Thai Journal of **Math**ematics Volume 18 Number 2 (2020) Pages 563–575

http://thaijmath.in.cmu.ac.th

A Generalization of Subnexuses Based on

N-Structures

Morteza Norouzi $^{1,\ast},$ Ameneh Asadi 2 and Young Bae Jun 3

¹Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran e-mail : m.norouzi@ub.ac.ir

² Department of Mathematics, Payame Noor University, Tehran, Iran e-mail : asadi8232@yahoo.com

³ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea e-mail : skywine@gmail.com

Abstract In this paper, we generalize the concepts of \mathcal{N} -subnexuses of types (\in, q) , $(\in, \in \lor q)$ and $(q, \in \lor q)$, and introduce the notions of \mathcal{N} -subnexuses of types (\in, q_k) , $(\in, \in \lor q_k)$ and $(q, \in \lor q_k)$. We investigate their basic properties, characterize subnexuses by \mathcal{N} -subnexuses of type $(\in, \in \lor q_k)$, and give some characterizations for \mathcal{N} -subnexuses of types (\in, q_k) and $(q, \in \lor q_k)$. Moreover, we define \mathcal{N} -subnexuses of type $(\overline{\in}, \overline{\in} \lor q_k)$ and discuss on their different properties.

MSC: 08A72; 03E20; 03G15 **Keywords:** nexus; subnexus; N-structure; q_k -support; $\in \forall q_k$ -support

Submission date: 17.12.2018 / Acceptance date: 01.03.2019

1. INTRODUCTION

Nexuses are a type of structure algebras which defined by M. Bolourian in [1], where some properties of them such as sub-nexuses, cyclic nexuses and homomorphism of nexuses were investigated. Next, studies from algebraic view generalized on nexuses. D. Afkhami et al. [2] defined the notion of fraction over a nexus and studied its basic properties. Moreover D. Afkhami et al. [3] defined the soft nexuses over a nexus and studied the prime and maximal soft subnexuses over a nexus. H. Hedayati et al. [4] introduced normal, maximal and product fuzzy subnexuses of a nexus. Also, about applications of nexuses can see [5] and [6].

After appearance of (α, β) -fuzzy substructures, based on the concepts of belongingness and quasi-coincidence for a fuzzy point of a fuzzy subset, those defined and studied on many algebraic structures which some of them can be seen in [7–14]. On the other hand, Jun et al. [15] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures, as a mathematical tool for dealing with negative information

⁽In memory of Dr. Hossein Hedayati)

(beside, fuzzy sets which relied on spreading positive information). They discussed \mathcal{N} -subalgebras and \mathcal{N} -ideals in BCK/BCI/BCH-algebras (see [15–19]).

By combining the above concepts, Norouzi et al. [20] introduced the notion of a subnexus based on \mathcal{N} -function (briefly, \mathcal{N} -subnexus), and investigated related properties. They discussed characterization of \mathcal{N} -subnexus. They also introduced the notion of \mathcal{N} -subnexus of type (α, β) with

$$(\alpha,\beta) \in \{(\in,\in), (\in,q), (\in,\in\lor q), (q,\in), (q,q), (q,\in\lor q)\},\$$

and investigated their basic properties. Now, in this paper, we generalize the concepts in [20] and introduce the notion of \mathcal{N} -subnexus of type (\in, q_k) , $(\in, \in \lor q_k)$, (q, q_k) , $(q, \in \lor q_k)$, and also investigate basic properties of them. In this way, connection of the notions is studied. Characterizations of \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ are given. Conditions for an \mathcal{N} -structure to be an \mathcal{N} -subnexus of type $(q, \in \lor q_k)$ are provided. Moreover, the notion of \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor q_k)$ is defined and some characterizations of it are established, where we can see some differences with other similar (α, β) -substructures.

2. Preliminaries

In this section we give some definitions and results which we need to develop our paper. They have been brought of [3, 4, 21], in connection with nexuses, and [18, 19] in connection with \mathcal{N} -structures.

An *address* is a sequence of $N^* = \mathbb{N} \cup \{0\}$ such that $a_k = 0$ implies that $a_i = 0$ for all $i \geq k$. The sequence of zero is called the *empty address* and denoted by (). In other word, every nonempty address is of the form $(a_1, a_2, \dots, a_n, 0, 0, \dots)$ where $n \in \mathbb{N}$, and it is denoted by (a_1, a_2, \dots, a_n) .

Definition 2.1. A set X of addresses is called a *nexus* if

- (1) $(a_1, a_2, \dots, a_n) \in X$ implies that $(a_1, \dots, a_{n-1}, t) \in X$ for all $0 \le t \le a_n$.
- (2) $(a_i)_{i=1}^{\infty} \in X$ implies that $(a_1, a_2, \dots, a_n) \in X$ for all $n \in \mathbb{N}$.

Example 2.2. A set $X = \{(), (1), (2), (3), (1, 1), (1, 2), (3, 1), (3, 2)\}$ is a nexus. But, $X' = \{(), (1), (2), (2, 2)\}$ is not a nexus since (2, 2) is an element of X' but $(2, 1) \notin X'$.

Let X be a nexus and $w \in X$. The *level* of w, denoted by l(w), is said to be:

- (i) 0 if w = ().
- (ii) *n* if $w = (a_1, a_2, \ldots, a_n)$ for some $a_n \in \mathbb{N}$.
- (iii) ∞ if w is an infinite sequence of N.

Definition 2.3. Let $v = (a_i)$ and $w = (b_i)$ be addresses where $a_i, b_i \in \mathbb{N}$. Then $v \leq w$ if l(v) = 0 or one of the following cases is satisfied:

- (i) If l(v) = 1, i.e., $v = (a_1)$ for $a_1 \in \mathbb{N}$, then $l(w) \ge 1$ and $a_1 \le b_1$.
- (ii) If $1 < l(v) < \infty$, then $l(v) \le l(w)$ and $a_{l(v)} \le b_{l(v)}$ and for every $1 \le i < l(v)$ we have, $a_i = b_i$.
- (iii) If $l(w) = \infty$, then v = w.

Definition 2.4. A nonempty subset S of a nexus X is called a *subnexus* of X if S itself is a nexus. The set of all subnexuses of X is denoted by SUB(X).

