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Abstract In this paper, we investigate the Darboux vector of ruled surfaces in Galilean space. There

are three types of ruled surfaces in Galilean space. We obtained the relationship between the Darboux

and Frenet vectors of each type of ruled surfaces in Galilean space. In addition, an example is constructed

and plotted.
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1. Introduction

The Darboux vector is discovered by French mathematician Gaston Darboux (1842–
1917). There are lots of paper which deal with the Darboux vector since, the Darboux
vector can be interpreted kinematically as the direction of the instantaneous axis of ro-
tation in the moving trihedron in Euclidean space [1–3]. However, the Darboux vector
can be interpreted kinematically as a shear along the absolute line in the pseudo-Galilean
space [4]. There are a lot of interesting applications of Darboux vector such as in [5]
the authors investigated the robot end-effector motion using the Darboux vector of ruled
surface.

The Galilean geometry is well described in [6]. The geometry of ruled surfaces has been
largely developed by O. Röschel [7]. He classified ruled surfaces into three types. Some

more results about ruled surfaces in G3 have been given in [8, 9]. A. Öğrenmiş, M. Ergüt
and M. Bektaş also described helices in Galilean space [10]. Theory of curves in pseudo-
Galilean space described in [11] and the geometry of ruled surface in pseudo-Galilean
space G1

3 has been explained in details in [12].
The Galilean space G3 is a Cayley–Klein space equipped with the projective metric of

signature (0, 0,+,+), as in [9]. The absolute figure of the Galilean geometry consists of
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an ordered triple {ω, f, I}, where ω is the real (absolute) plane, f the real line (absolute
line) in ω and I the fixed elliptic involution of points of f .

A plane is called Euclidean if it contains f , otherwise it is called isotropic or planes
x = constant are Euclidean and so is the plane ω. Other planes are isotropic. A vector
u = (u1, u2, u3) is said to non-isotropic if u1 6= 0. All unit non-isotropic vectors are of the
form u = (1, u2, u3). For isotropic vectors u1 = 0 holds [9].

The distance between the points pi = (xi, yi, zi), i = 1, 2 is defined by

d(p1, p2) =


|x2 − x1| , if x1 6= x2√

(y2 − y1)2 + (z2 − z1)2, if x1 = x2.

Example 1.1. Let A = (5, 6, 5) and C = (5, 4, 3) be two points in Galilean space, shown
in Figure 1. The distance between these two points is

d(A,C) =
√

(4− 6)2 + (3− 5)2 = 2
√

2.

The Galilean distance is identical with the Euclidean distance.

Figure 1.

The Galilean distance between A = (5, 6, 5) and C ′ = (0, 4, 3) is

d(A,C′) = |5− 0| = 5.

Also the distance between A and C ′ in Euclid space is

d(A,C′) =
√

(0− 5)2 + (4− 6)2 + (3− 5)2 =
√

33.

In G3 there are four classes of lines:

a) (Proper) non-isotropic lines: they don’t meet the absolute line f.
b) (Proper) isotropic lines: lines that don’t belong to the plane ω but meet the

absolute line f.
c) Unproper non-isotropic lines: all lines of ω but f.
d) The absolute line f.

Definition 1.2. In Figure 2, let ε be plane and f(ε) the intersection of the absolute line
f and ε. The point f(ε) is called the absolute point of ε. Now, let f(ε)⊥ = I(f(ε)) be
the point on f orthogonal to f(ε) according to the elliptic involution I.
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Figure 2.

This is elliptic involution because there is no line perpendicular to itself.

Definition 1.3. Let a = (x, y, z) and b = (x1, y1, z1) be vectors in the Galilean space.
The scalar product is defined by

< a, b >= x1x. (1.1)

If < a, p >= 0 then a ⊥ p (in the sense of the Galilean geometry) implies, a2 6= 0 that
p = (0, y, z) is an isotropic vector.

The scalar product of two isotropic vectors p = (0, y, z) and q = (0, y1, z1) is defined
by

< p, q >1= yy1 + zz1. (1.2)

In Figure 3, let
−−→
AB = (0, 2, 2) and

−→
AC = (5, 2, 2) be two vectors in Galilean space. AB

is perpendicular to the AC in the sense of Galilean geometry.

Figure 3.

Definition 1.4. Let u = (u1, u2, u3), v = (v1, v2, v3) be vectors in the Galilean space.
The vector product is defined by

u ∧ v =

∣∣∣∣∣∣
0 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = (0, u3v1 − u1v3, u1v2 − u2v1) (1.3)
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in Galilean space G3 [9].

Definition 1.5. An admissible curve is given by the parametrization

r(u) = (u, y(u), z(u)). (1.4)

In Figure 4, the associated invariant moving trihedron is given by

t = (1, y′(u), z′(u)),

n =
1

κ
(0, y′′(u), z′′(u)),

b =
1

κ
(0,−z′′(u), y′′(u))

(1.5)

where κ =
√
y′′(u)2 + z′′(u)2 is the curvature.

