The planar soap bubble problem with equal pressure regions

B. Sroysang and W. Wichiramala

Abstract

The planar soap bubble problem seeks the least-perimeter way to enclose and separate regions of m given areas in \mathbb{R}^{2}. We study the possible configurations for perimeter minimizing enclosures for more than three regions. For four and five regions, we prove that a perimeter minimizing enclosure with equal pressure regions must have connected.

1 Introduction

A lot of peoples believe in that the soap-bubble can enclose and separate the air by use the least surface. The ancient Greeks believed in that a circle is the best way to enclose a single given area but they could not proved it until much later in the late nineteenth century. In 1993, Foisy, Alfaro, Brock, Hodges and Zimba [4] solved the plannar double bubble problem. A bubble is standard if every region is connected. For the case of three areas, Vaughn [6] proved in Ph.D. thesis that any minimizing triple bubble with eqaul pressures and without empty chambers is standard. The plannar triple bubble conjecture was complete proved by Wichilamala ([7], [8]). For m-bubble, $m>3$, problems until open.

2 Preliminaries

An m-bubble can be consider as an embedded graph on the plane where each face is labeled by a number $1, \ldots, m$ or 0 .

Theorem 2.1 ([1], [5], [3]). For $A_{1}, \ldots, A_{m}>0$, there is a minimizing cluster of areas A_{1}, \ldots, A_{m}. Every minimizing cluster (1) is composed of finitely many circular/straight edges separating different regions and meeting only in threes at 120° angles. (2) All edges form a connected graph. (3) There are pressures $p_{1}, \ldots, p_{m} \in \mathbb{R}$ such that every edge between R_{i} and R_{j} has curvature $p_{i}-p_{j}$ (curves into the lower pressure region) where p_{0} is set to be zero.

Proposition 2.2 ([3]). For a bubble B with pressures p_{1}, \ldots, p_{m}, and any variation $\left\{B_{t}\right\}$ of B, we have

$$
\left.\frac{\operatorname{dlength}\left(B_{t}\right)}{d t}\right|_{0}=\left.\sum_{i=1}^{m} p_{i} \frac{d A_{i}(t)}{d t}\right|_{0}
$$

where $A_{i}(t)$ denotes the area of the $i^{\text {th }}$ bounded region of B_{t}.
A bubble is called stationary if it has no area-preserving variation that initially decreases length. A bubble is called stable if it is stationary and has no areapreserving variation that decreases length in second order.

Proposition 2.3 ([3]). A stationary bubble of areas A_{1}, \ldots, A_{m} and pressures p_{1}, \ldots, p_{m} has total length $2 \sum p_{i} A_{i}$.

We can easily see that if all pressure are equal then the pressure is positive.
Proposition 2.4 ([2]). For a minimizing bubble, any two components may meet at most once, along a single edge.

Corollary 2.5 ([4]). A minimizing m-bubble has no 2 -sided component if $m \geqq 3$.
From the weak approach ([7], [8]), weak minimizers refer to perimeter minimizing bubbles without empty chambers.

Theorem 2.6 ([7], [8]). For $m \leqq 6$, the planar m-bubble conjecture holds if every weak minimizer is standard.

Theorem 2.7 ([7], [8]). A stable m-bubble has at most m disjoint nonhexagonal convex components.

Lemma 2.8 ([7], [8]). For an n-sided component of a bubble, the sum of all edges' turning angles is $\frac{6-n}{3} \pi$ if the component is bounded and $\frac{-6-n}{3} \pi$ if the component is unbounded.

Lemma 2.9 ([6]). In a weakly minimizing m-bubble with equal pressures, any n sided component have at most 6 sides. In addition, any n-sided component that share an edge with the exterior region have at most 5 sides.

Lemma 2.10 ([6]). In a minimizing m-bubble with equal pressures, there is a unique shape for a 3-sided component, a one parameter family of possible 4-sided component, and a two parameter family of possible 5 -sided component. (See Figure 1, 2 and 3)

Figure 1: The unique shape for a 3 -sided component (Figure 4.1 in [6])

Figure 2: A choice determine a 4 -sided component (Figure 4.2 in [6])

Figure 3: Two choices determine a 5 -sided component (Figure 4.3 in [6])

Corollary 2.11. If both adjacent components of a 3-sided component in a minimizing m-bubble with equal pressures are 5-sided, then they are equal, so we can exchange labels of them.

Proof. This follows from Lemma 2.10.
Corollary 2.12. Every consecutive 4 -sided components in a minimizing m-bubble with equal pressures are equal, so we can exchange labels of them.

Proof. This follows from Lemma 2.10.
Corollary 2.13. Let B be a weakly minimizing m-bubble with equal pressures and E an exterior edge in B. Then E intersects the boundary of the convexhull of B.

Proof. This follows from Lemma 2.9 and 2.10.

3 Bubbles with equal pressures

Now, we set the radius is 1 and $m>3$ and denote the number of n-sided components by N_{n}.

Lemma 3.1. A region of a weakly minimizing m-bubble with equal pressures has at most one 3 -sided component.

