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1. Introduction

In 1940, Ulam [1] proposed the following classical stability problem.

• Let f be a mapping from a group (G1, •) to a metric group (G2, ∗) with the metric
d such that

d(f(x • y), f(x) ∗ f(y)) ≤ ε,
for all x, y ∈ G1, where ε > 0. Do there exist a unique homomorphism H : G1 → G2

and a constant δ > 0 such that

d(f(x), H(x)) ≤ δ,
for all x ∈ G1?

Next year, Hyers [2] solved this problem under the assumption that the function f
maps between two Banach spaces. In 1978, a generalization of Hyers’ result was obtained
by Rassias [3] for a mapping f which maps from a Banach space X to a Banach space Y
by considering an unbounded Cauchy difference

‖f(x+ y)− f(x)− f(y)‖ ≤ ε (‖x‖p + ‖y‖p) ,
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for all x, y ∈ X, where ε > 0 and 0 < p < 1. In 1994, a generalized Hyers-Ulam stability of
Rassias’ theorem was proved by Gãvruta [4] by replacing the unbounded Cauchy difference
with a general control function.

Nowadays, several new investigations on the various functional equations have been
suggested by many authors. Here, we give examples of the study in this way. In 1999,
Rassias [5] introduced the functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4[f(x+ y) + f(x− y) + 6f(y)], (1.1)

where f maps from a vector space X into a real vector space Y , which is called quartic
functional equation. He also call every solution of (1.1) as a quartic function. Further-
more, he proved the Hyers-Ulam stability problem for the functional equation (1.1), where
X is a normed space and Y is a real Banach space. The quartic functional equation was
employed by other authors. In 2003, Chung and Sahoo [6] proved the general solution of
the quartic functional equation (1.1), where f maps from R to R.

In 2004, Sahoo [7] solved the general solution of the following functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4[f(x+ y) + f(x− y)], (1.2)

where f maps from R to R.
In 2008, Petapirak and Nakmahachalasint [8] had shown that the function f maps

between vector spaces X and Y satisfying the functional equation

f(3x+ y) + f(x+ 3y) = 64f(x) + 64f(y) + 24f(x+ y)− 6f(x− y), (1.3)

for all x, y ∈ X if and only if there exists a 4-additive symmetric function A : X4 → Y
such that f(x) = A(x, x, x, x) for all x ∈ X. They also investigated the generalized
Hyers-Ulam stability of the functional equation (1.3).

In 2010, Gordji [9] proved that the function f : X → Y , where X and Y are vector
spaces, satisfies the functional equation

f(2x+ y) + f(2x− y) = 4 [f(x+ y) + f(x− y)]− 3

7
[f(2y)− 2f(y)] + 2f(2x)− 8f(x),

(1.4)

for all x, y ∈ X if and only if there exist a unique symmetric multiadditive function B :
X4 → Y and a unique additive function A : X → Y such that f(x) = B(x, x, x, x) +A(x)
for all x ∈ X and he considered the generalized Hyers-Ulam stability of (1.4), where f
maps from a real normed space X to a real Banach space Y .

In 2013, Hengkrawit and Thanyacharoen [10] considered the following functional equa-
tion

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

= 13 [f(x+ y) + f(x− y)] + 168f(y), (1.5)

where f maps from R to R. Its stability is investigated and they solved that the function
f : R → R satisfies (1.5) if and only if it is of the form f(x) = A(x, x, x, x), where
A : R4 → R is the diagonal of 4-additive symmetric function.

In 2015, Hengkrawit and Thanyacharoen [11] determined the general solution of the
generalized additive-quartic functional equation

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x) + 24f(y)

= 13[f(x+ y) + f(x− y)] + 12f(2y), (1.6)
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where f maps from R to R, and studied the Hyers-Ulam stability of this functional
equation.

The main goal of this paper is to use the fixed point alternative for proving the gener-
alized Hyers-Ulam stability for the functional equation

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x) + 24f(y)

= 13[f(x+ y) + f(x− y)] + 12f(2y), (1.7)

where f maps from a normed space to a quasi-β-Banach space.

2. Preliminaries

In this section, we will recall some basic concepts of a quasi-β-normed space and the
important tools from the fixed point theory for proving the main result.

Definition 2.1 ([12]). Let β be a real number with 0 < β ≤ 1, K = R or C and X be a
vector space over K. A function ‖ · ‖ : X → R is called a quasi-β-norm if it satisfies the
following conditions:

(1) ‖x‖ = 0 if and only if x = 0;

(2) ‖rx‖ = |r|β ‖x‖ for all r ∈ K and all x ∈ X;
(3) there is a constant K ≥ 1 such that

‖x+ y‖ ≤ K (‖x‖+ ‖y‖) ,

for all x, y ∈ X.

