Extention of Bernstein's Type Inequality to Polar Derivative of a Polynomial

Irshad Ahmad ${ }^{1, *}$, Abdul Liman ${ }^{1}$ and Ruqia Mohammad ${ }^{2}$
${ }^{1}$ Department of Mathematics, National Institute of Technology, Kashmir, India-190006
e-mail : irshadmaths84@rediffmail.com (I. Ahmad); abliman22@yahoo.com (A. Liman)
${ }^{2}$ Department of Mathematics, SSM College of Engineering, Patan Baramulla, Kashmir, India-190006
e-mail : shafatruqia@gmail.com (R. Mohammad)

Abstract

Let $P(z)$ be a polynomial of degree n and $D_{\alpha} P(z)$ denotes the polar derivative of $P(z)$. Using recently developed interpolation formulation, we obtain an interesting extension of refinement of well known inequality of S . Bernstien for polynomials.

MSC: 30C10; 30C15
Keywords: polynomials; inequalities in the complex domain; polar derivative; zeros

Submission date: 26.08 .2018 / Acceptance date: 04.12 .2018

1. Introduction and Main Result

Let P_{n} be the linear space of polynomial of degree at most n and $P \in P_{n}$. Then concerning the estimate of the maximum of $\left|P^{\prime}(z)\right|$ on the unit circle $|z|=1$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is an immediate consequence of Bernstein's theorem on the derivative of a trigonometric polynomial (for reference see [1]). In (1.1) equality holds only for $P(z)=\alpha z^{n}, \quad|\alpha| \neq 0$, that is, if and only if $P(z)$ has all zeros at the origin. Recently Frappier, Rahman, and Ruscheweyh [2, Theorem 8] that if $P(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{1 \leq k \leq 2 n}\left|P\left(e^{\frac{i k \pi}{n}}\right)\right| . \tag{1.2}
\end{equation*}
$$

Clearly (1.2) represents a refinement of (1.1), since the maximum of $|P(z)|$ on $|z|=1$, may be larger than the maximum of $|P(z)|$ taken over the $(2 n)$ th roots of unity, as is shown by the simple example $|P(z)|=z^{n}+i a, a>0$. Aziz [3] in this direction produced the following result:

[^0]Theorem 1.1. [3] If $P(z)$ is a polynomial of degree n, then for every given real λ,

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2}\left[M_{\lambda}+M_{\lambda+\pi}\right] \tag{1.3}
\end{equation*}
$$

where

$$
M_{\lambda}=\max _{1 \leq k \leq n}\left|P\left(e^{\frac{i(2 k \pi+\lambda)}{n}}\right)\right|
$$

and $M_{\lambda+\pi}$ is obtained by replacing α by $\lambda+\pi$ from definition.
The result is the best possible and equality in (1.3) holds for $p(z)=z^{n}+r e^{i \lambda},-1 \leq r \leq 1$.
Let $D_{\alpha} P(z)$ denotes the polar derivative of the polynomial $P(z)$ of degree n with respect to the point α, then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

The polynomial $D_{\alpha} P(z)$ is of degree atmost $n-1$ and it generalizes the ordinary derivative, where α is real or complex number.

In this paper, we extend (1.3) to the polar derivative of a polynomial $P(z)$. In fact, we prove

Theorem 1.2. If $P(z)$ is a polynomial of degree n, then for every $\lambda \in \mathbb{R}$ (field of real numbers) and $\alpha \in \mathbb{C}$ (field of complex numbers),

$$
\begin{equation*}
\left|D_{\alpha} P(z)-n P(z)\right| \leq \frac{n}{2}|\alpha-z|\left[M_{\lambda}+M_{\lambda+\pi}\right] \tag{1.4}
\end{equation*}
$$

where

$$
M_{\lambda}=\max _{1 \leq k \leq n}\left|P\left(e^{\frac{i(2 k \pi+\lambda)}{n}}\right)\right|
$$

and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ from definition.
The result is best possible and equality in (1.4) holds for $P(z)=z^{n}+r e^{i \lambda},-1 \leq r \leq 1$.
Remark 1.3. If we divide on both sides by α and letting α to infinity, we get Theorem 1.1.

