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Abstract In this paper, we study a pursuit differential game with many but finite number of pursuers

and evaders on a closed convex subset K of Rn. Players’ motion obey ordinary differential equations and

confined within the set K throughout the game. Control functions of the players are subject to general

integral constraints respectively. We obtain sufficient conditions for completion of pursuit. Moreover,

pursuers’ strategies that ensure completion of pursuit in a finite time are constructed.
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1. Introduction

Differential game play an important role in numerous fields of studies such as engi-
neering, control theory, missile guidance, behavioral biology and economics. Recently, its
application in the field of fractional differential equations (FDEs) has received attention
from researchers (see for example [1–3]). More details on the fundamental concepts of
differential games can be found in books [4–6] are referred. Linear differential games with
integral and geometric constraints on the control function of the players has also received
considerable attention and fundamental results were obtained (see [7–23] and references
therein). For Instance, Satimov et al. [24] studied the linear pursuit differential game
of many pursuers and one evader with integral constraints on controls of players in Rn,
given by

ż = Cizi + ui − v zi(t0) = z0i , i = 1, . . . ,m, (1.1)

where ui is the control parameter of the ith pursuer and v is that of the evader. The
eigenvalues of the matrices Ci are assumed to be real numbers. The above system (1.1),
was extended to pursuit differential game of m pursuers and k evaders under the same
integral constraints by Ibragimov et al. [25], with dynamic equations given by

żij = Cijzij + ui − vj , zij(t0) = z0ij , i = 1, . . . ,m, j = 1, . . . , k,∫ ∞
0

|ui(s)|2ds ≤ ρ2i , i = 1, . . . ,m,

∫ ∞
0

|vj(s)|2ds ≤ σ2
j , j = 1, . . . , k,

(1.2)

where ui is the control parameter of the ith pursuer and vj is that of the jth evader. It
is worth noting that the eigenvalues of the matrices Ci in (1.2) are not necessarily real
and the number of evaders can be any. In [26], Ivanov generalized Lion and Man problem
with respect to geometric constraints. All players have equal dynamic possibilities. They
considered the following equations:

ẋi = ui, xi(0) = xi0, |ui| ≤ 1, i = 0, 1, . . . ,m, (1.3)

where xi ∈ Rn, ui, i = 1, . . . ,m, are control parameters of the pursuers and u0 is control
parameter of the evader, and the players may not leave a given compact subset N of Rn.
It was shown that if the number of pursuers m does not exceed the dimension of the space
n, then evasion is possible; otherwise pursuit can be completed. The above system (1.3),
was extended to game of many pursuers and evaders in [27].

Ibragimov [28] studied the differential game problem of one pursuer and one evader
with integral constraints on a closed convex subset S of Rn given by

ẋ(t) = α(t)u(t), x(0) = x0,

∫ ∞
0

|u(s)|2ds ≤ ρ2

ẏ(t) = α(t)v(t), y(0) = y0,

∫ ∞
0

|v(s)|2ds ≤ σ2,

(1.4)

where the author proposed a formula for optimal pursuit time. Ibragimov and Satimov
[29] extended the problem considered in [28] to pursuit differential game of m pursuers and
k evaders on a closed convex subset of Rn. They proved that pursuit can be completed
from any initial position of the players under the condition that the energy resources of
the pursuers is greater than that of the evaders.
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Inspired by the paper of Ibragimov and Satimov [29] and some known results on pursuit
differential game with integral and geometric constraints, this paper extend the results of
[29] in which the control functions are choosing from the functional space Lp, and Rn is
the state space which contains the closed convex set K.

2. Statement of Problem

Let [0, θ] be a finite interval on R and C([0, θ]) be the space of all absolutely continu-
ously differentiable function on [0, θ], respectively and Lp(0, θ), (1 ≤ p <∞), q be such
that 1/p+ 1/q = 1 and Lebesgue measurable functions defined on (0, θ). Let

‖f‖Lp(0,θ) =

(∫ θ

0

‖f(t‖pdt)
)1/p

<∞

for any f ∈ Lp(0, θ),
‖f‖C[0,θ]) = Max{‖f(t)‖ : t ∈ [0, θ]}

for any f ∈ C[0, θ].
On the other hand, we define a set of absolutely continuous by

AC[0, θ] = {f : [0, θ]→ R : fn−1 ∈ AC[0, θ]}.
Consider a differential game problem with m pursuers and k evaders described by the
equations