Also, the pair (X, ‖·‖) or (X, ‖·‖ ,K) is called a quasi-β-normed space. The smallest
possible K is called the modulus of concavity of ‖·‖.

Remark 2.2. In a quasi-β-normed space (X, ‖·‖), we have ‖x‖ ≥ 0 for all x ∈ X.

Definition 2.3 ([12]). A quasi-β-normed space (X, ‖·‖ ,K) is called a (β, p)-normed space
if there exists a real number p ∈ (0, 1] such that

‖x+ y‖p ≤ ‖x‖p + ‖y‖p ,

for all x, y ∈ X. In this case, ‖·‖ is also called a (β, p)−norm on X.

We can refer to [12] for the more details in quasi-β-normed spaces.
Next, we give the one of fundamental results due to Diaz and Margolis [13] in the fixed

point theory which is the main tool for investigating many stability results.

Theorem 2.4 ([13]). Let (X, d) be a complete generalized metric space and J : X → X
be a strictly contractive mapping with some Lipschitz constant L with 0 ≤ L < 1. Then
for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞,

for all nonnegative integers n or there exists a positive integer n0 such that the following
assertions hold:

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y := {y ∈ X|d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .
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In 2007, a generalization of Theorem 2.4 was proved by Aydi and Czerwik [14] in
generalized b-metric spaces.

Theorem 2.5 ([14]). Let (X,D,K) be a complete generalized b-metric space and T :
X → X satisfies the condition

D(T (x), T (y)) ≤ ϕ(D(x, y)),

for all x, y ∈ X and D(x, y) <∞, where ϕ : [0,∞)→ [0,∞) is nondecreasing and

lim
n→∞

ϕn(z) = 0,

for z > 0. Then for each given element x ∈ X, either

D(Tnx, Tn+1x) =∞,
for all nonnegative integers n or there exists a positive integer k such that the following
assertions hold:

(1) D(T kx, T k+1x) <∞;
(2) the sequence {Tnx} converges to a fixed point u of T ;
(3) u is the unique fixed point of T in the set B := {y ∈ X|D(T kx, y) <∞}.

Remark 2.6. In Theorem 2.5, if K = 1 and a function ϕ : [0,∞)→ [0,∞) is defined by

ϕ(t) = Lt,

for all t ∈ [0,∞), where L ∈ [0, 1), then this theorem reduces to Theorem 2.4.

Remark 2.7. In Theorem 2.5, if u is a fixed point of T and a function ϕ : [0,∞)→ [0,∞)
defined by

ϕ(t) = Lt,

for all t ∈ [0,∞), where L ∈ [0, 1) with KL < 1, then for each y ∈ X, we have

D(u, y) ≤ K [D(u, Ty) +D(Ty, y)]

= K [D(Tu, Ty) +D(Ty, y)]

= K [LD(u, y) +D(Ty, y)] .

This implies that

D(u, y) ≤
(

K

1−KL

)
D(Ty, y),

for all y ∈ X.

Elegancy of the above fixed point result fascinates several mathematicians. Subse-
quently, stability results for several functional equations having the full force of such
fixed point result were obtained.

3. Main Results

Throughout this section, let X be a normed space, Y be a (β, p)−Banach space and
f : X → Y be a mapping. For each x, y ∈ X, we will use the following symbol:

Df(x, y) :=f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)

− 13f(x+ y)− 13f(x− y) + 24f(y)− 12f(2y).

First, we give an auxiliary lemmas.
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Lemma 3.1. Let X be a normed space, Y be a (β, p)−Banach space and f : X → Y be
a mapping. If f satisfies (1.7), then f is of the form

21f(x+ 2y) + 21f(x− 2y)− 84f(x+ y)− 84f(x− y) + 126f(x)

+70f(y)− 30f(−y)− 33f(2y) + 15f(−2y)− f(4y) = 0, (3.1)

for all x, y ∈ X.

