that there exists N ∈ N such that, for all
m,n ≥ N ,we have

1

2
d∗(xm, fxm) ≤ d(xn, xm).

Now from (4.1) and (4.8), we have

d(xn, xm) ≤ d(xn, xn+1) + d(fxn, fxm) + d(xm+1, xm) (4.13)

≤ d(xn, xn+1) + α(xn, xm)d(fxn, fxm) + d(xm+1, xm)

≤ d(xn, xn+1) + β(M(xn, xm))[M(xn, xm)− d(A,B)] + d(xm+1, xm).

Then by taking limits as n→∞ and from limn→∞ d(xn, xn+1) = 0, we have

lim
m,n→∞

d(xm, xn) ≤ lim
m,n→∞

β(M(xn, xm)) lim
m,n→∞

[M(xn, xm)− d(A,B)]

≤ lim
m,n→∞

β(M(xn, xm)) lim
m,n→∞

d(xm, xn).

So, we get
1 ≤ lim

m,n→∞
β(M(xn, xm)),

that is, limm,n→∞ β(M(xn, xm)) = 1. Therefore, limm,n→∞M(xn, xm) = 0 and conse-
quently,

lim
m,n→∞

d(xn, xm) = 0,

which is a contradiction. Thus {xn} is a Cauchy sequence. Since {xn} ⊂ A and A is
closed subset of complete metric space (X, d), we can find x∗ ∈ A such that xn → x∗, as
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n→∞.
We shall now show that d(x∗, fx∗) = d(A,B). Suppose on the contrary that d(x∗, fx∗) >
d(A,B). At first, we have

d(x∗, fx∗) ≤ d(x∗, fxn) + d(fxn, fx
∗)

≤ d(x∗, xn+1) + d(xn+1, fxn) + d(fxn, fx
∗)

= d(x∗, xn+1) + d(A,B) + d(fxn, fx
∗),

and taking limit n→∞, we get

d(x∗, fx∗)− d(A,B) ≤ lim
n→∞

d(fxn, fx
∗). (4.14)

Also, we have

d(xn, fxn) ≤ d(xn, xn+1) + d(xn+1, fxn)

= d(xn, xn+1) + d(A,B).

Taking limit as n→∞ in the above inequality, we obtain

lim
n→∞

d(xn, fxn) ≤ d(A,B),

that is,
lim
n→∞

d(xn, fxn) = d(A,B).

Then, we get

lim
n→∞

M(xn, x
∗) = max{ lim

n→∞
d(xn, x

∗), lim
n→∞

d(xn, fxn), lim
n→∞

d(x∗, fx∗)}

= d(x∗, fx∗)

and hence

M(xn, x
∗)− d(A,B) = d(x∗, fx∗)− d(A,B). (4.15)

Next, we have

d∗(xn, fxn) = d(xn, fxn)− d(A,B)

≤ d(xn, xn+1) + d(xn+1, fxn)− d(A,B)

= d(xn, xn+1) (4.16)

and

d∗(xn+1, fxn+1) = d(xn+1, fxn+1)− d(A,B)

≤ d(xn+2, fxn+1) + d(xn+1, xn+2)− d(A,B)

= d(xn+1, xn+2)

< d(xn, xn+1), (4.17)

and so by adding (4.16) and (4.17), we get

1

2
[d∗(xn, fxn) + d∗(xn+1, fxn+1)] ≤ d(xn, xn+1). (4.18)

Now we suppose that following inequalities hold,

1

2
d∗(xn, fxn) > d(xn, x

∗)

and
1

2
d∗(xn+1, fxn+1) > d(xn+1, x

∗),
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for some n ∈ N ∪ {0}. Hence, we can write

d(xn, xn+1) ≤ d(xn, x
∗) + d(xn+1, x

∗)

<
1

2
[d∗(xn, fxn) + d∗(xn+1, fxn+1)

≤ d(xn, xn+1),

which is a contradiction. Then for any n ∈ N ∪ {0}, either

1

2
d∗(xn, fxn) > d(xn, x

∗)

or
1

2
d∗(xn+1, fxn+1) > d(xn+1, x

∗)

holds. Therefore, we deduce that

d(x∗, fx∗)− d(A,B) ≤ lim
n→∞

d(fxn, fx
∗)