Pi : ẋi(t) = η(t)ui(t), xi(0) = xi0 i = 1, 2, 3, . . . ,m,

Ej : ẏj(t) = η(t)vj(t), yj(0) = yj0, j = 1, 2, 3, . . . , k,
(2.1)

where xi(t), ui(t), yi(t), vi(t) ∈ Rn, ui = (ui1, . . . , uin) is control parameter of the pursuer
xi, vj = (vj1, . . . , vjn) is that of the evader yj , and the function η(t) is a non zero in any
open interval; scalar measurable and q − integrable over any interval [0, τ ], τ > 0, and
satisfies the following conditions:

a(τ) =

(∫ τ

0

ηq(t)dt

)1/q

, lim
τ→∞

a(τ) =∞. (2.2)

Definition 2.1. A measurable function ui(t) = (ui1(t), ..., uin(t)), t ≥ 0, is called an
admissible control of the pursuer xi if xi(t) ∈ K, t ≥ 0, and∫ ∞

0

|ui(s)|pds ≤ ρpi , (2.3)

where

xi(t) = xi0 +

∫ t

0

η(s)ui(s)ds,

ρi, i = 1, . . . ,m, are given positive numbers. We denote the set of all admissible controls
of the pursuer xi by S(ρi).

Definition 2.2. A measurable function vj(t) = (vj1(t), ..., vjn(t)), t ≥ 0, is called an
admissible control of the evader yj , if yj(t) ∈ K, t ≥ 0, and∫ ∞

0

|vj(s)|pds ≤ σpj , (2.4)
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where

yj(t) = yj0 +

∫ t

0

η(s)vj(s)ds,

σj , j = 1, . . . ,m, are given positive numbers. We denote the set of all admissible controls
of the evader yj by S(σj).

Definition 2.3. A Borel measurable function Ui = Ui(xi, y1, ...yk, v1, ..., vk), Ui : R2k+1 →
Rn, is called a strategy of the pursuer xi if for any controls of the evaders vj(t) j =
1, . . . , k, t ≥ 0, the initial value problem

ẋi = η(t)Ui(xi, y1, ...yk, v1(t), ..., vk(t)) xi(0) = xi0,

ẏj = η(t)vj(t), yj(0) = yj0, j = 1, ...k,
(2.5)

has a unique absolutely continuous solution (xi(t), y1(t), ..., yk(t)) and along this solution
the following inequality∫ ∞

0

|Ui(xi(t), y1(t), ...yk(t), v1(t), ..., vk(t))|pdt ≤ ρpi (2.6)

holds, and xi ∈ K, t ≥ 0.

Definition 2.4. Pursuit is said to be completed from the initial positions {x10, · · · , xm0,
y10, · · · , yk0} at the time T in the game described by (2.1)-(2.4), if there exist strategies
Ui, i = 1, ...m, of the ith pursuers such that for any controls v1(·), ..., vk(·) of the evaders
and numbers j = 1, 2, ...k, the equality xi(tj) = yj(tj) holds for some i ∈ {1, ...,m} at
some time tj ∈ [0, T ].

It is also required that all players must not leave a nonempty convex subset C of Rn,
throughout the game. This means that

xi0, xi(t), yj0, yj(t) ∈ K,
for all t ≥ 0, and for all i = 1, ...,m, j = 1, ..., k.

The problem is to find sufficient conditions for the completion of pursuit in the game
described by (2.1)-(2.4).

3. Main Result

The following statement gives sufficient condition for completion of pursuit.

Theorem 3.1. For pursuit to be completed in the game described by (2.1)-(2.4) from any
initial position of the players in a finite time T, it is sufficient that

m∑
i=1

ρpi >

k∑
j=1

σpj , and σ > 1. (3.1)

Proof.
1. Auxiliary game: To prove this theorem, first we study the game problem with

only one pursuer and one evader, which means m = k = 1. That is, we study the game
described by

P : ẋ = η(t)u, x(0) = x0,

E : ẏ = η(t)v, y(0) = y0,
(3.2)



Pursuit Differential Game Problem with Multiple Players ... 555

where x(t), y(t) ∈ Rn, u is the control function of the pursuer x, and v is that of the
evader y. Assume that u = u(·) ∈ S(ρ), v = v(·) ∈ S(σ). In this game, we allow the
players to move freely in the space Rn. We say pursuit is completed if x(θ) = y(θ) at
some time θ ≥ 0.