Proof. Suppose that f satisfies (1.7). Substituting x by x+ 3y into (1.7), we get

f(x+ 6y) + f(x) + f(x+ 5y) + f(x+ y) + 22f(x+ 3y)− 13f(x+ 4y)

−13f(x+ 2y) + 24f(y)− 12f(2y) = 0, (3.2)

for all x, y ∈ X. Substituting x by x+ 2y into (1.7), we get

f(x+ 5y) + f(x− y) + f(x+ 4y) + f(x) + 22f(x+ 2y)− 13f(x+ 3y)

−13f(x+ y) + 24f(y)− 12f(2y) = 0, (3.3)

for all x, y ∈ X. From (3.2) and (3.3), we obtain

f(x+ 6y)− 14f(x+ 4y) + 35f(x+ 3y)− 35f(x+ 2y)

+ 14f(x+ y)− f(x− y) = 0, (3.4)

for all x, y ∈ X. Substituting y by −y into (3.4), we get

f(x− 6y)− 14f(x− 4y) + 35f(x− 3y)− 35f(x− 2y)

+ 14f(x− y)− f(x+ y) = 0, (3.5)

for all x, y ∈ X. From (3.4) and (3.5), we obtain

f(x+6y) + f(x−6y)− 14f(x+4y)− 14f(x−4y) + 35f(x+3y) + 35f(x−3y)

−35f(x+ 2y)− 35f(x− 2y) + 13f(x+ y) + 13f(x− y) = 0,
(3.6)

for all x, y ∈ X. Substituting y by 2y into (1.7), we have

f(x+ 6y) + f(x− 6y) + f(x+ 4y) + f(x− 4y) + 22f(x)− 13f(x+ 2y)

−13f(x− 2y) + 24f(2y)− 12f(4y) = 0, (3.7)

for all x, y ∈ X. From (3.6) and (3.7), we obtain

15f(x+ 4y) + 15f(x− 4y)− 35f(x+ 3y)− 35f(x− 3y) + 22f(x+ 2y)

+ 22f(x− 2y)− 13f(x+ y)− 13f(x− y) + 22f(x) + 24f(2y)− 12f(4y) = 0,
(3.8)

for all x, y ∈ X. Substituting x by x+ y into (1.7), we get

f(x+ 4y) + f(x− 2y) + f(x+ 3y) + f(x− y) + 22f(x+ y)− 13f(x+ 2y)

−13f(x) + 24f(y)− 12f(2y) = 0, (3.9)

for all x, y ∈ X. Substituting y by −y into (3.9), we have

f(x− 4y) + f(x+ 2y) + f(x− 3y) + f(x+ y) + 22f(x− y)

− 13f(x− 2y)− 13f(x) + 24f(−y)− 12f(−2y) = 0, (3.10)
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for all x, y ∈ X. From (3.9) and (3.10), we obtain

f(x+ 4y) + f(x− 4y) + f(x+ 3y) + f(x− 3y)− 12f(x+ 2y)− 12f(x− 2y)

+ 23f(x+ y) + 23f(x− y)− 26f(x) + 24f(y)− 12f(2y) + 24f(−y)

− 12f(−2y) = 0, (3.11)

thus

15f(x+ 4y) + 15f(x− 4y) + 15f(x+ 3y) + 15f(x− 3y)− 180f(x+ 2y)

− 180f(x− 2y) + 345f(x+ y) + 345f(x− y)− 390f(x) + 360f(y) + 360f(−y)

− 180f(2y)− 180f(−2y) = 0, (3.12)

for all x, y ∈ X. From (3.8) and (3.12), we obtain

50f(x+ 3y) + 50f(x− 3y)− 202f(x+ 2y)− 202f(x− 2y) + 358f(x+ y)

+ 358f(x− y)− 412f(x) + 360f(y) + 360f(−y)− 204f(2y)

− 180f(−2y) + 12f(4y) = 0, (3.13)

for all x, y ∈ X. From (1.7), we get

50f(x+ 3y) + 50f(x− 3y) + 50f(x+ 2y) + 50f(x− 2y)− 650f(x+ y)

−650f(x− y) + 1100f(x) + 1200f(y)− 600f(2y) = 0, (3.14)

for all x, y ∈ X. From (3.13) and (3.14), we have

252f(x+ 2y) + 252f(x− 2y)− 1008f(x+ y)− 1008f(x− y) + 1512f(x)

+840f(y)− 360f(−y)− 396f(2y) + 180f(−2y)− 12f(4y) = 0, (3.15)

thus

21f(x+ 2y) + 21f(x− 2y)− 84f(x+ y)− 84f(x− y) + 126f(x)

+70f(y)− 30f(−y)− 33f(2y) + 15f(−2y)− f(4y) = 0, (3.16)

for all x, y ∈ X.

Lemma 3.2. Let X be a normed space, Y be a (β, p)-Banach space and f : X → Y be a
mapping satisfying (1.7). Then the following assertions hold:

(1) f is even if and only if f is quartic;
(2) f is odd if and only if f is additive.

Proof. Replacing x and y by 0 in (1.7), we have f(0) = 0.