≤ lim
n→∞

α(xn, x
∗)d(fxn, fx

∗)

≤ lim
n→∞

β(M(xn, x
∗)) lim

n→∞
[M(xn, x

∗)− d(A,B)]

= lim
n→∞

β(M(xn, x
∗))[d(x∗, fx∗)− d(A,B)]. (4.19)

Then, we get
1 ≤ lim

n→∞
β(M(xn, x

∗)),

that is,
lim
n→∞

β(M(xn, x
∗)) = 1,

which implies
lim
n→∞

M(xn, x
∗) = d(xn, fx

∗) = 0

and so d(x∗, fx∗) = 0 > d(A,B), a contradiction. Therefore, d(x∗, fx∗) ≤ d(A,B), that
is, d(x∗, fx∗) = d(A,B). This means that x∗ is a best proximity point of f and so
existence of a best proximity point has been proved.
We shall show the uniqueness of the best proximity point of f . Suppose that x∗ and y∗

are two distinct best proximity points of f , that is, x∗ 6= y∗. This implies that

d(x∗, fx∗) = d(A,B) = d(y∗, fy∗).

Using the weak P -property, we have

d(x∗, y∗) ≤ d(fx∗, fy∗)

and so

M(x∗, y∗) = max{d(x∗, y∗), d(x∗, fx∗), d(y∗, fy∗)}
= max{d(x∗, y∗), d(A,B)}.

Also, we have 1
2d
∗(x∗, fx∗) =

1

2
[d(x∗, fx∗)− d(A,B)] = 0 ≤ d(x∗, y∗)).

Since M(x∗, y∗)− d(A,B) ≤ d(x∗, y∗), we have

d(x∗, y∗) ≤ d(fx∗, fy∗)

≤ α(x∗, y∗)d(fx∗, fy∗)

≤ β(M(x∗, y∗))[M(x∗, y∗)− d(A,B)]

< d(x∗, y∗)
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which is a contradiction. Thus there exist best proximity point, that is, x∗ = y∗. This
completes the proof.

To show the independence of our main result, we give the following example:

Example 4.3. Consider X = R2, with the usual metric d. Define the sets A =
{(1, 1), (0, 2), (2, 0)} and B = {(0, 1), (1, 0)}, so that d(A,B) = 1. Let A0 = {(2, 0), (0, 2)}
and B0 = {(1, 0), (0, 1)}. Then the pair (A,B) has the weak P -property.
Let α : R2 × R2 → [0,∞) defined as:

α((x1, y1), (x2, y2)) =

{
1 if 0 ≤ x1, x2, y1, y2 ≤ 1,

0 elsewhere.

Also define f : A→ B by:

f(x1, x2) =

{
(x1, x2 − 1) if x1 ≤ x2,
(x1 − 1, x2) if x1 > x2.

Notice that f(A0) ⊆ B0. Now, consider the function β : [0,∞)→ [0, 1) given by

β(t) =
t− 1

t
; 0 < t ≤ 1,

otherwise 0. Note that β ∈ F . Assume that 1
2d
∗(x, fx) ≤ d(x, y), for some x, y ∈ A.

Then,

x = (2, 0), y = (0, 2)

or

y = (2, 0), x = (0, 2).

Since d(fy, fx) = d(fx, fy) and M(x, y) = M(y, x), for all x, y ∈ A, hence without loss
of generality, we can assume that (x, y) = ((0, 2), (2, 0)).
Now, we distinguish as follows:

α((0, 2), (2, 0))d(f(0, 2), f(2, 0)) = d((0, 1), (1, 0)) = 2

≤ 4− 1

4
.(4− 1)

= β(M((0, 2), (2, 0)))[M((0, 2), (2, 0))− 1].

Consequently, we have

1

2
d∗(x, fx) ≤ d(x, y) ⇒ α(x, y)d(fx, fy) ≤ β(M(x, y))[M(x, y)− d(A,B)]

and hence all conditions of Theorem 4.2 hold and f has the best proximity point. Here,
x = (2, 0) and (0, 2) are best proximity points of f .

