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Abstract Let P (z) be a polynomial of degree n and DαP (z) denotes the polar derivative of P (z). Using

recently developed interpolation formulation, we obtain an interesting extension of refinement of well

known inequality of S. Bernstien for polynomials.
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1. Introduction and Main Result

Let Pn be the linear space of polynomial of degree at most n and P ∈ Pn. Then
concerning the estimate of the maximum of |P ′

(z)| on the unit circle |z| = 1, we have

max
|z|=1

|P
′
(z)| ≤ n max

|z|=1
|P (z)|. (1.1)

Inequality (1.1) is an immediate consequence of Bernstein’s theorem on the derivative
of a trigonometric polynomial (for reference see [1]). In (1.1) equality holds only for
P (z) = αzn, |α| 6= 0, that is, if and only if P (z) has all zeros at the origin. Recently
Frappier, Rahman, and Ruscheweyh [2, Theorem 8] that if P (z) is a polynomial of degree
n, then

max
|z|=1

|P
′
(z)| ≤ n max

1≤k≤2n
|P (e

ikπ
n )|. (1.2)

Clearly (1.2) represents a refinement of (1.1), since the maximum of |P (z)| on |z| = 1,
may be larger than the maximum of |P (z)| taken over the (2n)th roots of unity, as is
shown by the simple example |P (z)| = zn + ia, a > 0. Aziz [3] in this direction produced
the following result:
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Theorem 1.1. [3] If P (z) is a polynomial of degree n, then for every given real λ,

max
|z|=1

|P
′
(z)| ≤ n

2
[Mλ +Mλ+π], (1.3)

where

Mλ = max
1≤k≤n

|P (e
i(2kπ+λ)

n )|,

and Mλ+π is obtained by replacing α by λ+ π from definition.
The result is the best possible and equality in (1.3) holds for p(z) = zn+reiλ,−1 ≤ r ≤ 1.

Let DαP (z) denotes the polar derivative of the polynomial P (z) of degree n with
respect to the point α, then

DαP (z) = nP (z) + (α− z)P
′
(z).

The polynomial DαP (z) is of degree atmost n− 1 and it generalizes the ordinary deriva-
tive, where α is real or complex number.

In this paper, we extend (1.3) to the polar derivative of a polynomial P (z). In fact,
we prove

Theorem 1.2. If P (z) is a polynomial of degree n, then for every λ ∈ R (field of real
numbers) and α ∈ C (field of complex numbers),

|DαP (z)− nP (z)| ≤ n

2
|α− z|[Mλ +Mλ+π], (1.4)

where

Mλ = max
1≤k≤n

|P (e
i(2kπ+λ)

n )|

and Mλ+π is obtained by replacing λ by λ+ π from definition.
The result is best possible and equality in (1.4) holds for P (z) = zn + reiλ,−1 ≤ r ≤ 1.

Remark 1.3. If we divide on both sides by α and letting α to infinity, we get Theorem
1.1.

Taking λ = 0 in Theorem 1.2, we obtain

Corollary 1.4. If P (z) is a polynomial of degree n, then

|DαP (z)− nP (z)| ≤ n

2
|α− z|[ max

1≤k≤n
|P (e

i(2kπ)
n )|+ max

1≤k≤n
|P (e

i(2k+1)π
n )|].

The result is the best possible and equality holds for p(z) = zn − r,−1 ≤ r ≤ 1.

For the proof of the Theorem 1.2, we need the following lemma, which is an interpo-
lation formula due to author [4].

Lemma 1.5. If P (z) is a polynomial of degree n and z1, z2, ..., zn are the zeros of zn+a,
where a is any non-zero complex number, then for every t ∈ C such that tn + a 6= 0, we
have

P
′
(t) =

ntn−1

tn + a
P (t) +

tn + a

na

n∑
k=1

P (zk)
zk

(zk − t)2
(1.5)
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and

1

na

n∑
k=1

zkt

(zk − t)2
= − ntn

(tn + a)
2 . (1.6)

2. Proof of Theorem 1.2

Let P (z) be a polynomial of degree n, therefore by definition of polar derivative we
have,

DαP (z) = nP (z) + (α− z)P
′
(z).

Equivalently

DαP (t) = nP (t) + (α− t)P
′
(t).