Note that a subset S of a nexus X is a subnexus of X if and only if it satisfies:

$$(\forall v, w \in X)(v \le w, w \in S \implies v \in S).$$

$$(2.1)$$

Example 2.5. Consider a nexus

 $X = \{(), (1), (2), (3), (1, 1), (2, 1), (3, 1), (3, 1, 1), (3, 1, 2)\}.$ Then $X_1 = \{(), (1), (2), (3), (2, 1)\}, X_2 = \{(), (1), (2), (1, 1), (2, 1)\}$ and $X_3 = \{(), (1), (2), (3), (3, 1)\}$ are subnexuses of X.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$
$$\bigwedge \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Let F(X, [-1, 0]) be the set of all functions from the set X to [-1, 0] (for briefly every element of F(X, [-1, 0]) is said to be \mathcal{N} -function on X). An \mathcal{N} -structure is a pair (X, f)of X and an \mathcal{N} -function f on X. For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0)$, the set $C(f; \alpha) = \{x \in X \mid f(x) \leq \alpha\}$ is called the *closed support* of (X, f) related to α , and the set $O(f; \alpha) = \{x \in X \mid f(x) \leq \alpha\}$ is said to be the *open support* of (X, f) related to α .

Let $\alpha \in [-1,0)$ and (X, f) be an \mathcal{N} -structure in which f is given by

$$f(y) = \begin{cases} 0 & \text{if } y \neq x, \\ \alpha & \text{if } y = x. \end{cases}$$

In this case, f is denoted by x_{α} , and (X, x_{α}) is said to be a *point* \mathcal{N} -structure with support x and value α . For any \mathcal{N} -structure (X, g), we say that a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset (resp. \mathcal{N}_{q} -subset) of (X, g) if $g(x) \leq \alpha$ (resp. $g(x) + \alpha + 1 < 0$). If a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset or an \mathcal{N}_{q} -subset of (X, g), then we say (X, x_{α}) is an $\mathcal{N}_{\in \vee q}$ -subset of (X, g).

3. A Generalization of Subnexuses by \mathcal{N} -Function

In what follows, let X and (α, k) be a nexus and an arbitrary element of $[-1, 0) \times (-1, 0]$, respectively, unless otherwise specified.

For any \mathcal{N} -structure (X, g), we say that a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{q_k} -subset of (X, g) if $g(x) + \alpha - k + 1 < 0$. If a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset or an \mathcal{N}_{q_k} -subset of (X, g), then we say (X, x_{α}) is an $\mathcal{N}_{\in \vee q_k}$ -subset of (X, g).

Definition 3.1 ([20]). By a subnexus of X based on \mathcal{N} -function f (briefly, \mathcal{N} -subnexus of X), we mean an \mathcal{N} -structure (X, f) in which f satisfies the following assertion:

$$(\forall v, w \in X) (w \le v \implies f(w) \le f(v)).$$

$$(3.1)$$

Definition 3.2 ([20]). An \mathcal{N} -subnexus (X, f) is said to be of type

- (i) (\in, \in) (resp., (\in, q) and $(\in, \in \lor q)$) if whenever the point \mathcal{N} -structure (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f) then the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_{\in} -subset (resp., \mathcal{N}_{q} -subset and $\mathcal{N}_{\in \lor q}$ -subset) of (X, f) for all $v, w \in X$ with $v \leq w$.
- (ii) (q, \in) (resp., (q, q) and $(q, \in \lor q)$) if whenever the point \mathcal{N} -structure (X, w_{α}) is an \mathcal{N}_q -subset of (X, f) then the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_{\in} -subset (resp., \mathcal{N}_q -subset and $\mathcal{N}_{\in \lor q}$ -subset) of (X, f) for all $v, w \in X$ with $v \leq w$.

Definition 3.3. An \mathcal{N} -subnexus (X, f) is said to be of type

- (\in, q_k) if whenever the point \mathcal{N} -structure (X, w_α) is an \mathcal{N}_{\in} -subset of (X, f) then the point \mathcal{N} -structure (X, v_α) is an \mathcal{N}_{q_k} -subset of (X, f) for all $v, w \in X$ with $v \leq w$.
- $(\in, \in \lor q_k)$ if whenever the point \mathcal{N} -structure (X, w_α) is an \mathcal{N}_{\in} -subset of (X, f) then the point \mathcal{N} -structure (X, v_α) is an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f) for all $v, w \in X$ with $v \leq w$.
- $(q, \in \lor q_k)$ if whenever the point \mathcal{N} -structure (X, w_α) is an \mathcal{N}_q -subset of (X, f) then the point \mathcal{N} -structure (X, v_α) is an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f) for all $v, w \in X$ with $v \leq w$.

Example 3.4. Let (X, f) be an \mathcal{N} -structure in which

$$X = \{(), (1), (2), (1, 1), (1, 2), (1, 3), (1, 3, 1), (1, 3, 2)\}$$

is a nexus and f is defined as follows:

$$f = \begin{pmatrix} () & (1) & (2) & (1,1) & (1,2) & (1,3) & (1,3,1) & (1,3,2) \\ -1 & -0.9 & -0.93 & -0.95 & -0.94 & -0.96 & -0.97 & -0.99 \end{pmatrix}$$

Put k = -0.75. It is easy to see that in the nexus X we have

 $\begin{aligned} (1) &\leq (2), \ (1,1), \ (1,2), \ (1,3), \ (1,3,1), \ (1,3,2) \\ (1,1) &\leq (1,2), \ (1,3), \ (1,3,1), \ (1,3,2) \\ (1,2) &\leq (1,3), \ (1,3,1), \ (1,3,2) \\ (1,3) &\leq (1,3,1), \ (1,3,2) \\ (1,3,1) &\leq (1,3,2). \end{aligned}$

Since, $() \leq v$ and $f(()) \leq f(v)$ for all $v \in X$, clearly if (X, v_{α}) is an \mathcal{N}_{ϵ} -subset of (X, f) then $(X, ()_{\alpha})$ is an \mathcal{N}_{ϵ} -subset of (X, f) for all $\alpha \in [-1, 0)$. For $(1) \leq (2)$ we have $f(2) = -0.93 < \beta$ and $f(1) = -0.9 \not\leq \beta$ for all $\beta \in (-0.93, -0.9)$, but $f(1) + \beta + 0.75 + 1 < 0$. This means that if $(X, (2)_{\beta})$ is an \mathcal{N}_{ϵ} -subset of (X, f) then $(X, (1)_{\beta})$ is an $\mathcal{N}_{e^{-0.75}}$ -subset of (X, f). For $(1, 1) \leq (1, 2)$, since $f(1, 1) \leq f(1, 2)$, if $(X, (1, 2)_{\alpha})$ is an \mathcal{N}_{ϵ} -subset of (X, f) then $(X, (1, 1)_{\alpha})$ is an \mathcal{N}_{ϵ} -subset of (X, f) for all $\alpha \in (-0.94, 0)$. For $(1, 1) \leq (1, 3)$ and $\beta \in (-0.96, -0.95)$, if $(X, (1, 3)_{\beta})$ is an \mathcal{N}_{ϵ} -subset of (X, f) then $(X, (1, 1)_{\beta})$ is an \mathcal{N}_{ϵ} -subset of (X, f). By a similar manner, we can see the related implication is valid for all other cases. Therefore, (X, f) is an \mathcal{N} -subnexus of type $(\epsilon, \epsilon \vee q_k)$ with k = -0.75.

