
ISSN 1686-0209

Thai Journal of Mathematics
Volume 18 Number 2 (2020)

Pages 669–675

http://thaijmath.in.cmu.ac.th

A Note on Homotopic Invariance for Endpoints of

Multi-Valued Contractive Mappings

Bancha Panyanak1,2

1Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand
2Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand
e-mail : bancha.p@cmu.ac.th

Abstract In this paper, we prove the homotopic invariance for endpoints of multi-valued contractive
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1. Introduction

Fixed point theory, a branch of analysis, is an important tool for finding solutions of
problems in the form of equations or inequalities. One of the fundamental and celebrated
results in metric fixed point theory is the Banach contraction principle which states that
every contractive mapping on a complete metric space always has a unique fixed point
(see [1]). On the other hand, homotopy theory is a branch of topology which aims to
classify topological spaces via homotopy equivalences. These equivalences are weaker
than homeomorphisms in the sense that the equivalence classes of topological spaces with
homotopy equivalences are sometimes bigger than those with homeomorphisms.

A connection between the above two topics was studied by Frigon [2] in 1996. She
proved that under some appropriate conditions, the fixed points of contractive mappings
in complete metric spaces are invariant under homotopies. Since then, the homotopic
invariance for fixed points of such kind of mappings has been developed and many papers
have appeared (see, e.g., [3–11]).
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In this paper, we prove a multi-valued version of the Banach contraction principle
and then apply it to obtain the homotopic invariance for fixed points of multi-valued
contractive mappings in Banach spaces.

2. Preliminaries

Throughout this paper, N stands for the set of natural numbers and R stands for the
set of real numbers.

Let (X, d) be a metric space, ∅ 6= K ⊆ X and x ∈ X. The distance from x to K is
defined by

dist(x,K) := inf{d(x, y) : y ∈ K}.

The radius of K relative to x is defined by

rx(K) := sup{d(x, y) : y ∈ K}.

The diameter of K is defined by

diam(K) := sup{d(x, y) : x, y ∈ K}.

The set K is bounded if diam(K) <∞. It is denoted by CB(X) : the family of nonempty
closed bounded subsets of X. The Pompeiu-Hausdorff distance on CB(X) is defined by

H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ CB(X).

The following elementary fact was proved by Nadler in 1969.

Lemma 2.1. ([12]) Let (X, d) be a complete metric space, A,B ∈ CB(X) and a ∈ A.
Then for each ε > 0, there exists b ∈ B such that d(a, b) ≤ H(A,B) + ε.

A multi-valued mapping T : K → CB(X) is said to be contractive if there exists a
constant λ ∈ [0, 1) such that

H(T (x), T (y)) ≤ λd(x, y) for all x, y ∈ K.

In this case, we call T a λ−contractive mapping. An element x in K is called a fixed point
of T if x ∈ T (x). Moreover, if {x} = T (x), then x is called an endpoint of T. It is denoted
by Fix(T ) : the set of all fixed points of T and by End(T ) : the set of all endpoints of T.
Some elementary facts about fixed points and endpoints for multi-valued mappings were
collected as the following lemmas.

Lemma 2.2. Let T : K → CB(X) be a mapping. Then the following statements hold.
(1) If x is an endpoint of T, then x is a fixed point of T.
(2) x ∈ Fix(T ) if and only if dist(x, T (x)) = 0.
(3) x ∈ End(T ) if and only if rx(T (x)) = 0.

Lemma 2.3. Let T : K → CB(X) be a λ−contractive mapping for some λ ∈ [0, 1). Then
the following statements hold.

(1) The mapping φ : K → R defined by φ(x) := rx(T (x)) is continuous.
(2) If End(T ) 6= ∅, then End(T ) consists of exactly one point.

Proof. (1) Let x, y ∈ K. For each n ∈ N, there exist an ∈ T (x) and bn ∈ T (y) such that

rx(T (x))− 1

n
< d(x, an) and d(an, bn) < dist(an, T (y)) +

1

n
.



A Note on Homotopic Invariance for Endpoints ... 671

This implies that

rx(T (x))− 1

n
< d(x, an)

≤ d(x, y) + d(y, bn) + d(bn, an)

≤ d(x, y) + ry(T (y)) + dist(an, T (y)) +
1

n

≤ d(x, y) + ry(T (y)) +H(T (x), T (y)) +
1

n

≤ (1 + λ)d(x, y) + ry(T (y)) +
1

n
.