Taking $\lambda=0$ in Theorem 1.2, we obtain
Corollary 1.4. If $P(z)$ is a polynomial of degree n, then

$$
\left|D_{\alpha} P(z)-n P(z)\right| \leq \frac{n}{2}|\alpha-z|\left[\max _{1 \leq k \leq n}\left|P\left(e^{\frac{i(2 k \pi)}{n}}\right)\right|+\max _{1 \leq k \leq n}\left|P\left(e^{\frac{i(2 k+1) \pi}{n}}\right)\right|\right]
$$

The result is the best possible and equality holds for $p(z)=z^{n}-r,-1 \leq r \leq 1$.
For the proof of the Theorem 1.2, we need the following lemma, which is an interpolation formula due to author [4].

Lemma 1.5. If $P(z)$ is a polynomial of degree n and $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $z^{n}+a$, where a is any non-zero complex number, then for every $t \in C$ such that $t^{n}+a \neq 0$, we have

$$
\begin{equation*}
P^{\prime}(t)=\frac{n t^{n-1}}{t^{n}+a} P(t)+\frac{t^{n}+a}{n a} \sum_{k=1}^{n} P\left(z_{k}\right) \frac{z_{k}}{\left(z_{k}-t\right)^{2}} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n a} \sum_{k=1}^{n} \frac{z_{k} t}{\left(z_{k}-t\right)^{2}}=-\frac{n t^{n}}{\left(t^{n}+a\right)^{2}} \tag{1.6}
\end{equation*}
$$

2. Proof of Theorem 1.2

Let $P(z)$ be a polynomial of degree n, therefore by definition of polar derivative we have,

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

Equivalently

$$
D_{\alpha} P(t)=n P(t)+(\alpha-t) P^{\prime}(t)
$$

In Lemma 1.5, we take $a=e^{i \beta}$, where β is an arbitrary real number. Then $z_{1}, z_{2}, \ldots, z_{n}$ are zeros of $z^{n}=e^{i \beta}$, that is, these points lie on the unit circle, therefore for every complex number $t,|t|=1$ and $t^{n}+a \neq 0$ so that $t \neq z_{k}, k=1,2, \ldots, n$. By (1.5), we have

$$
\begin{align*}
& D_{\alpha} P(t)=n P(t)+(\alpha-t)\left[\frac{n t^{n-1}}{t^{n}+a} P(t)+\frac{t^{n}+a}{n a} \sum_{k=1}^{n} P\left(z_{k}\right) \frac{z_{k}}{\left(z_{k}-t\right)^{2}}\right] \\
& \left|D_{\alpha} P(t)-n P(t)\left[1+\frac{(\alpha-t) t^{n-1}}{t^{n}+a}\right]\right|=\left|\frac{(\alpha-t)\left(t^{n}+a\right)}{n a} \sum_{k=1}^{n} P\left(z_{k}\right) \frac{z_{k}}{\left(z_{k}-t\right)^{2}}\right| \\
& \left|\left(t^{n}+a\right) D_{\alpha} P(t)-n P(t)\left(\alpha t^{n-1}+a\right)\right| \leq|(\alpha-t)|\left|\frac{\left(a+t^{n}\right)^{2}}{n a}\right| \sum_{k=1}^{n}\left|P\left(z_{k}\right) \frac{z_{k}}{\left(z_{k}-t\right)^{2}}\right| . \tag{2.1}
\end{align*}
$$

Now if $|t|=1,\left|z_{k}\right|=1, t \neq z_{k}$, then it can be easily verified that $\frac{z_{k}}{\left(z_{k}-t\right)^{2}}$ is a negative real number. Further for $|a|=1,|t|=1$, and $a+t^{n} \neq 0$, it can be easily verified that $\frac{\left(a+t^{n}\right)^{2}}{a t^{n}}$ is a positive real number. Now using these facts and (1.6), we have

$$
\begin{equation*}
\left|\frac{a+t^{n}}{n a t^{n}}\right| \sum_{k=1}^{n}\left|\frac{z_{k} t}{\left(z_{k}-t\right)^{2}}\right|=\frac{a+t^{n}}{n a t^{n}} \sum_{k=1}^{n}\left[-\frac{z_{k} t}{\left(z_{k}-t\right)^{2}}\right]=n . \tag{2.2}
\end{equation*}
$$