Example 3.5. Consider the nexus $X = \{(), (1), (1, 1), (1, 2), (1, 3)\}$ with an \mathcal{N} -function f is defined as follows:

$$f = \begin{pmatrix} () & (1) & (1,1) & (1,2) & (1,3) \\ -0.73 & -0.74 & -0.75 & -0.76 & -0.8 \end{pmatrix}$$

It is easy to see that (X, f) is an \mathcal{N} -subnexus of type (\in, q_k) with k = -0.4.

Example 3.6. Define an \mathcal{N} -function g on the set $X = \{(), (1), (2), (2, 1), (2, 2)\}$ as:

$$g = \begin{pmatrix} () & (1) & (2) & (2,1) & (2,2) \\ -0.9 & -0.8 & -0.7 & -0.5 & -0.3 \end{pmatrix}$$

Then (X, g) is an \mathcal{N} -subnexus of type $(q, \in \lor q_k)$ with k = -0.1.

We note that every \mathcal{N} -subnexus of type (\in, q_k) (resp., $(\in, \in \lor q_k)$ and $(q, \in \lor q_k)$) with k = 0 is an \mathcal{N} -subnexus of type (\in, q) (resp., $(\in, \in \lor q)$ and $(q, \in \lor q)$). But the converse is not true in general as seen in the following example.

Example 3.7. (1) Consider the nexus $X = \{(), (1), (2), (1, 1), (1, 2)\}$ and the \mathcal{N} -function f on X defined as

$$f = \begin{pmatrix} () & (1) & (2) & (1,1) & (1,2) \\ -1 & -0.7 & -0.73 & -0.74 & -0.75 \end{pmatrix}$$

It can be seen that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ which is not of type $(\in, \in \lor q_k)$ for k = -0.75. Indeed, we have $(1) \leq (2)$ and $(X, (2)_{-0.73})$ is an \mathcal{N}_{\in} -subset of (X, f), but $f((1)) \not\leq -0.73$ and $f((1)) - 0.73 - k + 1 = 0.32 \not< 0$. This implies that $(X, (1)_{-0.73})$ is not an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f) and so (X, f) is not an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ for k = -0.75.

(2) Let (X, f) be an \mathcal{N} -structure in which $X = \{(), (1), (1, 1), (1, 2)\}$ is a nexus and g is defined as follows:

$$g = \begin{pmatrix} () & (1) & (1,1) & (1,2) \\ -0.64 & -0.62 & -0.63 & -0.71 \end{pmatrix}.$$

Then (X, g) is an \mathcal{N} -subnexus of type (\in, q) , but (X, g) is not an \mathcal{N} -subnexus of type (\in, q_k) for k = -0.4, since $(1, 1) \leq (1, 2)$, $g((1, 2)) \leq -0.71$, $g((1, 1)) \not\leq -0.71$ and $g((1, 1)) - 0.71 + 0.4 + 1 \neq 0$.

(3) An \mathcal{N} -structure (X, f) in which $X = \{(), (1), (2), (1, 2)\}$ is a nexus and f is defined as follows:

$$f = \begin{pmatrix} () & (1) & (2) & (1,2) \\ -0.9 & -0.91 & -0.92 & -0.93 \end{pmatrix}.$$

is an \mathcal{N} -subnexus of type $(q, \in \forall q)$, but is not an \mathcal{N} -subnexus of type $(q, \in \forall q_k)$ for k = -0.9.

In the following, we give some characterizations for an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$.

Theorem 3.8. An \mathcal{N} -subnexus (X, f) is of type $(\in, \in \lor q_k)$ if and only if the following assertion is valid.

$$(\forall v, w \in X) \left(v \le w \Rightarrow f(v) \le \bigvee \left\{ f(w), \frac{k-1}{2} \right\} \right).$$
(3.2)

Proof. Suppose that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \forall q_k)$. For any $v, w \in X$, assume that $v \leq w$ and $f(w) > \frac{k-1}{2}$. If f(v) > f(w), then there exists $\beta \in [-1, 0)$ such that $f(v) > \beta \geq f(w)$. Thus the point \mathcal{N} -structure (X, w_β) is an \mathcal{N}_{\in} -subset of (X, f), but the point \mathcal{N} -structure (X, v_β) is not an \mathcal{N}_{\in} -subset of (X, f). Also

$$f(v) + \beta - k + 1 > 2\beta - k + 1 \ge 2f(w) - k + 1 > 0,$$

and so (X, v_{β}) is not an \mathcal{N}_{q_k} -subset of (X, f). Therefore (X, v_{β}) is not an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f), which is a contradiction. Hence $f(v) \leq f(w)$ whenever $f(w) > \frac{k-1}{2}$. Now, suppose that $f(w) \leq \frac{k-1}{2}$. Then the point \mathcal{N} -structure $\left(X, w_{\frac{k-1}{2}}\right)$ is an \mathcal{N}_{\in} -subset of (X, f) and so $\left(X, v_{\frac{k-1}{2}}\right)$ is an $\mathcal{N}_{\in \lor q}$ -subset of (X, f) by hypothesis. If $\left(X, v_{\frac{k-1}{2}}\right)$ is an \mathcal{N}_{\in} -subset of (X, f) then $f(v) \leq \frac{k-1}{2}$ and so $f(v) \leq \bigvee\{f(w), \frac{k-1}{2}\}$. If $\left(X, v_{\frac{k-1}{2}}\right)$ is an \mathcal{N}_{q_k} -subset of (X, f), then $f(v) + \frac{k-1}{2} - k + 1 < 0$, that is, $f(v) < \frac{k-1}{2}$. Consequently $f(v) \le \bigvee \{f(w), \frac{k-1}{2}\}.$

Conversely, assume that (3.2) is valid. Let $v, w \in X$ and $\beta \in [-1, 0)$ be such that $v \leq w$ and the point \mathcal{N} -structure (X, w_{β}) is an \mathcal{N}_{\in} -subset of (X, f). If $f(v) \leq \beta$, then the point \mathcal{N} -structure (X, v_{β}) is an \mathcal{N}_{\in} -subset of (X, f). Suppose that $f(v) > \beta$. Then $f(w) \leq \beta < f(v) \leq \bigvee \{f(w), \frac{k-1}{2}\}$, and therefore $\bigvee \{f(w), \frac{k-1}{2}\} = \frac{k-1}{2}$. It follows that

$$f(v) + \beta - k + 1 < 2f(v) - k + 1 \le 2\left(\bigvee\{f(w), \frac{k-1}{2}\}\right) - k + 1 = 0.$$

Thus (X, v_{β}) is an \mathcal{N}_{q_k} -subset of (X, f). Consequently (X, v_{β}) is an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f) and thus (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$.