Thus

rx(T (x))− ry(T (y)) ≤ (1 + λ)d(x, y). (2.1)

Similarly, we can show that

ry(T (y))− rx(T (x)) ≤ (1 + λ)d(x, y). (2.2)

By (2.1) and (2.2) we get that |rx(T (x)) − ry(T (y))| ≤ (1 + λ)d(x, y), and hence φ is
continuous.

(2) Let x, y ∈ End(T ). Then d(x, y) = H({x}, {y}) = H(T (x), T (y)) ≤ λd(x, y) which
implies that x = y.

Definition 2.4. Let K be a nonempty subset of a Banach space (X, ‖ · ‖) and T,G :
K → CB(X) be two contractive mappings. Then T and G are said to be homotopic if
there exists a mapping (which is called a homotopy) H : [0, 1]×K → CB(X) such that

(1) H(0, ·) = T (·) and H(1, ·) = G(·);
(2) H(t, ·) is a contractive mapping for each t ∈ [0, 1];

(3) For each t ∈ [0, 1], H(t, ·) is fixed point free on the boundary of K;

(4) H(t, x) is equi-continuous in t ∈ [0, 1] over x ∈ K, that is, for any ε > 0 there exists
δ > 0 such that whenever t, s ∈ [0, 1] with |t− s| < δ we have H(H(t, x), H(s, x)) < ε for
all x ∈ K.

Definition 2.5. A mapping H : [0, 1] × K → CB(X) is said to satisfy condition (S)
([11]) if for any sequence {tn} in [0, 1] with

inf
x∈K

rx(H(tn, x)) > 0 and lim
n→∞

tn = t0,

it follows that infx∈K rx(H(t0, x)) > 0.

3. Main Results

Recall that a multi-valued mapping T : K → CB(X) is said to have the approximate
endpoint property if inf

x∈K
rx(T (x)) = 0. This section is begun by proving the existence of

endpoints for multi-valued contractive mappings in complete metric spaces. This result
can be viewed as an extension of Corollary 2.2 in [13].

Theorem 3.1. Let K be a nonempty closed subset of a complete metric space (X, d) and
T : K → CB(X) be a λ−contractive mapping for some λ ∈ [0, 1). Then T has a unique
endpoint if and only if T has the approximate endpoint property.
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Proof. It is clear that if T has an endpoint, then T has the approximate endpoint property.
Conversely, suppose that T has the approximate endpoint property. For each n ∈ N, we
let

Kn :=

{
x ∈ K : rx(T (x)) ≤ 1

n

}
.

Then Kn is a nonempty and Kn+1 ⊆ Kn. By Lemma 2.3 (1), Kn is closed in X. Since T
is λ−contractive, for x, y ∈ Kn we have

d(x, y) = H({x}, {y})
≤ H({x}, T (x)) +H(T (x), T (y)) +H(T (y), {y})
≤ rx(T (x)) + λd(x, y) + ry(T (y))

≤ 2

n
+ λd(x, y).

Therefore d(x, y) ≤ 2
n(1−λ) for all x, y ∈ Kn. This implies that Kn is bounded and

lim
n→∞

diam(Kn) = 0. By the Cantor intersection theorem (see e.g., [14]), there exists

z ∈ K such that ∩n∈NKn = {z} and hence rz(T (z)) = 0. The conclusion follows from
Lemmas 2.2 and 2.3.

Recall that a Banach space (X, ‖ ·‖) is said to be uniformly convex if for each ε ∈ (0, 2]
there exists δ > 0 such that for any x, y ∈ X the conditions ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x−y‖ ≥ ε
imply

1

2
‖x+ y‖ ≤ 1− δ.

A Banach space (X, ‖ · ‖) is said to have the Opial property if given whenever {xn}
converges weakly to x ∈ X,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ for each y ∈ X with y 6= x.

From now on, we will use the notation xn ⇀ x (resp. xn → x) for a sequence {xn}
converging weakly (resp. converging strongly) to a point x.

Before proving the main theorem, a result is stated which is known as the demiclosed
principle.

Lemma 3.2. ([15]) Suppose X is either a uniformly convex Banach space, or a Banach
space with the Opial property. Let K be a nonempty closed convex subset of X, and
suppose T : K → CB(X) is contractive. Then the following implication holds:

{xn} ⊆ K, xn ⇀ x, rxn
(T (xn))→ 0 =⇒ x ∈ End(T ).