Now for uniqueness, next theorem established as follows:

Theorem 4.4. Under the same hypothesis of Theorem 4.2, suppose that f is α-regular.
Then for all best proximity points x and y of f in A0, we get that x = y; In particular, f
has unique best proximity point.
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Proof. Following Theorem 4.2, we obtain limm,n→∞M(xn, xm) ≤ limm,n→∞ d(xn, xm) +
d(A,B). Let x, y ∈ A0 be two best proximity

d(x, y) ≤ d(fx, fy).

We consider two cases:
Case-I: If α(x, y) ≥ 1,

d(x, fx) = d(A,B) = d(y, fy).

By using weak P -property, we have

d(x, y) ≤ d(fx, fy).

Using the fact that f is generalized α-Geraghty Suzuki contraction, we have

d(x, y) ≤ d(fx, fy) ≤ α(x, y)d(fx, fy)

≤ β(d(x, y))M [d(x, y)− d(A,B)]

< d(x, y).

Thus, d(x, y) < d(x, y), which is contradiction. So x = y.
Case-II: If α(x, y) < 1, then by the α-regularity of f , there exists z0 ∈ A0 such that
α(x, z0) ≥ 1 and α(y, z0) ≥ 1. Based on z0, we define a sequence {zn} and suppose that
zn converges to x and y, which proves the uniqueness. First, we shall prove that {zn}
converges to x.

Indeed, fz0 ∈ fA0 ⊆ B0 implies that z1 ∈ A0 such that d(z1, fz0) = d(A,B). Follow
the similar arguments, there exists a sequence {zn} ⊆ A0 such that d(zn+1, fzn) =
d(A,B), for all n ≥ 0. In particular, zn+1 ∈ A0 and fzn ∈ B0. We claim that

α(x, zn) ≥ 1, (4.20)

for all n ≥ 0. If n = 0, α(x, z0) ≥ 1 by the choice of z0. Suppose that α(x, zn) ≥ 1, for
some n ≥ 0. As triangular α-admissibility of f , so we have for x, zn, zn+1 ∈ A0, α(x, zn) ≥
1, α(zn, zn+1) ≥ 1 implies α(x, zn+1) ≥ 1. Hence (4.20) holds for all n ≥ 0. We have
by weak P -property, x, zn, zn+1 ∈ A0, d(x, fx) = d(A,B), d(zn+1, fzn) = d(A,B) imply
that d(x, zn+1) ≤ d(fx, fzn). From Theorem 4.2, we have M(xn, xn−1) ≤ d(xn−1, xn) +
d(A,B). So for all n ≥ 0, we have

d(x, zn+1) ≤ d(fx, fzn)

≤ α(x, zn)d(fx, fzn)

≤ β(d(x, zn))M [d(x, zn)− d(A,B)]

≤ β(d(x, zn))d(x, zn)

< d(x, zn),

which shows that {d(x, zn+1)} is a decreasing sequence of nonnegative real numbers, and
there exists r ≥ 0 such that limn→∞ d(x, zn+1) = r. Assume r > 0, then we have

0 <
d(x, zn+1)

d(x, zn)
≤ β(d(x, zn)) < 1,

for any n ∈ N.
The last inequality implies that limn→∞ β(d(x, zn)) = 1. Since β ∈ F , so r = 0 and this
contradicts our assumption.
Therefore limn→∞ d(x, zn+1) = 0, that is zn+1 → x as n→∞.
Repeat this argument,we have that zn → x, as n → ∞, which proves that {zn} is a
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sequence converging to x. Similarly zn converges to y. By uniqueness of limit we have
x = y.

If we take α(x, y) = 1, in Theorem 4.2, then we obtain the following corollary:

Corollary 4.5. Let (A,B) be the pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Define a mapping f : A → B satisfying the
following conditions:

(1) f is generalized Geraghty-Suzuki contraction with f(A0) ⊆ B0;
(2) the pair (A,B) has the weak P -property.