Corollary 3.9 ([20]). An \mathcal{N} -subnexus (X, f) is of type $(\in, \in \lor q)$ if and only if the following assertion is valid.

$$(\forall v, w \in X) \left(v \le w \Rightarrow f(v) \le \bigvee \{f(w), -0.5\} \right).$$

Proposition 3.10. If (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$, then

$$(\forall v \in X) \left(f(()) \le \bigvee \{ f(v), \frac{k-1}{2} \} \right).$$

Proof. Since () $\leq v$ for all $v \in X$, it is straightforward.

Corollary 3.11. If (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$, then

$$(\forall v \in X)(f(()) \le \bigvee \{f(v), -0.5\}.$$

Theorem 3.12. Let (X, f) be an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$. Then

- (1) if there exists $x \in X$ such that $f(x) \leq \frac{k-1}{2}$, then $f(()) \leq \frac{k-1}{2}$.
- (2) if $f(()) > \frac{k-1}{2}$, then (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

Proof. (1) Assume that there exists $x \in X$ such that $f(x) \leq \frac{k-1}{2}$. If x = (), it is true. If $x \neq ()$, then $f(()) \leq \bigvee \{f(x), \frac{k-1}{2}\} = \frac{k-1}{2}$ by Theorem 3.8 and hypothesis. (2) Suppose that $f(()) > \frac{k-1}{2}$ and f(v) > f(w) for all $v, w \in X$ with $v \leq w$. It

(2) Suppose that $f(()) > \frac{k-1}{2}$ and f(v) > f(w) for all $v, w \in X$ with $v \leq w$. It follows from Theorem 3.8 that $f(v) \leq \bigvee \{f(w), \frac{k-1}{2}\} = \frac{k-1}{2}$. Since $() \leq w$, we have $f(()) \leq \bigvee \{f(w), \frac{k-1}{2}\} = \frac{k-1}{2}$. This is a contradiction, and hence $f(v) \leq f(w)$ for all $v, w \in X$ with $v \leq w$. Therefore (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

Corollary 3.13 ([20]). Let (X, f) be an \mathcal{N} -subnexus of type $(\in, \in \lor q)$. Then

(1) if there exists $x \in X$ such that $f(x) \leq -0.5$, then $f(()) \leq -0.5$.

(2) if f(()) + 0.5 > 0, then (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

Theorem 3.14. If $-1 < k < r \leq 0$, then every \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ is an \mathcal{N} -subnexus of type $(\in, \in \lor q_r)$.

Proof. Let (X, f) be an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$. Then

$$f(v) \le \bigvee \left\{ f(w), \frac{k-1}{2} \right\} \le \bigvee \left\{ f(w), \frac{r-1}{2} \right\},$$

for all $v, w \in X$ with $v \leq w$. It follows from Theorem 3.8 that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor qr)$.

The following example shows that if $-1 < k < r \leq 0$, then an \mathcal{N} -subnexus of type $(\in, \in \lor qr)$ may not be an \mathcal{N} -subnexus of type $(\in, \in \lor qk)$.

Example 3.15. The \mathcal{N} -structure (X, f) defined in Example 3.4 is an \mathcal{N} -subnexus of type $(\in, \in \lor qr)$ for r = -0.75, but it is not an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ for k = -0.9. Indeed, $(1) \leq (2)$, but $f((1)) = -0.9 \leq -0.93 = \bigvee \{-0.93, -0.95\} = \bigvee \{f((2)), \frac{k-1}{2}\}$.

Theorem 3.16. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ if and only if for every $\alpha \in [\frac{k-1}{2}, 0]$ the nonempty closed support of (X, f) related to α is a subnexus of X.

Proof. Assume that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ and let $\alpha \in [\frac{k-1}{2}, 0]$ such that $C(f; \alpha) \neq \emptyset$. Let $v \leq w$ and $w \in C(f; \alpha)$. Then $f(v) \leq \bigvee\{f(w), \frac{k-1}{2}\}$ by Theorem 3.8. If $\bigvee\{f(w), \frac{k-1}{2}\} = f(w)$, then $f(v) \leq f(w) \leq \alpha$ and thus $v \in C(f; \alpha)$. Also, if $\bigvee\{f(w), \frac{k-1}{2}\} = \frac{k-1}{2}$, then $f(v) \leq \frac{k-1}{2} \leq \alpha$, and thus $v \in C(f; \alpha)$. Hence $C(f; \alpha)$ is a subnexus of X.

Conversely, let (X, f) be an \mathcal{N} -structure such that the nonempty closed support of (X, f) related to α is a subnexus of X for all $\alpha \in [\frac{k-1}{2}, 0]$. If there exist $v, w \in X$ such that $v \leq w$ and $f(v) > \bigvee\{f(w), \frac{k-1}{2}\}$, then we can take $\beta \in [-1, 0]$ such that $f(v) > \beta \geq \bigvee\{f(w), \frac{k-1}{2}\}$. Thus $w \in C(f; \beta)$ and $\beta \geq \frac{k-1}{2}$. Since $C(f; \beta)$ is a subnexus of X, we have $v \in C(f; \beta)$. Hence $f(v) \leq \beta$, a contradiction. Therefore $f(v) \leq \bigvee\{f(w), \frac{k-1}{2}\}$ for all $v, w \in X$. It follows from Theorem 3.8 that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$.

Corollary 3.17 ([20]). An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ if and only if for every $\alpha \in [-0.5, 0]$ the nonempty closed support of (X, f) related to α is a subnexus of X.

Theorem 3.18. Let S be a subnexus of X. For any $\alpha \in (\frac{k-1}{2}, 0)$, there exists an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ for which S is represented by the closed support of (X, f) related to α .