(1) It is easy to see that if f is quartic, then f is even (see in [5]). Next, we will show
that if f is even, then f is quartic. Suppose that f is even. By Lemma 3.1, f is of the
form (3.1). Putting x = 0 in (3.1), since f is even and f(0) = 0, we obtain

24f(2y)− 128f(y)− f(4y) = 0, (3.17)

for all y ∈ X. It follows the proof of Lemma 3.1 that

15f(x+ 4y) + 15f(x− 4y)− 35f(x+ 3y)− 35f(x− 3y) + 22f(x+ 2y)

+ 22f(x− 2y)− 13f(x+ y)− 13f(x− y) + 22f(x) + 24f(2y)

− 12f(4y) = 0, (3.18)
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for all x, y ∈ X. Putting x = 0 in (3.18), since f is even and f(0) = 0, we obtain

30f(4y)− 70f(3y) + 44f(2y)− 26f(y) + 24f(2y)− 12f(4y) = 0,

thus

9f(4y)− 35f(3y) + 34f(2y)− 13f(y) = 0, (3.19)

for all y ∈ X. From (3.17), we get

216f(2y)− 1152f(y)− 9f(4y) = 0, (3.20)

for all y ∈ X. From (3.19) and (3.20), we have

−35f(3y) + 250f(2y)− 1165f(y) = 0, (3.21)

for all y ∈ X. Letting x = 0 in (1.7), since f is even and f(0) = 0, we obtain

f(3y)− 5f(2y)− f(y) = 0,

thus

35f(3y)− 175f(2y)− 35f(y) = 0, (3.22)

for all y ∈ X. From (3.21) and (3.22), we get

f(2y) = 16f(y), (3.23)

for all y ∈ X. From (3.1), we have

f(x+ 2y) + f(x− 2y)− 4f(x+ y)− 4f(x− y) + 6f(x)− 24f(y) = 0, (3.24)

for all x, y ∈ X. So f is a quartic mapping.

(2) It is easy to see that if f is additive, then f is add. So we must show that if f is
odd, then f is additive. Suppose that f is odd. By Lemma 3.1, f is of the form (3.1).
Substituting y by −y into (1.7), since f is odd, we get

f(x+ 3y) + f(x− 3y) + f(x+ 2y) + f(x− 2y) + 22f(x)− 13f(x+ y)

−13f(x− y)− 24f(y) + 12f(2y) = 0, (3.25)

for all x, y ∈ X. From (1.7) and (3.25), we obtain

f(2y) = 2f(y), (3.26)

for all y ∈ X. From (3.1) and (3.26), we have

f(x+ 2y) + f(x− 2y)− 4f(x+ y)− 4f(x− y) + 6f(x) = 0, (3.27)

for all x, y ∈ X. Substituting x by 2x into (3.27) and using (3.26), we get

2f(2x+ y) + 2f(2x− y)− f(x+ y)− f(x− y)− 6f(x) = 0, (3.28)

for all x, y ∈ X. Interchanging x into y in (3.27), we have

f(2x+ y)− f(2x− y)− 4f(x+ y) + 4f(x− y) + 6f(y) = 0, (3.29)

for all x, y ∈ X. Substituting y by −y into (3.29), we get

f(2x− y)− f(2x+ y)− 4f(x− y) + 4f(x+ y)− 6f(y) = 0, (3.30)

for all x, y ∈ X. Replacing x by 2x in (3.28) and using (3.26), we get

2f(4x+ y) + 2f(4x− y)− f(2x+ y)− f(2x− y)− 12f(x) = 0, (3.31)
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for all x, y ∈ X. From (3.28) and (3.31), we obtain

4f(4x+ y) + 4f(4x− y)− f(x+ y)− f(x− y)− 30f(x) = 0, (3.32)

for all x, y ∈ X. Substituting y by y + 2x into (3.28), we have

4f(4x+ y)− 4f(y)− 2f(3x+ y) + 2f(x+ y)− 12f(x) = 0, (3.33)

for all x, y ∈ X. Replacing y by −y in (3.33), we get

4f(4x− y) + 4f(y)− 2f(3x− y) + 2f(x− y)− 12f(x) = 0, (3.34)

for all x, y ∈ X. From (3.33) and (3.34), we obtain

4f(4x+ y) + 4f(4x− y)− 2f(3x+ y)− 2f(3x− y) + 2f(x+ y)