Then there unique exists x∗ in A such that d(x∗, fx∗) = d(A,B).

Example 4.6. Consider X = R2, with the usual metric d. Define the sets A =
{(1, 0), (4, 5), (5, 4)} and B = {(2, 0), (0, 4), (4, 0)}, so that d(A,B) = 1, Let A0 = {(1, 0)}
and B0 = {(2, 0)} and the pair (A,B) has the weak P -property. Also define f : A → B
as:

f(x1, x2) =

{
(x1, 0) if x1 ≤ x2,
(0, x2) if x1 > x2.

Notice that f(A0) ⊆ B0.
Now, consider the function β : [0,∞)→ [0, 1) given by

β(t) =


0 if t = 0,
ln(1+t)

t if 0 < t ≤ 1,
(t)
1+t if 1 < t ≤ 10,
(10)
11 if t > 10,

and note that β ∈ F . Assume that 1
2d
∗(x, fx) ≤ d(x, y), for some x, y ∈ A. Then,

x = (1, 0), y = (4, 5)

or

x = (1, 0), y = (5, 4)

or

y = (1, 0), x = (4, 5)

or

y = (1, 0), x = (5, 4).

Since d(fy, fx) = d(fx, fy) and M(x, y) = M(y, x), for all x, y ∈ A, hence without loss
of generality, we can assume that (x, y) = ((1, 0), (4, 5)) or (x, y) = ((1, 0), (5, 4)).
Now, we distinguish the following cases:
if (x, y) = ((1, 0), (4, 5)), then

d(f(1, 0), f(4, 5)) = d((2, 0), (4, 0)) = 2

≤ 8

1 + 8
.(8− 1)

= β(M((1, 0), (4, 5)))[M((1, 0), (4, 5))− 1],
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if (x, y) = ((1, 0), (5, 4)), then

d(f(1, 0), f(5, 4)) = d((2, 0), (2, 4)) = 4

≤ 8

1 + 8
.(8− 1)

= β(M((1, 0), (5, 4)))[M((1, 0), (5, 4))− 1].

Consequently, we have

1

2
d∗(x, fx) ≤ d(x, y)⇒ d(fx, fy) ≤ β(M(x, y))[M(x, y)− d(A,B)]

and hence all conditions of Theorem 4.2 hold and f has the unique best proximity point.
Here, x = (1, 0) is unique best proximity point of f .

Corollary 4.7. Let (A,B) be the pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty and suppose that has the weak P -property. Define
a mapping f : A→ B such that f(A0) ⊆ B0 and

1

2
d∗(x, fx) ≤ d(x, y)⇒ d(fx, fy) ≤ r[M(x, y)− d(A,B)],

where A,B ⊆ X, d∗(x, y)=d(x, y)−d(A,B) and M(x, y)=max{d(x, y), d(x, fx), d(y, fy)}.
Then there exists unique x∗ in A such that d(x∗, fx∗) = d(A,B).

Proof. Following Theorem 4.2 by taking β(t) = r, where r ∈ [0, 1), then we obtained the
desired result.

Corollary 4.8. Let (X, d) be a complete metric space and f : X → X be a self-mapping.
Assume that there exists β ∈ F such that

1

2
d∗(x, fx) ≤ d(x, y)⇒ d(fx, fy) ≤ β(M(x, y))M(x, y),

for all x, y ∈ A, where d∗(x, y) = d(x, y)− d(A,B) and
M(x, y) = max{d(x, y), d(x, fx), d(y, fy)}. Then f has unique fixed point.

Proof. From Theorem 4.2, we put A = B = X, then we obtain desired result.

5. Conclusions

It is the fact that Suzuki contraction is actually the most important extension of the
Banach contraction principle and can be proved fixed point theorems by using this type
of contraction. The results in this article give a new way to find the best proximity points
and fixed points by using α-Geraghty Suzuki contraction in metric spaces. Also justify
the uniqueness of best proximity points, fixed points and unify many existing results in
the literature of mathematics. In addition, we explain some new contraction and some
notions, which are more general results than before.
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