Proof. Let (X, f) be an \mathcal{N} - structure in which f is given by

$$f(x) = \begin{cases} \alpha & \text{if } x \in S, \\ 0 & \text{if } x \notin S, \end{cases}$$

for all $x \in X$ where $\alpha \in (\frac{k-1}{2}, 0)$. Assume that $f(\nu) > \bigvee \{f(\omega), \frac{k-1}{2}\}$ for some $\nu, \omega \in X$ such that $\nu \leq \omega$. By |Im(f)| = 2, it follows that $f(\nu) = 0$ and $\bigvee \{f(\omega), \frac{k-1}{2}\} = \alpha$. Since $\alpha > \frac{k-1}{2}$, we have $f(\omega) = \alpha$ and so $\omega \in S$. Since S is a subnexus of X, we obtain $\nu \in S$ and thus $f(\nu) = \alpha < 0$, which is a contradiction. Therefore $f(\nu) \leq \bigvee \{f(\omega), \frac{k-1}{2}\}$ for all $\nu, \omega \in X$. Hence, (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$, by Theorem 3.8. Obviously, S is represented by the closed support of (X, f) related to α .

Corollary 3.19 ([20]). Let S be a subnexus of X. For any $\alpha \in (-0.5, 0)$, there exists an \mathcal{N} -subnexus of type $(\in, \in \lor q)$ for which S is represented by the closed support of (X, f) related to α .

Note that every \mathcal{N} -subnexus of type (\in, \in) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$. But the converse is not true in general as seen in the following example.

Example 3.20. The \mathcal{N} -structure (X, f) defined in Example 3.4 is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$, but is not an \mathcal{N} -subnexus of type (\in, \in) , since $(1) \leq (2)$ but $f((1)) = -0.9 \leq -0.93 = f((2))$.

Now, we give a condition for an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ to be an \mathcal{N} -subnexus of type (\in, \in) .

Theorem 3.21. Let (X, f) be an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ such that $f(x) \ge \frac{k-1}{2}$ for all $x \in X$. Then (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

Proof. Let $v, w \in X$ such that $v \leq w$ and (X, w_{α}) is an \mathcal{N}_{\in} -subset of (X, f) for $\alpha \in [-1, 0)$. Then $f(w) \leq \alpha$. It follows from Theorem 3.8 and the hypothesis that

$$f(v) \le \bigvee \{f(w), \frac{k-1}{2}\} = f(w) \le \alpha.$$

Thus (X, v_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subnexus of type (\in, \in) .

For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0)$, the q_k -support and the $\in \forall q_k$ -support of (X, f) related to α are defined as follow

$$\mathcal{N}_{q_k}(f;\alpha) = \{x \in X \mid (X, x_\alpha) \text{ is an } \mathcal{N}_{q_k}\text{-subset of } (X, f)\}, \text{ and} \\ \mathcal{N}_{\in \lor q_k}(f;\alpha) = \{x \in X \mid (X, x_\alpha) \text{ is an } \mathcal{N}_{\in \lor q_k}\text{-subset of } (X, f)\}.$$

Note that the $\in \lor q_k$ -support is the union of the closed support and the q_k -support, that is, $\mathcal{N}_{\in \lor q_k}(f; \alpha) = C(f; \alpha) \cup \mathcal{N}_{q_k}(f; \alpha)$.

Theorem 3.22. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$ if and only if the $\in \lor q_k$ -support of (X, f) related to α is a subnexus of X for all $\alpha \in [-1, 0)$.

Proof. Suppose that (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$. Let $v, w \in X$ such that $v \leq w$ and $w \in \mathcal{N}_{\in \lor q_k}(f; \alpha)$ for $\alpha \in [-1, 0), k \in (-1, 0]$. So (X, w_α) is an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f). Thus $f(w) \leq \alpha$ or $f(w) + \alpha - k + 1 < 0$. If $f(w) \leq \alpha$, then (X, w_α) is an $\mathcal{N}_{\in \neg u}$ -subset of (X, f). By hypothesis (X, v_α) is an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f) and so $v \in \mathcal{N}_{\in \lor q}(f; \alpha)$. If $f(w) + \alpha - k + 1 < 0$, we consider the following two cases:

If $\alpha \geq \frac{k-1}{2}$, then by hypothesis and Theorem 3.8, $f(v) \leq \bigvee \{f(w), \frac{k-1}{2}\} = \frac{k-1}{2} \leq \alpha$. So (X, v_{α}) is an $\mathcal{N}_{\in \lor q_k}$ -subset of (X, f) and so $v \in \mathcal{N}_{\in \lor q_k}(f; \alpha)$. If $\alpha < \frac{k-1}{2}$, then we have:

i) If $\bigvee \{f(w), \frac{k-1}{2}\} = \frac{k-1}{2}$, then by hypothesis and Theorem 3.8,

$$f(v) + \alpha - k + 1 < f(v) + \frac{1 - k}{2} \le \bigvee \{f(w), \frac{k - 1}{2}\} + \frac{1 - k}{2} = 0.$$

ii) If
$$\bigvee \{f(w), \frac{k-1}{2}\} = f(w)$$
, then

$$f(v) + \alpha - k + 1 \le \bigvee \{f(w), \frac{k-1}{2}\} + \alpha - k + 1 = f(w) + \alpha - k + 1 < 0.$$

Thus in each case we have $f(v) + \alpha - k + 1 < 0$ and so (X, v_{α}) is an \mathcal{N}_{q_k} -subset of (X, f). Consequently $v \in \mathcal{N}_{\in \lor q_k}(f; \alpha)$. Therefore $\mathcal{N}_{\in \lor q_k}(f; \alpha)$ is a subnexus of X for all $\alpha \in [-1, 0], k \in (-1, 0]$.

Conversely, let (X, f) be an \mathcal{N} -structure for which $(\in \lor q_k)$ -support of (X, f) related to α is a subnexus of X for all $\alpha \in [-1, 0)$ and $k \in (-1, 0]$. Assume that there exists $v, w \in X$ such that $v \leq w$ and $f(v) > \bigvee \{f(w), \frac{k-1}{2}\}$. Then $f(v) > \beta \geq \bigvee \{f(w), \frac{k-1}{2}\}$ for some $\beta \in [\frac{k-1}{2}, 0)$. It follows that $w \in C(f; \beta) \subseteq \mathcal{N}_{\in \lor q_k}(f; \beta)$ but $v \notin C(f; \beta)$. Also $f(v) + \beta - k + 1 > 2\beta - k + 1 \geq 0$, that is $v \notin \mathcal{N}_{q_k}(f; \beta)$. Thus $v \notin \mathcal{N}_{\in \lor q_k}(f; \beta)$ which is a contradiction. Therefore $f(v) \leq \bigvee \{f(w), \frac{k-1}{2}\}$ for all $v, w \in X$. Using Theorem 3.8, then (X, f) is an \mathcal{N} -subnexus of type $(\in, \in \lor q_k)$.