+ 2f(x− y)− 24f(x) = 0, (3.35)

for all x, y ∈ X. From (3.32) and (3.35), we obtain

2f(3x+ y) + 2f(3x− y)− 3f(x+ y)− 3f(x− y)− 6f(x) = 0, (3.36)

for all x, y ∈ X. Substituting y by x− y into (3.28), we have

2f(3x− y) + 2f(x+ y)− f(2x− y)− f(y)− 6f(x) = 0, (3.37)

for all x, y ∈ X. Substituting y by x+ y into (3.28), we get

2f(3x+ y) + 2f(x− y)− f(2x+ y) + f(y)− 6f(x) = 0, (3.38)

for all x, y ∈ X. From (3.37) and (3.38), we obtain

2f(3x+ y) + 2f(3x− y)− f(2x+ y)− f(2x− y) + 2f(x+ y)

+ 2f(x− y)− 12f(x) = 0, (3.39)

for all x, y ∈ X. From (3.28) and (3.39), we have

4f(3x+ y) + 4f(3x− y) + 3f(x+ y) + 3f(x− y)− 30f(x) = 0, (3.40)

for all x, y ∈ X. From (3.36) and (3.40), we have

f(x+ y) + f(x− y)− 2f(x) = 0, (3.41)

for all x, y ∈ X. Interchanging x into y in (3.41), we get

f(x+ y)− f(x− y)− 2f(y) = 0, (3.42)

for all x, y ∈ X. From (3.41) and (3.42), we obtain

f(x+ y) = f(x) + f(y), (3.43)

for all x, y ∈ X. So f is an additive mapping.

Next, we are going to consider the stability of the additive-quartic functional equation
(1.7).

Theorem 3.3. Let X be a normed space, Y be a (β, p)−Banach space with the modulus
of concavity K and φ : X ×X → [0,∞) be a function such that

φ(2x, 2y) ≤ Lφ(x, y), (3.44)

for all x, y ∈ X, where 0 ≤ L < 1 with KL < 1. Suppose that f : X → Y is a mapping
satisfying f(0) = 0 and

‖Df(x, y)‖ ≤ φ(x, y), (3.45)
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for all x, y ∈ X. Then there exist a unique quartic function Q : X → Y and a unique
additive function A : X → Y such that∥∥∥∥f(x) + f(−x)

2
−Q(x)

∥∥∥∥ ≤ (
11βK6

480β − 30βKL

)
ψ̃(x), (3.46)

∥∥∥∥f(x)− f(−x)

2
−A(x)

∥∥∥∥ ≤ (
K2

48β − 24βKL

)
ψ̃(x), (3.47)

and

‖f(x)−Q(x)−A(x)‖ ≤
(

11βK7

480β − 30βKL
+

K3

48β − 24βKL

)
ψ̃(x), (3.48)

for all x ∈ X, where

ψ̃(x) := ψ(3x, x) + ψ(2x, x) + ψ(x, x) + ψ(0, x) + ψ(0, 2x)

such that ψ(x, y) := φ(x, y) + φ(−x,−y).

Proof. Let Ω := {g : X → Y |g(0) = 0}. Define a generalized b-metric d on Ω by

d(g, h) = inf{c ∈ R+| ‖g(x)− h(x)‖ ≤ cψ̃(x) for all x ∈ X}.

Since Y is a (β, p)−Banach space, (Ω, d) is a generalized complete b-metric space. Let

f1 : X → Y be the function defined by f1(x) := f(x)+f(−x)
2 for all x ∈ X. Then f1(0) = 0

and f1(x) = f1(−x) for all x ∈ X. Substituting x by −x and y by −y into (3.45), we get

‖Df(−x,−y)‖ ≤ φ(−x,−y), (3.49)

for all x, y ∈ X. From (3.45) and (3.49), we obtain

‖Df1(x, y)‖ ≤ K

2β
ψ(x, y), (3.50)

for all x, y ∈ X. Putting x = 3y in (3.50) and using the fact that f1(0) = 0, we have

‖f1(6y) + f1(5y)− 13f1(4y) + 22f1(3y)− 25f1(2y) + 25f1(y)‖ ≤ K

2β
ψ(3y, y),

(3.51)

for all y ∈ X. Putting x = 2y in (3.50) and using the fact that f1(0) = 0, we get

‖f1(5y) + f1(4y)− 13f1(3y) + 10f1(2y) + 12f1(y)‖ ≤ K

2β
ψ(2y, y), (3.52)

for all y ∈ X. From (3.51) and (3.52), we obtain

‖f1(6y)−14f1(4y)+35f1(3y)−35f1(2y)+13f1(y)‖ ≤ K2

2β
(ψ(3y, y) + ψ(2y, y)) ,

(3.53)

for all y ∈ X. Putting x = 0 in (3.50), we have

‖2f1(3y)− 10f1(2y)− 2f1(y)‖ ≤ K

2β
ψ(0, y), (3.54)

and so

‖f1(3y)− 5f1(2y)− f1(y)‖ ≤ K

4β
ψ(0, y), (3.55)
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for all y ∈ X. Replacing y by 2y in (3.55), we obtain