In Lemma 1.5, we take a = eiβ , where β is an arbitrary real number. Then z1, z2, ..., zn are
zeros of zn = eiβ , that is, these points lie on the unit circle, therefore for every complex
number t, |t| = 1 and tn + a 6= 0 so that t 6= zk, k = 1, 2, ..., n. By (1.5), we have

DαP (t) = nP (t) + (α− t)

[
ntn−1

tn + a
P (t) +

tn + a

na

n∑
k=1

P (zk)
zk

(zk − t)2

]
.

∣∣∣∣DαP (t)− nP (t)

[
1 +

(α− t)tn−1

tn + a

]∣∣∣∣ =

∣∣∣∣∣ (α− t)(tn + a)

na

n∑
k=1

P (zk)
zk

(zk − t)2

∣∣∣∣∣
∣∣(tn + a)DαP (t)− nP (t)(αtn−1 + a)

∣∣ ≤ |(α− t)| ∣∣∣∣ (a+ tn)2

na

∣∣∣∣ n∑
k=1

∣∣∣∣∣P (zk)
zk

(zk − t)2

∣∣∣∣∣ .
(2.1)

Now if |t| = 1, |zk| = 1, t 6= zk, then it can be easily verified that zk
(zk−t)2

is a negative

real number. Further for |a| = 1, |t| = 1, and a + tn 6= 0, it can be easily verified that
(a+tn)2

atn is a positive real number. Now using these facts and (1.6), we have∣∣∣∣a+ tn

natn

∣∣∣∣ n∑
k=1

∣∣∣∣∣ zkt

(zk − t)2

∣∣∣∣∣ =
a+ tn

natn

n∑
k=1

[
− zkt

(zk − t)2

]
= n. (2.2)

From (2.1), we have∣∣(tn + a)DαP (t)− nP (t)(αtn−1 + a)
∣∣ ≤ |(α− t)| ∣∣∣∣ (a+ tn)2

natn

∣∣∣∣ n∑
k=1

zkt

(zk − t)2

[
max

1≤k≤n
|P (zk)|

]
= n |(α− t)| max

1≤k≤n
|P (zk)| .

Which on simplification gives∣∣tn−1 [nαP (t)− tDαP (t)]− a [DαP (t)− nP (t)]
∣∣ ≤ n |(α− t)| max

1≤k≤n
|P (zk)| .

(2.3)

Inequality (2.3) is obviously true for t = zk, k = 1, 2, ..., n. We conclude that for every
real β, we have for |t| = 1 from (2.3) that
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∣∣tn−1 [nαP (t)− tDαP (t)]− eiβ [DαP (t)− nP (t)]
∣∣ ≤ n |(α− t)| max

1≤k≤n
|P (zk)| .

(2.4)

Now z1, z2, ..., zn are zeros of zn + eiβ , then

zk = e
i((2k+1)π+β)

n .

Now using value of zk in (2.4) and also replace β by λ and next β by λ + π, where λ is
real, we get for |z| = 1∣∣zn−1 [nαP (z)− zDαP (z)]− eiλ [DαP (z)− nP (z)]

∣∣ ≤ n |(α− z)| max
1≤k≤n

∣∣∣P (e
i((2k+1)π+λ)

n )
∣∣∣

(2.5)

and∣∣zn−1 [nαP (z)− zDαP (z)] + eiλ [DαP (z)− nP (z)]
∣∣ ≤ n |(α− z)| max

1≤k≤n

∣∣∣P (e
i(2kπ+λ)

n )
∣∣∣ .

(2.6)

Now
2 |DαP (z)− nP (z)| =

∣∣eiλ [DαP (z)− nP (z)] + eiλ [DαP (z)− nP (z)]
∣∣

≤
∣∣eiλ [DαP (z)− nP (z)]− zn−1 [nαP (z)− zDαP (z)]

∣∣+ |eiλ [DαP (z)− nP (z)]

+zn−1 [nαP (z)− zDαP (z)] |.
Using (2.5) and (2.6), we get

2 |DαP (z)− nP (z)| ≤ n |(α− z)| [Mλ +Mλ+π] .

Hence
max
|z|=1

|DαP (z)− nP (z)| ≤ n

2
|(α− z)| [Mλ +Mλ+π].

This proves the theorem completely.
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