Theorem 3.23. If (X, f) is an \mathcal{N} -subnexus of type (\in, q_k) , then the set

$$O(f;k) := \{ x \in X \mid f(x) < k \}$$

is a subnexus of X.

Proof. Let (X, f) be an \mathcal{N} -subnexus of type (\in, q_k) and $v, w \in X$ such that $v \leq w$ and $w \in O(f;k)$. Note that $(X, w_{f(w)})$ is an \mathcal{N}_{\in} -subset of (X, f). If $f(v) \geq k$, then $f(v) + f(w) - k + 1 \geq k + f(w) - k + 1 \geq f(w) + 1 \geq 0$. Thus $(X, v_{f(w)})$ is not an \mathcal{N}_{q_k} subset of (X, f), a contradiction. Hence f(v) < k, that is, $v \in O(f;k)$. Hence O(f;k) is a subnexus of X.

Corollary 3.24 ([20]). If (X, f) is an \mathcal{N} -subnexus of type (\in, q) , then the open support of (X, f) relative 0 is a subnexus of X.

Now, we provide conditions for an \mathcal{N} -structure to be an \mathcal{N} -subnexus of type $(q, \in \lor q_k)$.

Theorem 3.25. Let S be a subnexus of X and let (X, f) be an \mathcal{N} -structure such that

(1) $(\forall x \in X)(x \in S \Rightarrow f(x) \leq \frac{k-1}{2}),$ (2) $(\forall x \in X)(x \notin S \Rightarrow f(x) = 0).$

Then (X, f) is an \mathcal{N} -subnexus of type $(q, \in \lor q_k)$.

Proof. Let $v, w \in X$ with $v \leq w$ and $(\alpha, k) \in [-1, 0) \times (-1, 0]$ be such that the point \mathcal{N} -structure (X, w_{α}) is an \mathcal{N}_q -subset of (X, f). Then $f(w) + \alpha + 1 < 0$. It implies that $v \in S$ since if $v \notin S$, then $w \notin S$. Thus f(w) = 0 and so $\alpha + 1 = f(w) + \alpha + 1 < 0$, that is, $\alpha < -1$, this is a contradiction. Therefore $f(v) \leq \frac{k-1}{2}$. If $\alpha < \frac{k-1}{2}$, then $f(v) + \alpha - k + 1 < \frac{k-1}{2} + \frac{k-1}{2} - k + 1 = 0$ and thus the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_{q_k} -subset of (X, f). If $\alpha \geq \frac{k-1}{2}$, then $f(v) \leq \frac{k-1}{2} \leq \alpha$ and so the point \mathcal{N} -structure (X, v_{α}) is an \mathcal{N}_{\in} -subset of (X, f). Thus the point \mathcal{N} -structure (X, v_{α}) is an $\mathcal{N}_{\in \vee q_k}$ -subset of (X, f) is an \mathcal{N} -subnexus of type $(q, \in \vee q_k)$.

Corollary 3.26 ([20]). Let S be a subnexus of X and let (X, f) be an \mathcal{N} -structure such that

- (1) $(\forall x \in X)(x \in S \Rightarrow f(x) \le -0.5),$
- (2) $(\forall x \in X)(x \notin S \Rightarrow f(x) = 0).$

Then (X, f) is an \mathcal{N} -subnexus of type $(q, \in \lor q)$.

Theorem 3.27. Let (X, f) be an \mathcal{N} -subnexus of type $(q, \in \lor q_k)$. If f is not constant on O(f;k) and $f(()) \ge f(x)$ for all $x \in X$, then there exists $y \in X$ such that $f(y) \le \frac{k-1}{2}$. In particular, $f(()) \le \frac{k-1}{2}$.

Proof. Assume that $f(x) > \frac{k-1}{2}$ for all $x \in X$. Since f is not constant on O(f;k), there exists $y \in O(f;k)$ such that $\alpha_y = f(y) \neq f(()) = \alpha_0$. Then $\alpha_0 > \alpha_y$. Choose $\beta < \frac{k-1}{2}$ such that $\alpha_0 + \beta - k + 1 > 0 > \alpha_y + \beta + 1$. Then the point \mathcal{N} -structure (X, y_β) is an \mathcal{N}_q -subset of (X, f). Since $() \leq y$, it follows that $(X, ()_\beta)$ is an $\mathcal{N}_{\in \vee q_k}$ -subset of (X, f). But $f(()) > \frac{k-1}{2} > \beta$ implies that the point \mathcal{N} -structure $(X, ()_\beta)$ is not an $\mathcal{N}_{\in -subset}$ of (X, f). Also $f(()) + \beta - k + 1 = \alpha_0 + \beta - k + 1 > 0$ implies that $(X, ()_\beta)$ is not an \mathcal{N}_{q_s} -subset of (X, f). This is a contradiction, and thus $f(y) \leq \frac{k-1}{2}$ for some $y \in X$. We now prove that $f(()) \leq \frac{k-1}{2}$. Assume that $\alpha_0 := f(()) > \frac{k-1}{2}$. Note that there exists $y \in X$ such that $\alpha_y := f(y) \leq \frac{k-1}{2}$ and so $\alpha_y < \alpha_0$. Choose $\alpha_1 < \alpha_0$ such that $\alpha_y + \alpha_1 - k + 1 < 0 < \alpha_0 + \alpha_1 - k + 1$. Then $f(y) + \alpha_1 - k + 1 = \alpha_0 + \alpha_1 - k + 1 < 0$, and thus the point \mathcal{N} -structure (X, y_{α_1}) is an \mathcal{N}_q -subset of (X, f). Since $() \leq y$, we know that $(X, ()_{\alpha_1})$ is an $\mathcal{N}_{\in \vee q_k}$ -subset of (X, f). But $f(()) + \alpha_1 - k + 1 = \alpha_0 + \alpha_1 - k + 1 > 0$ and also $f(()) = \alpha_0 > \alpha_1$ which is a contradiction. Therefore $f(()) \leq \frac{k-1}{2}$.