‖f1(6y)− 5f1(4y)− f1(2y)‖ ≤ K

4β
ψ(0, 2y), (3.56)

for all y ∈ X. From (3.53) and (3.56), we obtain

‖−9f1(4y) + 35f1(3y) −34f1(2y) + 13f1(y)‖

≤ K3

2β
(ψ(3y, y) + ψ(2y, y)) +

K2

4β
ψ(0, 2y), (3.57)

for all y ∈ X. Putting x = y in (3.50), we have

‖f1(4y) + f1(3y)− 24f1(2y) + 47f1(y)‖ ≤ K

2β
ψ(y, y), (3.58)

and so

‖9f1(4y) + 9f1(3y)− 216f1(2y) + 423f1(y)‖ ≤ 9βK

2β
ψ(y, y), (3.59)

for all y ∈ X. From (3.57) and (3.59), we obtain

‖44f1(3y) −250f1(2y) + 436f1(y)‖

≤K
4

2β
(ψ(3y, y) + ψ(2y, y)) +

K3

4β
ψ(0, 2y) +

9βK2

2β
ψ(y, y), (3.60)

for all y ∈ X. From (3.55), we have

‖44f1(3y)− 220f1(2y)− 44f1(y)‖ ≤ 11βKψ(0, y), (3.61)

for all y ∈ X. From (3.60) and (3.61), we obtain

‖−30f1(2y) + 480f1(y)‖ ≤K
5

2β
(ψ(3y, y) + ψ(2y, y)) +

K4

4β
ψ(0, 2y)

+
9βK3

2β
ψ(y, y) + 11βK2ψ(0, y), (3.62)

for all y ∈ X. Thus, we have∥∥∥∥f1(y)− f1(2y)

16

∥∥∥∥ ≤ K5

960β
(ψ(3y, y) + ψ(2y, y)) +

K4

1920β
ψ(0, 2y)

+
9βK3

960β
ψ(y, y) +

11β

480β
K2ψ(0, y)

≤ 11β

480β
K5 (ψ(3y, y) + ψ(2y, y) + ψ(y, y) + ψ(0, y) + ψ(0, 2y))

=
11β

480β
K5ψ̃(y), (3.63)

for all y ∈ X. This implies that

d(Jef1, f1) ≤ 11β

480β
K5. (3.64)

Define a mapping Je : Ω→ Ω by

(Jeg)(x) = 2−4g(2x),
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for all x ∈ X and for all g ∈ Ω. We want to show that

d(Jeg, Jeh) ≤ L

24β
d(g, h),

for all g, h ∈ Ω. Let g, h ∈ Ω. If d(g, h) =∞ for all g, h ∈ Ω, then the above inequality is
true. So we may assume that d(g, h) <∞. Assume that

Ce := {c ∈ R+|‖g(x)− h(x)‖ ≤ cψ̃(x) for all x ∈ X}. (3.65)

Since d(g, h) <∞, we obtain Ce 6= ∅. Suppose that c ∈ Ce. For each x ∈ X, we have

‖(Jeg)(x)− (Jeh)(x)‖ =
∥∥2−4g(2x)− 2−4h(2x)

∥∥
= |2|−4β ‖g(2x)− h(2x)‖

≤ c

24β
ψ̃(2x)

≤ cL
24β

ψ̃(x),

and so

d(Jeg, Jeh) ≤ cL

24β
.

By taking the infimum on c ∈ Ce, we obtain

d(Jeg, Jeh) ≤ L

24β
d(g, h).

Therefore, we can conclude that

d(Jeg, Jeh) ≤ L

24β
d(g, h).

for all g, h ∈ Ω. By taking a function ϕ : [0,∞)→ [0,∞) in Theorem 2.5 by

ϕ(t) =
L

24β
t,

for all t ∈ [0,∞), there is the unique fixed point Q of Je in Ω such that {Jne f1} converges
to Q in (Ω, d). By Remark 2.7 and (3.64), we get

d(Q, f1) ≤
(

K

1− 2−4βKL

)
d(Jef1, f1)

≤ 11βK6

480β − 30βKL
. (3.66)

By (3.45), we have∥∥∥∥Df1(2nx, 2ny)

24n

∥∥∥∥p =
1

24nβp

∥∥∥∥Df(2nx, 2ny) +Df(−2nx,−2ny)

2

∥∥∥∥p
≤ 1

2βp+4nβp
(‖Df(2nx, 2ny)‖p + ‖Df(−2nx,−2ny)‖p)