The main theorem is proved as follows:

Theorem 3.3. Suppose X is either a uniformly convex Banach space, or a reflexive
Banach space with the Opial property. Let K be a nonempty closed convex subset of X
and T,G : K → CB(X) be contractive mappings. Suppose H : [0, 1]×K → CB(X) is a
mapping such that

(1) H(0, ·) = T (·) and H(1, ·) = G(·);
(2) H(t, ·) is a λ−contractive mapping with λ ∈ [0, 1) for each t ∈ [0, 1];

(3) H satisfies condition (S);
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(4) H(t, x) is equi-continuous in t ∈ [0, 1] over x ∈ K.

Then T has an endpoint in K if and only if G has an endpoint in K.

Proof. Suppose that T has an endpoint in K and let

V := {t ∈ [0, 1] : H(t, ·) has an endpoint in K} .

Then V is nonempty. We can show that V is actually the entire interval [0, 1] by verifying
that V is both open and closed in [0, 1]. To see that V is closed, we let {tn} be a sequence
in V such that lim

n→∞
tn = t0. Then for each n ∈ N, there exists xn ∈ K such that xn ∈

End(H(tn, ·)). By the equi-continuity of H, there exists δ > 0 such that for t, s ∈ [0, 1]
with |t− s| < δ, we have

H(H(t, x), H(s, x)) < 1 for all x ∈ K. (3.1)

Since lim
n→∞

tn = t0, there exists n0 ∈ N such that |tn − t0| < δ for all n ≥ n0. By (3.1) we

have

sup
x∈K
H(H(tn, x), H(t0, x)) ≤ 1. (3.2)

Fix y ∈ K. By Lemma 2.1, for each n ∈ N there exists yn ∈ H(t0, y) such that

‖xn − yn‖ ≤ H(H(tn, xn), H(t0, y)) +
1

n
. (3.3)

By (3.2) and (3.3), for n ≥ n0 we have

‖xn‖ ≤ ‖xn − yn‖+ ‖yn‖

≤ H(H(tn, xn), H(t0, y)) +
1

n
+ ‖yn‖

≤ H(H(tn, xn), H(t0, xn)) +H(H(t0, xn), H(t0, y)) +
1

n
+ ‖yn‖

≤ sup
x∈K
H(H(tn, x), H(t0, x)) + λ‖xn − y‖+

1

n
+ ‖yn‖

≤ 2 + λ‖xn‖+ λ‖y‖+ diam(H(t0, y)).

This implies that ‖xn‖ ≤ 1
1−λ (2 + λ‖y‖+ diam(H(t0, y))) for all n ≥ n0. Therefore {xn}

is a bounded sequence in K. Since X is reflexive, by passing through a subsequence, we
may assume that xn ⇀ z ∈ K. By the equi-continuity of H, we have

rxn
(H(t0, xn)) ≤ H (H(tn, xn), H(t0, xn)) −→ 0 as n→∞.

By Lemma 3.2, z is an endpoint of H(t0, ·) which means t0 ∈ V. Therefore V is closed.
Next, we show that V is open in [0, 1]. Suppose not, then there exists t0 ∈ V and a
sequence {tn} in [0, 1]− V such that lim

n→∞
tn = t0. This implies that rx(H(tn, x)) > 0 for

all n ∈ N and x ∈ K. We claim that

inf
x∈K

rx(H(tn, x)) > 0 for all n ∈ N.

Otherwise, there exists a sequence {xm} in K such that lim
m→∞

rxm
(H(tn, xm)) = 0. This

implies that H(tn, ·) has the approximate endpoint property. By Theorem 3.1, H(tn, ·)
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has an endpoint in K which contradicts to the fact that tn /∈ V. So we have the claim.
Now, condition (S) implies

inf
x∈K

rx(H(t0, x)) > 0,

which in turn implies t0 /∈ V and this is a contradiction. Therefore V is open in [0, 1] and
hence the proof is complete.

The following example shows that the condition (S) in Theorem 3.3 is necessary. It
also gives a negative answer to Question 4.3 of [15].

Example 3.4. Let X = (R, | · |) and K = [−1, 1]. Let T,G : K → CB(X) be defined by
T (x) := {0} and G(x) := [−1, 1] for all x ∈ K. Let H : [0, 1]×K → CB(X) be defined by

H(t, x) := [−|t|, |t|] for all t ∈ [0, 1] and x ∈ K.
Then the following statements hold.

(1) T and G are contractive mappings with End(T ) = {0} and End(G) = ∅.
(2) H(t, ·) is a contractive mapping for each t ∈ [0, 1] and H(0, ·) = T (·) and

H(1, ·) = G(·).
(3) For each t ∈ [0, 1], H(t, ·) is endpoint free on the boundary of K.
(4) H(t, x) is equi-continuous in t ∈ [0, 1] over x ∈ K.
(5) H does not satisfy condition (S).
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