Corollary 3.28 ([20]). Let (X, f) be an \mathcal{N} -subnexus of type $(q, \in \lor q)$. If f is not constant on the open support of (X, f) related to 0 and $f(()) \ge f(x)$ for all $x \in X$, then there exists $y \in X$ such that $f(y) \le -0.5$. In particular, $f(()) \le -0.5$.

Theorem 3.29. If (X, f) is an \mathcal{N} -subnexus of type (q, q_k) such that $f(()) \ge f(x)$ for all $x \in X$, then f is constant on O(f; k).

Proof. Assume that f is not constant on O(f; k). Then there exists $x \in O(f; k)$ such that $\alpha_x = f(x) \neq f(()) = \alpha_0$. Then $\alpha_0 > \alpha_x$, and so $f(x) + (-1 - \alpha_0) + 1 = \alpha_x - \alpha_0 < 0$. Hence $(X, x_{-1-\alpha_0})$ is an \mathcal{N}_q -subset of (X, f). Note that $() \leq x$ and $f(()) + (-1 - \alpha_0) - k + 1 = -k > 0$, which implies that $(X, ()_{-1-\alpha_0})$ is not an \mathcal{N}_{q_k} -subset of (X, f). This is a contradiction, and therefore f is constant on O(f; k).

Corollary 3.30 ([20]). If (X, f) is an \mathcal{N} -subnexus of type (q, q) such that $f(()) \ge f(x)$ for all $x \in X$, then f is constant on the open support of (X, f) related to 0.

4. *N*-SUBNEXUS OF TYPE $(\overline{\in}, \overline{\in} \lor \overline{q_k})$

Let (X, g) be an \mathcal{N} -structure. A point \mathcal{N} -structure (X, x_{α}) is said to be an $\mathcal{N}_{\overline{\in}}$ -subset (resp., $\mathcal{N}_{\overline{q_k}}$ -subset) of (X, g) if $g(x) > \alpha$ (resp., $g(x) + \alpha - k + 1 \ge 0$). If a point \mathcal{N} structure (X, x_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset or an $\mathcal{N}_{\overline{q_k}}$ -subset of (X, g), then (X, x_{α}) is said to be an $\mathcal{N}_{\overline{\in}\sqrt{q_k}}$ -subset of (X, g).

Definition 4.1. Let $v, w \in X$ such that $v \leq w$ and $\alpha \in [-1, 0)$. We say an \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$, if (X, v_α) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f) then (X, w_α) is an $\mathcal{N}_{\overline{\in} \lor \overline{q_k}}$ -subset of (X, f).

Similarly, we can define \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$. According to [20], we have (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$ if and only if it is an \mathcal{N} -subnexus of type (\in, \in) .

Moreover, it is important to note that every \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ for k = 0. Also, every \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q})$

is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$, for all $k \in (-1, 0]$, which is a different property with respect to other types of \mathcal{N} -subnexuses and their generalizations by $k \in (-1, 0]$. Therefore, according to [20], we can obtain the following corollaries:

Corollary 4.2. Let (X, f) be an \mathcal{N} -structure such that for all $v, w \in X$ with $v \leq w$ we have $\bigwedge \{f(v), -0.5\} \leq f(w)$. Then, (X, f) is an \mathcal{N} -subnexus of type $(\overline{e}, \overline{e} \lor \overline{q_k})$.

Corollary 4.3. If the nonempty closed support of (X, f) related to α is a subnexus of X for every $\alpha \in [-1, -0.5)$, then (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$.

Moreover, see the following example:

Example 4.4. Let (X, f) be an *N*-structure in which $X = \{(), (1), (2), (2, 1), (2, 2)\}$ is a nexus and *f* is given as

$$f = \left(\begin{array}{cccc} () & (1) & (2) & (2,1) & (2,2) \\ -0.93 & -0.95 & -0.92 & -0.91 & -0.9 \end{array}\right).$$

We have $() \leq (1)$ and $f(()) = -0.93 > -0.94 = \alpha$. But f((1)) < -0.94 and f(1) - 0.94 + 1 < 0, and so (X, f) is not an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in}vq)$. While, for k = -0.9 we have $f(1) - 0.94 - k + 1 \geq 0$ and therefore (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_{-0.9}})$.

Theorem 4.5. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ if and only if $\bigwedge \{f(v), \frac{k-1}{2}\} \leq f(w)$, for all $v, w \in X$ such that $v \leq w$.

Proof. Let (X, f) be an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ and there exist $v, w \in X$ such that $v \leq w$ and $\bigwedge \{f(v), \frac{k-1}{2}\} > f(w) = \alpha$. So, $\alpha \in [-1, \frac{k-1}{2})$. It follows that (X, w_α) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f) and (X, v_α) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Hence (X, w_α) is an $\mathcal{N}_{\overline{q_k}}$ -subset of (X, f). Therefore $2\alpha - k + 1 = f(w) + \alpha - k + 1 \geq 0$, which implies that $\alpha \geq \frac{k-1}{2}$. This is contradiction, and so $\bigwedge \{f(v), \frac{k-1}{2}\} \leq f(w)$ for all $v, w \in X$ with $v \leq w$. Conversely, let for all $v, w \in X$ such that $v \leq w$ we have $\bigwedge \{f(v), \frac{k-1}{2}\} \leq f(w)$. Let $v \leq w$ for $v, w \in X$ and $\alpha \in [-1, 0)$ such that a point \mathcal{N} -structure (X, v_α) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Then $f(v) > \alpha$. If $f(v) \leq f(w)$, then $\alpha < f(w)$ and thus (X, w_α) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). If f(v) > f(w), then we have $f(w) \geq \bigwedge \{f(v), \frac{k-1}{2}\} = \frac{k-1}{2}$. Suppose that (X, w_α) is not an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Then $\alpha \geq f(w) \geq \frac{k-1}{2}$. Hence, we have $f(w) + \alpha - k + 1 \geq \frac{k-1}{2} + \frac{k-1}{2} - k + 1 = 0$ and so (X, w_α) is an $\mathcal{N}_{\overline{q_k}}$ -subset of (X, f).

Proposition 4.6. If (X, f) is an \mathcal{N} -structure of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$, then $f(w) \ge f(())$ or $f(w) \ge \frac{k-1}{2}$ for all $w \in X$.

Proof. Using Theorem 4.5, the proof is straightforward.

Theorem 4.7. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ if and only if $\emptyset \neq C(f; \alpha)$ is a subnexus of X for every $\alpha \in [-1, \frac{k-1}{2})$.