≤ 1

2βp+4nβp
(φp(2nx, 2ny) + φp(−2nx,−2ny))

≤ 1

2βp+4nβp
Lnp (φp(x, y) + φp(−x,−y))

=
1

2βp

(
L

24β

)np
(φp(x, y) + φp(−x,−y)) ,
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for all x, y ∈ X. Letting n→∞ in the last inequality, we have

DQ(x, y) = 0, (3.67)

for all x, y ∈ X. By using the fact that f1(0) = 0, we obtain Q(0) = 0. Since f1 is even,
it yields that

‖Q(x)−Q(−x)‖ =
∥∥∥Q(x)− lim

n→∞
Jne f1(−x)

∥∥∥
=

∥∥∥Q(x)− lim
n→∞

Jne f1(x)
∥∥∥

= 0,

for all x ∈ X and so Q is even. By Lemma 3.2, we have Q is a quartic mapping. From
(3.66) we get∥∥∥∥f(x) + f(−x)

2
−Q(x)

∥∥∥∥ ≤ (
11βK6

480β − 30βKL

)
ψ̃(x), (3.68)

for all x ∈ X. Let f2 : X → Y be the function defined by f2(x) := f(x)−f(−x)
2 for all

x ∈ X. Then f2(0) = 0 and f2(−x) = −f2(x) for all x ∈ X. From (3.45) we obtain

‖Df2(x, y)‖ ≤ K

2β
ψ(x, y), (3.69)

for all x, y ∈ X. Putting x = 0 in (3.69), and using the facts that f2 is odd and f2(0) = 0,
we have

‖24f2(y)− 12f2(2y)‖ ≤ K

2β
ψ(0, y), (3.70)

and so ∥∥∥∥f2(y)− f2(2y)

2

∥∥∥∥ ≤ K

24β2β
ψ(0, y)

≤ K

48β
(ψ(3y, y) + ψ(2y, y) + ψ(y, y) + ψ(0, y) + ψ(0, 2y))

=
K

48β
ψ̃(y), (3.71)

for all y ∈ X. This implies that

d(Jof2, f2) ≤ K

48β
K5. (3.72)

Define a mapping Jo : Ω→ Ω by

(Jog)(x) = 2−1g(2x),

for all x ∈ X and for all g ∈ Ω. We want to show that

d(Jog, Joh) ≤ L

2β
d(g, h), (3.73)

for all g, h ∈ Ω. Let g, h ∈ Ω. If d(g, h) = ∞ for all g, h ∈ Ω, then the inequality (3.73)
holds. So we may assume that d(g, h) <∞. Assume that

Co := {c ∈ R+|‖g(x)− h(x)‖ ≤ cψ̃(x) for all x ∈ X}. (3.74)
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Since d(g, h) <∞, we obtain Co 6= ∅. Suppose that c ∈ Co. For each x ∈ X, we have

‖(Jog)(x)− (Jo)h(x)‖ =
∥∥2−1g(2x)− 2−1h(2x)

∥∥
= 2−β ‖g(2x)− h(2x)‖

≤ c

2β
ψ̃(2x)

≤ cL

2β
ψ̃(x),

and so

d(Jog, Joh) ≤ cL

2β
.

By taking the infimum on c ∈ Co, we obtain

d(Jog, Joh) ≤ L

2β
d(g, h).

Therefore, we can conclude that

d(Jog, Joh) ≤ L

2β
d(g, h).

for all g, h ∈ Ω. By taking a function ϕ : [0,∞)→ [0,∞) in Theorem 2.5 by

ϕ(t) =
L

2β
t,

for all t ∈ [0,∞), there is the unique fixed point A of Jo in Ω such that {Jno f2} converges
to A in (Ω, d). By Remark 2.7 and (3.72), we get

d(A, f2) ≤
(

K

1− 2−βKL

)
d(Jof2, f2)

≤ K2

48β − 24βKL
, (3.75)

for all x ∈ X. By (3.45), we have∥∥∥∥Df2(2nx, 2ny)

2n

∥∥∥∥p =
1

2nβp

∥∥∥∥Df(2nx, 2ny) +Df(−2nx,−2ny)

2

∥∥∥∥p
≤ 1

2βp+nβp
(‖Df(2nx, 2ny)‖p + ‖Df(−2nx,−2ny)‖)p

≤ 1

2βp+nβp
(φp(2nx, 2ny) + φp(−2nx,−2ny))

≤ 1

2βp+nβp
Lnp (φp(x, y) + φp(−x,−y))

=
1

2βp

(
L

2β

)np
(φp(x, y) + φp(−x,−y)) ,

for all x, y ∈ X. Letting n→∞ in the last inequality, we have

DA(x, y) = 0, (3.76)
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for all x, y ∈ X. By using the fact that f2(0) = 0, we obtain A(0) = 0. Since f2 is odd,
it yields that