Proof. By the fixed length in Figure 4, the area of a 3 -sided component less than $2 d$. Thus, we can decrease the length and balance areas by nibbles. By Corollary 2.13 , the new edge cannot meet the other part of the bubble.

Figure 4: Some regular bubbles improve to nonregular bubbles

Lemma 3.2. A region of a weakly minimizing m-bubble with equal pressures can not has both a 3-sided component and a 4-sided component.

Proof. By the fixed length in Figure 5, the area of a 3 -sided component less than $\sqrt{3} d$. Thus, using Corollary 2.13 , we can decrease the length and balance areas by nibbles.

Figure 5: Some regular bubbles improve to nonregular bubbles

Lemma 3.3. A region of a weakly minimizing m-bubble with equal pressures has at most one 4 -sided component.

Proof. By the fixed length in Figure 6, the area of a 4 -sided component $<\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)+$ $\frac{\sqrt{3}}{4}(\sqrt{3})^{2}<\frac{\pi}{3}+\sqrt{3}$. Thus, using Corollary 2.13, we can decrease the length and balance areas by nibbles.

Figure 6: Some regular bubbles improve to nonregular bubbles

Theorem 3.4. A weakly minimizing m-bubble with equal pressures has $N_{3}+N_{4} \leqq$ m. Moreover, their label are different.

Proof. This follows from Lemma 3.1, 3.2 and 3.3.
Lemma 3.5. A minimizing m-bubble with equal pressures has $2 N_{3}+N_{4}=6$.
Proof. This follows from Lemma 2.8.
Lemma 3.6. Let $m \geqq 4$. If a weakly minimizing m-bubble with equal pressures has $N_{3}=2, N_{4}=2$ and $N_{6}=0$, then $N_{5}=m-4$. (See Examples in Figure 7)

Proof. By Theorem 3.4, every 3 -sided and 4 -sided component has different labels. If $N_{5}=1$, we can not label the 5 -sided component for $m=4$. Suppose that $N_{5}>m-4$ and $N_{5}>1$. If both adjacent components of a 3 -sided component are 5 -sided, then $N_{6}>0$. Now, each 3 -sided component is adjacent with a 4 -sided component and a 5 -sided component. In this assumption, every 5 -side component are equal, so we can exchange labels of them until we found two consecutive components with a label. This is a contradiction.

Figure 7: Some bubbles with equal pressures which $N_{3}=2, N_{4}=2$ and $N_{6}=0$.

Lemma 3.7. Let $m \in\{4,5\}$. If an m-bubble with equal pressures has $N_{3}=2$, $N_{4}=2$ and $N_{6}=1$, then it is not weakly minimizing.

Proof. By Theorem 2.7, all possible combinatorial types are in Figure 8. By Theorem 3.4, every 3 -sided and 4 -sided component has different labels. Since every 5 -side component in Figure 8 are equal, we can exchange labels of them until we found two consecutive components with a label.

Figure 8: Some bubbles which has one hexagonal component.

Lemma 3.8. Let $m \in\{4,5\}$. If a m-bubble with equal pressures has $N_{3}=3$ and $N_{4}=0$, then it is not weakly minimizing.

Proof. By Theorem 2.7, all possible combinatorial types are in Figure 9. By Lemma 3.1, every 3 -sided component has different labels. Since every 5 -side component in Figure 9 are equal, we can exchange labels of them until we found two consecutive components with a label.

Figure 9: Some bubbles which has three 3 -sided component.

Lemma 3.9. A region of a weakly minimizing m-bubble with equal pressures can not has both a 3-sided component and a 5-sided component.

Proof. By the fixed length in Figure 10, the area of a 3-sided component less than $2 d+\left[\tan \frac{\pi}{12}-2\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)\right]$. Thus, using Corollary 2.13 , we can decrease the length and balance areas by nibbles.

Lemma 3.10. A region of a weakly minimizing m-bubble with equal pressures can not has both a 4-sided component that the length of the bottom more than $\frac{2}{\sqrt[4]{3}} \sqrt{\frac{\pi}{2}-\tan \frac{\pi}{12}}$ and a 5 -sided component.

Figure 10: Some regular bubbles improve to nonregular bubbles

Proof. By the fixed length in Figure 11, the area of a 4 -side component $<\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)+$ $\frac{\sqrt{3}}{4}\left[3-\left(\frac{2}{\sqrt[4]{3}} \sqrt{\frac{\pi}{2}-\tan \frac{\pi}{12}}\right)^{2}\right]<\frac{\pi}{3}+\sqrt{3}$. Thus, using Corollary 2.13, we can decrease the length and balance areas by nibbles.

Figure 11: Some regular bubbles improve to nonregular bubbles

Lemma 3.11. A weakly minimizing m-bubble with equal pressures which has a 4 -sided component of R_{i} with a 5-sided component of R_{j} adjacent on one side, it must has not a 4-sided component of R_{j} with a 5-sided component of R_{i} adjacent on one side.

Proof. By Lemma 3.10, we can decrease the length and balance areas as see in Figure 12.

Figure 12: Some regular bubbles improve to nonregular bubbles

Proposition 3.12. Every weakly minimizing 4-bubble with equal pressures is stanbard.