From (2.1), we have

$$
\begin{gathered}
\left|\left(t^{n}+a\right) D_{\alpha} P(t)-n P(t)\left(\alpha t^{n-1}+a\right)\right| \leq|(\alpha-t)|\left|\frac{\left(a+t^{n}\right)^{2}}{n a t^{n}}\right| \sum_{k=1}^{n} \frac{z_{k} t}{\left(z_{k}-t\right)^{2}}\left[\max _{1 \leq k \leq n}\left|P\left(z_{k}\right)\right|\right] \\
=n|(\alpha-t)| \max _{1 \leq k \leq n}\left|P\left(z_{k}\right)\right| .
\end{gathered}
$$

Which on simplification gives

$$
\begin{equation*}
\left|t^{n-1}\left[n \alpha P(t)-t D_{\alpha} P(t)\right]-a\left[D_{\alpha} P(t)-n P(t)\right]\right| \leq n|(\alpha-t)| \max _{1 \leq k \leq n}\left|P\left(z_{k}\right)\right| . \tag{2.3}
\end{equation*}
$$

Inequality (2.3) is obviously true for $t=z_{k}, k=1,2, \ldots, n$. We conclude that for every real β, we have for $|t|=1$ from (2.3) that

$$
\begin{equation*}
\left|t^{n-1}\left[n \alpha P(t)-t D_{\alpha} P(t)\right]-e^{i \beta}\left[D_{\alpha} P(t)-n P(t)\right]\right| \leq n|(\alpha-t)| \max _{1 \leq k \leq n}\left|P\left(z_{k}\right)\right| \tag{2.4}
\end{equation*}
$$

Now $z_{1}, z_{2}, \ldots, z_{n}$ are zeros of $z^{n}+e^{i \beta}$, then

$$
z_{k}=e^{\frac{i((2 k+1) \pi+\beta)}{n}} .
$$

Now using value of z_{k} in (2.4) and also replace β by λ and next β by $\lambda+\pi$, where λ is real, we get for $|z|=1$

$$
\begin{equation*}
\left|z^{n-1}\left[n \alpha P(z)-z D_{\alpha} P(z)\right]-e^{i \lambda}\left[D_{\alpha} P(z)-n P(z)\right]\right| \leq n|(\alpha-z)| \max _{1 \leq k \leq n}\left|P\left(e^{\frac{i((2 k+1) \pi+\lambda)}{n}}\right)\right| \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|z^{n-1}\left[n \alpha P(z)-z D_{\alpha} P(z)\right]+e^{i \lambda}\left[D_{\alpha} P(z)-n P(z)\right]\right| \leq n|(\alpha-z)| \max _{1 \leq k \leq n}\left|P\left(e^{\frac{i(2 k \pi+\lambda)}{n}}\right)\right| . \tag{2.6}
\end{equation*}
$$

Now

$$
\begin{aligned}
& 2\left|D_{\alpha} P(z)-n P(z)\right|=\left|e^{i \lambda}\left[D_{\alpha} P(z)-n P(z)\right]+e^{i \lambda}\left[D_{\alpha} P(z)-n P(z)\right]\right| \\
& \leq\left|e^{i \lambda}\left[D_{\alpha} P(z)-n P(z)\right]-z^{n-1}\left[n \alpha P(z)-z D_{\alpha} P(z)\right]\right|+\mid e^{i \lambda}\left[D_{\alpha} P(z)-n P(z)\right] \\
&+z^{n-1}\left[n \alpha P(z)-z D_{\alpha} P(z)\right] \mid .
\end{aligned}
$$

Using (2.5) and (2.6), we get

$$
2\left|D_{\alpha} P(z)-n P(z)\right| \leq n|(\alpha-z)|\left[M_{\lambda}+M_{\lambda+\pi}\right] .
$$

Hence

$$
\max _{|z|=1}\left|D_{\alpha} P(z)-n P(z)\right| \leq \frac{n}{2}|(\alpha-z)|\left[M_{\lambda}+M_{\lambda+\pi}\right] .
$$

This proves the theorem completely.

Acknowledgements

We would like to thank the referees for their comments and suggestions on the manuscript.

References

[1] A.C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941) 565-579.
[2] C. Frappier, Q.I. Rahman, St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985) 69-99.
[3] A. Aziz, A refinement of an inequality of S. Bernstein, Journal of Matematical Analysis and Applications 144 (1989) 226-235.
[4] A. Aziz, Inequalities for the polynomial with a prescribed zero, J. Approx. Theory 41 (1984) 15-20.

[^0]: *Corresponding author.

