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Abstract Let P(z) be a polynomial of degree n and D, P(z) denotes the polar derivative of P(z). Using
recently developed interpolation formulation, we obtain an interesting extension of refinement of well

known inequality of S. Bernstien for polynomials.
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1. INTRODUCTION AND MAIN RESULT

Let P, be the linear space of polynomial of degree at most n and P € P,. Then

concerning the estimate of the maximum of |P (z)| on the unit circle |z| = 1, we have
max [P (z)| < n max |P(2)|. (1.1)
|z|=1 |z|=1

Inequality (1.1) is an immediate consequence of Bernstein’s theorem on the derivative

of a trigonometric polynomial (for reference see [1]). In (1.1) equality holds only for

P(z) = az™, |a| # 0, that is, if and only if P(z) has all zeros at the origin. Recently

Frappier, Rahman, and Ruscheweyh [2, Theorem 8] that if P(z) is a polynomial of degree

n, then

ikw

(2)] < ). :
max P (2)] <n | fax |P(e )] (1.2)
Clearly (1.2) represents a refinement of (1.1), since the maximum of |P(z)| on |z| = 1,

may be larger than the maximum of |P(z)| taken over the (2n)th roots of unity, as is
shown by the simple example |P(z)| = 2™ +ia, a > 0. Aziz [3] in this direction produced
the following result:
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Theorem 1.1. [3] If P(2) is a polynomial of degree n, then for every given real A,
max [P ()] < 5 [My + My, (1.3)
where
i(2km+N)
My = max |P(e” » )|,
1<k<n

and My is obtained by replacing a by A+ 7 from definition.
The result is the best possible and equality in (1.3) holds for p(z) = 2" +re"*, -1 <r < 1.

Let D,P(z) denotes the polar derivative of the polynomial P(z) of degree n with
respect to the point «, then

DoP(2) =nP(2) + (o — 2) P (2).

The polynomial D, P(z) is of degree atmost n — 1 and it generalizes the ordinary deriva-
tive, where « is real or complex number.

In this paper, we extend (1.3) to the polar derivative of a polynomial P(z). In fact,
we prove

Theorem 1.2. If P(z) is a polynomial of degree n, then for every A € R (field of real
numbers) and o € C (field of complex numbers),

[DaP(z) =nP(:)| < 3 o= 2|[M + Mg, (1.4)

where
i(2km+A)
-

M)y = max |P(e

1<k<n

)|

and My, is obtained by replacing X by A+ m from definition.
The result is best possible and equality in (1.4) holds for P(z) = 2" + ret*, -1 <r < 1.

Remark 1.3. If we divide on both sides by « and letting « to infinity, we get Theorem
1.1.

Taking A = 0 in Theorem 1.2, we obtain
Corollary 1.4. If P(z) is a polynomial of degree n, then

i(2km) i(2k+1)m

n
_ < o — .
|DaP(2) —nP(2)| < 5 |ov ZI[lgl,ggn |P(e )|+ [nax. |P(e

I

The result is the best possible and equality holds for p(z) = 2" —r,—1 <r < 1.

For the proof of the Theorem 1.2, we need the following lemma, which is an interpo-
lation formula due to author [4].

Lemma 1.5. If P(z) is a polynomial of degree n and z1, 22, ..., zn, are the zeros of 2™ + a,
where a is any non-zero complexr number, then for every t € C such that t" 4+ a # 0, we
have

/ nt"1 1"+ @ — 7%
P (t) = P(t)+ P —_— 1.5
0= g PO+ o P (15)
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and

n

1 2t nt"
-~ S =— - (1.6)

na ;= (z — 1) (t" +a)

2. PROOF OF THEOREM 1.2

Let P(z) be a polynomial of degree n, therefore by definition of polar derivative we
have,

Equivalently
Do P(t) = nP(t) + (a — t)P ().

In Lemma 1.5, we take a = €*?, where /3 is an arbitrary real number. Then 21, 2s, ..., 2, are
zeros of 2" = €' that is, these points lie on the unit circle, therefore for every complex
number ¢, |¢| = 1 and t" 4+ a # 0 so that t # 2,k = 1,2,...,n. By (1.5), we have

by + TS oy ] '

2
th 4+ a na (2 — 1)

DoP(t) = nP(t) + (o — t)

(a=t)(t" +a) E”:sz

Do P(t) — nP(t) {1 + (a_t)tnl} ‘ = . t)
=1 (2 —

t" +a

|(t" + a) Do P(t) — nP(t)(at" ' + a)| < |(a — (a+1t")? kz

Zk — t) ‘ '
(2.1)
Now if [t| = 1, |zx]| = 1,t # 2k, then it can be easily verified that =

real number. Further for |a| = 1,[t| = 1, and a + " # 0, it can be easﬂy verified that
(a_,’_tn)?
atn

—=k— is a negative

is a positive real number. Now using these facts and (1.6), we have

n L n ¢
kz == l—z’“ 2] —n. (2.2)

=1 (Zk - t)z k=1 (Zk - t)

From (2.1), we have

a—+t"
nat™

Zkt

|(t" + a) Do P(t) — nP(t)(et"* +a)| < |(a — 1)

=nl(a—t)] max [P(z)].

Which on simplification gives
1 [naP() ~ Do P(1)] — a [DaP(t) ~ nP(1)]| < 0l —1)] max [P(z)].
(2.3)

Inequality (2.3) is obviously true for ¢t = 2z, k = 1,2,...,n. We conclude that for every
real 8, we have for |t| = 1 from (2.3) that
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|t”71 [naP(t) —tD,P(t)] — P [DoP(t) — nP(t)H <nl|(a—1t) r_nagn |P(2)] -

1<k
(2.4)
Now 21, 22, ..., zn_are zeros of 2" + e#| then
(2 1) +)
Z = € n .
Now using value of zj in (2.4) and also replace 8 by A and next 8 by A + 7, where A is
real, we get for |z| =1

|2 naP(2) — 2D P(2)] — € [Do P(2) — nP(2)]| < nl(a — 2)| Jnax P(QM)’
(2.5)
and
|2 naP(2) — 2D P(2)] + € [Do P(2) — nP(2)]| < n|(a — 2)| max p(BW)( .

(2.6)
Now
2|DoP(2) = nP(2)| = | [Do P(2) — nP(2)] + € [Da P(2) — nP(2)]|
< |ei)‘ [DoP(z) —nP(z)] — Pkt [naP(z) — zDaP(z)H + \e“ [DoP(z) — nP(z)]
+2" " [naP(2) — 2zDo P(2)]|.
Using (2.5) and (2.6), we get

2DaP(z) — nP(2)] < n[(a— 2)| [My + M)
Hence
max [Do P(2) = nP(2)| < 5 (0= 2)| [My + Mga].

|2l

This proves the theorem completely.
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