Proof. By Theorem 3.4, we have $N_{3}+N_{4} \leqq 4$. By Lemma 3.5 and 3.8, we have $N_{3}=2$ and $N_{4}=2$. We will divide into cases according to N_{6}.

Case $N_{6}=0$. By Lemma 3.6, we have $N_{5}=0$. The possibility is in Figure 13.

Figure 13: The standard 4-bubble.

Case $N_{6}=1$. By Lemma 3.7, all possibilities are not weakly minimizing.
Case $N_{6}>1$. By Theorem 2.7, every weak minimizer has at most 4 disjoint nonhexagonal convex components. The possibility is in Figure 14. By Theorem 3.4 and Lemma 3.9, we label it in Figure 15 which is a contradiction with Lemma 3.11.

Figure 14: A 4-bubble which has two hexagonal components.

Figure 15: A 4-bubble which has two hexagonal components.

Proposition 3.13. Every weakly minimizing 5 -bubble with equal pressures is standard.

Proof. By Theorem 3.4, we have $N_{3}+N_{4} \leqq 5$. By Lemma 3.5 and 3.8, we have two cases.

Case1 : $N_{3}=2$ and $N_{4}=2$. We will divide into subcases according to N_{6}.

Subcase $1 A: N_{6}=0$. By Lemma 3.6, we have $N_{5}=1$. The possibility is in Figure 16.

Figure 16: The standard 5-bubble.
Subcase $1 B: N_{6}=1$. By Lemma 3.7, all possibilities are not weakly minimizing.

Subcase $1 C: N_{6}>1$. By Theorem 2.7, every weak minimizer has at most 5 disjoint nonhexagonal convex components. All possible combinatorial types are in Figure 17. Now, every 3 -sided and 4 -sided component has different labels. Consider possibility $(a),(b)$ and (c). By Corollary 2.11 and Lemma 3.9, we label them in Figure $18(a),(b)$ and (c) which is a contradiction with Lemma 3.11. Consider possibility (d). By Corollary 2.11, 2.12 and Lemma 3.9, we label it in Figure 18 (d). Thus, $\{\alpha, \beta, \gamma\}=\{1,2\}$ which is a contradiction.

(a)

(c)

(b)

(d)

Figure 17: Some 5-bubble which has two or three hexagonal components.
Case2: $N_{3}=1$ and $N_{4}=4$. We will divide into subcases according to N_{6}.
Subcase $2 A: N_{6} \leqq 2$. All possible combinatorial types are in Figure 19. Now, every 3 -sided and4-sided component has different labels. We label them in Figure 20. By Corollary 2.12 and Lemma 3.9, we can not label i.

Subcase $2 B: N_{6}>2$. By Theorem 2.7, every weak minimizer has at most 5 disjoint nonhexagonal convex components. All possible combinatorial types are

Figure 18: Some 5-bubble which has two or three hexagonal components.

Figure 19: Some 5-bubble which has one or two hexagonal components.

Figure 20: Some 5-bubble which has one or two hexagonal components.
in Figure 21. Now, every 3 -sided and4-sided component has different labels. We label them in Figure 22. By Corollary 2.12 and Lemma 3.9, we label them in Figure 23 which is a contradiction with Lemma 3.11.

Figure 21: Some 5-bubble which has one or two hexagonal components.

Figure 22: Some 5-bubble which has one or two hexagonal components.

Figure 23: Some 5-bubble which has one or two hexagonal components.

Theorem 3.14. Let $m \in\{4,5\}$. A minimizing m-bubble with equal pressures is standard.

Proof. This follows from Theorem 2.6, Proposition 3.12 and Proposition 3.13.

References

[1] M. N. Bleicher, Isoperimetric division into a finite number of cells in the plane, Stud. Sci. Math. Hungar. 22 (1987), 123-137.
[2] M. N. Bleicher, Isoperimetric networks in the Euclidean plane, Stud. Sci. Math. Hungar. 31 (1996), 455-478.
[3] C. Cox, L. Harrison, M. Hutchings, S. Kim, J. Light, A. Mauer, M. Tilton, The shortest enclosure of three connected areas in \mathbb{R}^{2}, Real Anal. Exchange 20 (1994/95), 313-335.
[4] J. Foisy, M. Alfaro, J. Brock, N. Hodges, J. Zimba, The standard soap bubble in \mathbb{R}^{2} uniquely minimizes perimeter, Pacific J. Math. 159 (1993), 47-59.
[5] F. Morgan, Soap bubbles in \mathbb{R}^{2} and on surfaces, Pacific J. Math. 165 (1994), 347-361.
[6] R. Vaughn, Planar soap bubbles, Ph.D. thesis, University of California, Davis 1998.
[7] W. Wichiramala, The planar triple bubble problem, Ph.D. thesis, University of Illinois, Urbana-Champaign, May 2002.
[8] W. Wichiramala, Proof of the planar triple bubble conjecture, J. Reine Angew. Math. 567 (2004) 1-49.

Banyat Sroysang and Wacharin Wichiramala
Department of Mathematics,
Faculty of Science,
Chulalongkorn University,
Bangkok 10330, THAILAND