Proof. For an \mathcal{N} -subnexus (X, f) of type $(\overline{\in}, \overline{\in} \vee \overline{q_k})$, let $v, w \in X$ with $v \leq w$ and $w \in C(f; \alpha)$ for $\alpha \in [-1, \frac{k-1}{2})$. By Theorem 4.5, we have $\bigwedge \{f(v), \frac{k-1}{2}\} \leq f(w) \leq \alpha$. Since $\alpha < \frac{k-1}{2}$, then $f(v) \leq \alpha$ and so $v \in C(f; \alpha)$. Conversely, let (X, f) be an \mathcal{N} -structure such that $\emptyset \neq C(f; \alpha)$ is a subnexus of X for all $\alpha \in [-1, \frac{k-1}{2})$. Let for $v, w \in X$ such that $v \leq w$ we have $\bigwedge \{f(v), \frac{k-1}{2}\} > f(w)$. Put, $\beta := \frac{1}{2} \left(\bigwedge \{f(v), \frac{k-1}{2}\}\right) + f(w)$, then $\beta \in [-1, \frac{k-1}{2})$ and $\bigwedge \{f(v), \frac{k-1}{2}\} > \beta \ge f(w)$. Thus $w \in C(f; \beta)$ but $v \notin C(f; \beta)$ which is a contradiction. Therefore $\bigwedge \{f(v), \frac{k-1}{2}\} \le f(w)$ for all $v, w \in X$ with $v \le w$. Using Theorem 4.5, then (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor q_k)$.

It is easy to see that every \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$ is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$, but the converse is not generally valid. See the following example:

Example 4.8. Let $X = \{(), (1), (2), (1, 1), (1, 2), (1, 2, 1)\}$ be a nexus and define h on X as

$$h = \begin{pmatrix} () & (1) & (2) & (1,1) & (1,2) & (1,2,1) \\ -0.4 & -0.45 & -0.33 & -0.3 & -0.34 & -0.2 \end{pmatrix}.$$

It is routine to verify that (X, h) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in}vq)$ and so an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ for all $k \in (-1, 0]$. But it is not an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$ since $() \leq (1)$ and $(X, ()_{-0.42})$ is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, h), but $(X, (1)_{-0.42})$ is not an $\mathcal{N}_{\overline{\in}}$ -subset of (X, h).

Theorem 4.9. Let (X, f) be an \mathcal{N} -structure such that $f(x) \leq \frac{k-1}{2}$ for all $x \in X$. Then, every \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$.

Proof. Let $v, w \in X$ and $\alpha \in [-1,0)$ be such that $v \leq w$ and (X, v_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Then $f(v) > \alpha$. Since $f(x) \leq \frac{k-1}{2}$ for all $x \in X$, by Theorem 4.5, we have $\alpha < f(v) = \bigwedge \{f(v), \frac{k-1}{2}\} \leq f(w)$. Thus (X, w_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subnexus of type $(\overline{\in}, \overline{\in})$.

References

- [1] M. Bolourian, Theory of Plenices, Ph.D. Thesis, University of Surrey, 2009.
- [2] D. Afkhami, N. Ahmadkhah, A. Hasankhani, A fraction of nexuses, Int. J. Algebra 18 (5) (2011) 883–896.
- [3] D. Afkhami Taba, A. Hasankhani, M. Bolurian, Soft nexuses, Comput. Math. Appl. 64 (2012) 1812–1821.
- [4] H. Hedayati, A. Asadi, Normal, maximal and product fuzzy subnexuses of nexuses, J. Intell. Fuzzy Syst. 26 (3) (2014) 1341–1348.
- [5] M. Haristchain, Formex and Plenix Structural Analysis, Ph.D. Thesis, University of Surrey, 1980.
- [6] H. Nooshin, P. Disney, Formex configuration processin I, Int. J. Space Structures 15 (1) (2000) 1–52.
- [7] S.K. Bhakat, P. Das, $(\in, \in \lor q)$ -Fuzzy subgroups, Fuzzy Set Syst. 80 (1996) 359–368.
- [8] B. Davvaz, $(\in, \in \lor q)$ -Fuzzy subnearrings and ideals, Soft Comput. 10 (2006) 206–211.
- [9] Y.B. Jun, On (α, β)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42 (4) (2005) 703–711.
- [10] Y.B. Jun, Generalizations of $(\in, \in \forall q)$ -fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009) 1383–1390.
- [11] Y.B. Jun, S.Z. Song, Generalized fuzzy ideals in semigroups, Thai J. Math. 15 (1) (2017) 227–236.

- [12] M. Khan, K.P. Shum, S. Rehman, Semigroups which are semilattices of left groups and their generalized fuzzy ideals, Southeast Asian Bull. Math. 37 (2013) 79–90.
- [13] X.L. Ma, J. Zhan, On $(\in, \in \lor q)$ -fuzzy filters of BL-algebras, J. Syst. Sci. Complex. 21 (1) (2008) 144–158.
- [14] X.L. Ma, J. Zhan, On fuzzy *h*-ideals of hemirings, J. Syst. Sci. Complex. 20 (3) (2007) 470–478.
- [15] Y.B. Jun, K.J. Lee, S.Z. Song, N-Ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009) 417–437.
- [16] Y.B. Jun, S.Sh. Ahn, D.R.P. Williams, Coupled N-structures and its application in BCK/BCI-algebras, Iran. J. Sci. Technol. Trans. A Sci. 37 (2) (2013) 133–140.
- [17] Y.B. Jun, M.A. Ozturk, E.H. Roh, *N*-Structures applied to closed ideals in BCHalgebras, Int. J. Math. Math. Sci. 2010 (2010) Article ID 943565.
- [18] K.J. Lee, Y.B. Jun, X. Zhang, \mathcal{N} -Subalgebras of type $(\in, \in \lor q)$ based on point \mathcal{N} -structures in BCK/BCI-algebras, Commun. Korean Math. Soc. 27 (3) (2012) 431–439.
- [19] Y.B. Jun, M.S. Kang, C.H. Park, N-Subalgebras in BCK/BCI-algebras based on point N-structures, Int. J. Math. Math. Sci. 2010 (2010) Article ID 303412.
- [20] M. Norouzi, A. Asadi, Y.B. Jun, Subnexuses based on N-structures, Armen. J. Math. 10 (10) (2018) 1–15.
- [21] L. Torkzadeh, A. Hasankhani, Some results on prime and maximal subnexuses of a nexus, Proceeding of 20th Seminar on Algebra, Tarbiat Moallem University, Iran (2009), 222–224.