Figure 4.

Frenet formulas may be written as

d

du

 t
n
b

 =

 0 κ 0
0 0 τ
0 −τ 0

 t
n
b

 . (1.6)

where τ =
1

κ2
det[r′(u), r′′(u), r′′′(u)] is the torsion.

According to the absolute figure of G3, there are three types of ruled surfaces in G3:

Type A: Non-conoidal or conoidal ruled surfaces whose striction line does not lie in a
Euclidean plane.

Type B: Ruled surfaces with the striction line in a Euclidean plane.
Type C: Conoidal ruled surfaces with the absolute line as the directional line in infinity

[8].

2. Darboux Vector of Ruled Surface of Type A

Definition 2.1. Let ΦA be a ruled surface of type A in G3 given by the parametrization

ΦA(x, u) = m(x) + ue(x) (2.1)
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where m(x) = (x, y(x), z(x)) is the directrix and e(x) = (1, a2(x), a3(x)) is the direction
unit vector.

The associated trihedron is defined by

t = (1, a2, a3),

n =
1

κ
(0, a′2, a

′
3),

b =
1

κ
(0,−a′3, a′2)

(2.2)

where κ =
√

(a′2)2 + (a′3)2.
Frenet formulas are given as follows

d

dx

 t
n
b

 =

 0 κ 0
0 0 τ
0 −τ 0

 t
n
b

 (2.3)

where τ =
det(α, α′, α′′)

κ2
is called the torsion.

The Frenet vector is

fA = τt + κb (2.4)

which satisfies
dt

dx
= fA ∧ t,

dn

dx
= fA ∧ n and

db

dx
= fA ∧ b.

The surface frame [O,Sn,Sb] is defined by

O = t, Sn =
Φx ∧ Φu

|Φx ∧ Φu|
, Sb = O ∧ Sn. (2.5)

Let ϕ be the Euclidean angle between the isotropic vectors Sn and n, we have O
Sn

Sb

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 t
n
b

 . (2.6)

From (2.6), we obtain t
n
b

 =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 O
Sn

Sb

 . (2.7)

Differentiating (2.6), then substituting (2.3) and (2.7) into the result gives

d

dx

 O
Sn

Sb

 =

 0 κ cosϕ −κ sinϕ
0 0 dϕ+ τ
0 −dϕ− τ 0

 O
Sn

Sb

 . (2.8)

Moreover, the geodesic curvature kg, the normal curvature kn and the relative torsion
τg are defined by

kn = κ cosϕ,
kg = −κ sinϕ,
τg = dϕ+ τ.

(2.9)
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Substituting (2.9) into (2.8), one gets

d

dx

 O
Sn

Sb

 =

 0 kn kg
0 0 τg
0 −τg 0

 O
Sn

Sb

 . (2.10)

The Darboux vector of the ruled surface of type A is

UA = τgO− knSn + kgSb (2.11)

which satisfies
dO

dx
= UA ∧O,

dSn

dx
= UA ∧ Sn and

dSb

dx
= UA ∧ Sb.

It is easy to see that

t′ = UA ∧O = fA ∧ t, (2.12)

which implies that

UA = fA + λt. (2.13)

From (2.4), (2.11) and (2.13), one gets

τgO− knSn + kgSb = τt + κb + λt. (2.14)

Since O is coincident with the t, we have

τg = τ + λ. (2.15)

Using (2.9), (2.13) and (2.15), one obtains the relationship between the Darboux and
Frenet vectors of the ruled surface of type A in the following form

UA = fA + dϕt. (2.16)

3. Darboux Vector of Ruled Surface of Type B

Definition 3.1. A ruled surface of type B can be parametrized by

ΦB(x, u) = r(x) + ue(x) (3.1)

where its striction curve r(x) = (0, y(x), z(x)) lies in a Euclidean plane in Galilean space.
e(x) = (1, a2(x), a3(x)) is the direction unit vector.

The associated trihedron of the ruled surfaces of type B is defined by

t = (1, a2(x), a3(x)),

n = (0,−z′(x), y′(x)),

b = (0, y′(x), z′(x)).