‖A(x) +A(−x)‖ =
∥∥∥A(x) + lim

n→∞
Jno f2(−x)

∥∥∥
=

∥∥∥A(x)− lim
n→∞

Jno f2(x)
∥∥∥

= 0,

for all x ∈ X and so A is odd. By Lemma 3.2, we have A is an additive mapping. From
(3.75) we get∥∥∥∥f(x)− f(−x)

2
−A(x)

∥∥∥∥ ≤ K2

48β − 24βKL
ψ̃(x), (3.77)

for all x ∈ X. Since f(x) = f1(x) + f2(x) for all x ∈ X, from (3.68) and (3.77) it follows
that

‖f(x)−Q(x)−A(x)‖ = ‖f1(x) + f2(x)−Q(x)−A(x)‖
≤K (‖f1(x)−Q(x)‖+ |f2(x)−A(x)‖)

≤K
(

11βK6

480β − 30βKL
+

K2

48β − 24βKL

)
ψ̃(x) (3.78)

=

(
11βK7

480β − 30βKL
+

K3

48β − 24βKL

)
ψ̃(x), (3.79)

for all x ∈ X.
Now, we show the uniqueness of Q and A. Suppose that Q′, A′ : X → Y satisfies (3.46)

and (3.47), respectively. Since Q(2x) = 16Q(x), by using (3.46), we have

‖Q(x)−Q′(x)‖ =

∥∥∥∥Q(2nx)

16n
− Q′(2nx)

16n

∥∥∥∥
=

1

16nβ
‖Q(2nx)− f1(2nx)−Q′(2nx) + f1(2nx)‖

≤ K

16nβ
(‖Q(2nx)− f1(2nx)‖+ ‖Q′(2nx)− f1(2nx)‖)

≤ 2K

16nβ

(
11βK6

480β − 30βKL

)
ψ̃(2nx)

≤ 2K

16nβ

(
11βK6

480β − 30βKL

)
Lnψ̃(x),

for all x ∈ X. Since the right-hand side of the above inequality converges to 0 as n→∞,
we obtain that Q(x) = Q′(x) for all x ∈ X and so Q = Q′. Similarly, we get A = A′.

Next, we give the stability result which is similar to Theorem 3.3. In order to avoid
repetition, the proof of this result is omitted.

Theorem 3.4. Let X be a normed space, Y be a (β, p)−Banach space with the modulus
of concavity K and φ : X ×X → [0,∞) be a function such that

φ
(x

2
,
y

2

)
≤ L

24β
φ(x, y), (3.80)
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for all x, y ∈ X, where 0 ≤ L < 1 with KL < 1. Suppose that f : X → Y is a mapping
satisfying f(0) = 0 and

‖Df(x, y)‖ ≤ φ(x, y), (3.81)

for all x, y ∈ X. Then there exist a unique quartic function Q : X → Y and a unique
additive function A : X → Y such that∥∥∥∥f(x) + f(−x)

2
−Q(x)

∥∥∥∥ ≤ 11βK6

30β − 30βKL
ψ̃(x), (3.82)

∥∥∥∥f(x)− f(−x)

2
−A(x)

∥∥∥∥ ≤ K2

24β − 3βKL
ψ̃(x) (3.83)

and

‖f(x)−Q(x)−A(x)‖ ≤
(

11βK7

30β − 30βKL
+

K3

24β − 3βKL

)
ψ̃(x), (3.84)

for all x ∈ X, where

ψ̃(x) := ψ

(
3x

2
,
x

2

)
+ ψ

(
x,
x

2

)
+ ψ

(x
2
,
x

2

)
+ ψ

(
0,
x

2

)
+ ψ(0, x)

such that ψ(x, y) := φ(x, y) + φ(−x,−y).

4. Conclusions

The main results of this paper are two stability results for the additive-quartic func-
tional equation (1.7). These results can be applied to many stability results by taking the
specific control function φ. For instance, the readers can take the function φ in Theorem
3.3 by

φ(x, y) =

{
0, if x = 0 or y = 0;
λ (‖x‖s + ‖y‖s) , otherwise

or

φ(x, y) =

{
0, if x = 0 or y = 0;
λ (‖x‖s ‖y‖s + ‖x‖s + ‖y‖s) , otherwise,

where λ is a positive real number and s is a negative real number such that 2sK < 1.
Furthermore, the readers can use the technique in the proof in this paper for investigating
the stability results for various kinds of functional equations in quasi-β-Banach spaces.
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