(3.2)

Then the Frenet formulas are

d

dx

 t
n
b

 =

 0 κ 0
0 0 τ
0 −τ 0

 t
n
b

 . (3.3)

The Frenet vector is obtained by

fB = −τt− κb. (3.4)

The surface frame [O,Sn,Sb] is defined by

O = t, Sn =
Φx ∧ Φu

|Φx ∧ Φu|
, Sb = O ∧ Sn. (3.5)
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Let ϕ be the Euclidean angle between the isotropic vectors Sn and n, we have O
Sn

Sb

 =

 1 0 0
0 cosϕ sinϕ
0 sinϕ − cosϕ

 t
n
b

 . (3.6)

From (3.6), we have t
n
b

 =

 1 0 0
0 cosϕ sinϕ
0 sinϕ − cosϕ

 O
Sn

Sb

 . (3.7)

Differentiating (3.6), then substituting (3.3) and (3.7) into the result, we obtain

d

dx

 O
Sn

Sb

 =

 0 κ cosϕ κ sinϕ
0 0 −dϕ− τ
0 dϕ+ τ 0

 O
Sn

Sb

 . (3.8)

Moreover, the geodesic curvature kg, the normal curvature kn and the relative torsion
τg are defined by

kn = κ cosϕ,
kg = κ sinϕ,
τg = dϕ+ τ.

(3.9)

Substituting (3.9) into (3.8), finally one gets

d

dx

 O
Sn

Sb

 =

 0 kn kg
0 0 −τg
0 τg 0

 O
Sn

Sb

 . (3.10)

The Darboux vector of the ruled surface of type B is obtained by

UB = −τgO− knSn + kgSb. (3.11)

One obtains the relationship between the Darboux and Frenet vectors of the ruled
surface of type B in the following form

UB = fB − dϕt. (3.12)

4. Darboux Vector of Ruled Surface of type C

Definition 4.1. A ruled surface of type C can be parametrized by

ΦC(x, u) = r(x) + ua(x) (4.1)

where r(x) = (x, y(x), 0) is called the directrix and a(x) = (0, a2(x), a3(x)) is the direction
unit vector.

The associated orthonormal trihedron is given by

t = (1, y′(x), 0),

n = (0, a2(x), a3(x)),

b = (0,−a3(x), a2(x)).

(4.2)
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Let θ be the Euclidean angle between z = 0 plane and n, then the Frenet formulas are
obtained by

d

dx


t

n

b

 =


0 κ cos θ −κ sin θ

0 0
1

δ

0 −1

δ
0




t

n

b

 (4.3)

where κ = y′′ and δ = −a3
a′2

are called as curvature and torsion, respectively.

The Frenet vector of the associated trihedron of ruled surface of type C is

fC =
1

δ
t + κ sin θn + κ cos θb. (4.4)

The surface frame [O,Sn,Sb] is defined as

O = t, Sn =
Φx ∧ Φu

|Φx ∧ Φu|
, Sb = O ∧ Sn. (4.5)

Let ϕ be the Euclidean angle between the isotropic vectors Sn and n, we have O
Sn

Sb

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 t
n
b

 . (4.6)

From (4.6), we have t
n
b

 =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 O
Sn

Sb

 . (4.7)

Differentiating (4.6), then substituting (4.3) and (4.7) into the result, finally we get

d

dx


O

Sn

Sb

 =


0 κ cosφ −κ sinφ

0 0 dϕ+
1

δ

0 −dϕ− 1

δ
0




O

Sn

Sb

 (4.8)

where

ϕ+ ψ = φ. (4.9)

Moreover, the geodesic curvature kg, the normal curvature kn and the relative torsion
τg are defined by

kn = κ cosφ,
kg = −κ sinφ,

τg = dϕ+
1

δ
.

(4.10)

Substituting (4.10) into (4.8), we have

d

dx

 O
Sn

Sb

 =

 0 kn kg
0 0 τg
0 −τg 0

 O
Sn

Sb

 . (4.11)
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The Darboux vector is obtained by

UC = τgO− knSn + kgSb. (4.12)

Consequently, we get the relationship between the Frenet and Darboux vectors of ruled
surface of type C in the following form

UC = fC +
1

δ
t. (4.13)

Example 4.2. In Figure 5, let the ruled surface of type A be parametrized by

ΦA(x, u) =
( p
B
x,A cos

x

B
,−A sin

x

B

)
+ u

(
1, B sin

x

B
,B cos

x

B

)
(4.14)

where A 6= 0, B 6= 0, p 6= 0.

Figure 5.

The associated trihedron is defined by

t =
(

1, B sin
x

B
,B cos

x

B

)
,

n =
(

0, cos
x

B
,− sin

x

B

)
,

b =
(

0, sin
x

B
, cos

x

B

)
.

(4.15)

Then the Frenet formulas are obtained as follows

d

dx


t

n

b

 =


0 1 0

0 0 − 1

B

0
1

B
0




t

n

b

 (4.16)

where

κ = 1, τ = − 1

B
. (4.17)

The Frenet vector is

fA =

(
− 1

B
, 0, 0

)
. (4.18)
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Using (2.9) and (4.17) gives

kg = cosϕ,

kn = − sinϕ,

τg = dϕ− 1

B
.

(4.19)

Substituting (4.19) into (2.11), we have

UA =

(
dϕ− 1

B

)
O + sinϕSn + cosϕSb.

Using (2.7) gives

UA =

(
dϕ− 1

B

)
t + b,

which implies that

UA = fA + dϕt.
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