The following lemma provides the condition that ensure completion of pursuit in a finite
time θ in the game described by (3.2), where θ is an arbitrary fixed number satisfying the
inequality

a(θ) ≥ |y0 − x0|
ρ− σ

. (3.3)

Let us now denote the following,

ρp(t) = ρp −
∫ t

0

|u(s)|pds, σp(t) = σp −
∫ t

0

|v(s)|pds, (3.4)

We will now prove the following statement.

Lemma 3.2. (i). If ρ > σ, then pursuit can be completed in the game described by (3.2)
for the time θ. Furthermore,

ρp(θ) ≥ ρp − σp − |x0 − y0|
a(θ)

. (3.5)

(ii). If ρ ≤ σ, then either x(θ) = y(θ) or

σp(θ) < σp − ρp +
|x0 − y0|
a(θ)

. (3.6)

Proof. Let us construct the strategy of the pursuer as follows

u(t) =
ηq−1(t)

aq(θ)
(y0 − x0) + v(t). (3.7)

Show that the strategy (3.7) is admissible and ensures the equality x(θ) = y(θ). Indeed,
clearly

x(θ) = x0 +

∫ θ

0

η(t)

(
ηq−1(t)

aq(θ)
(y0 − x0) + v(t)

)
dt

= x0 +
(y0 − x0)

aq(θ)

∫ θ

0

ηq(t)dt+

∫ θ

0

η(t)v(t)dt

= y0 +

∫ θ

0

η(t)v(t)dt = y(θ).

(3.8)

To show the admissibility of the strategy (3.7), we use the Minkowski’s inequality, thus∫ θ

0

|u(t)|pdt =

∫ θ

0

∣∣∣∣(ηq−1(t)

aq(θ)
(y0 − x0) + v(t)

)∣∣∣∣p dt
≤
(∫ θ

0

(
ηq−1(t)

aq(θ)
|y0 − x0|

)p
dt

)1/p

+

(∫ θ

0

|v(t)|pdt
)1/p

≤ |y0 − x0|
aq(θ)

aq−1(θ) + σ

≤ (ρ− σ)

|y0 − x0|
|y0 − x0|+ σ = ρ.

(3.9)
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Thus, we have proved the admissibility of the strategy (3.7).
To show inequality (3.5), we proceed as follows:
From (3.4) and (3.9), we obtain∫ θ

0

|u(t)|pdt ≤ |y0 − x0|
a(θ)

+ σ

≤ |x0 − y0|
a(θ)

+ σp,

(3.10)

this implies

ρp(θ) ≥ ρp − σp − |y0 − x0|
a(θ)

. (3.11)

Thus, we have the required inequality (3.5). We now proof part (ii) of the Lemma (3.2).
Let ρ ≤ σ and the pursuer use the strategy (3.7) on the interval [0, θ], for any control of
the evader v(t), t ∈ [0, θ], the inequality is satisfied:∫ θ

0

|u(t)|pdt =

∫ θ

0

∣∣∣∣(ηq−1(t)

aq(θ)
(y0 − x0) + v(t)

)∣∣∣∣p dt ≤ ρp, (3.12)

therefore, the strategy (3.7) is admissible, and similar to (3.8) we obtain x(θ) = y(θ),
hence the proof of the lemma fallows. Suppose that x(θ) 6= y(θ), then we must have∫ θ

0

|u(t)|pdt =

∫ θ

0

∣∣∣∣(ηq−1(t)

aq(θ)
(y0 − x0) + v(t)

)∣∣∣∣p dt > ρp. (3.13)

Thus, from inequality (3.13), and using the same calculations to (3.9), we obtain∫ θ

0

|u(t)|pdt ≤ |y0 − x0|
a(θ)

+

(∫ θ

0

|v(t)|pdt

)1/p

≤ |y0 − x0|
a(θ)

+

∫ θ

0

|v(t)|pdt

(3.14)

and therefore

σp(θ) = σp −
∫ θ

0

|v(t)|pdt < σp − ρp +
|y0 − x0|
a(θ)

. (3.15)

Hence, the proof of the lemma is complete.

2. Dummy pursuers (DPs): To prove the main theorem, we introduce dummy
pursuers z1, . . . , zm whose equations of motion are described by

żi = η(t)wi, zi(0) = xi0, wi ∈ S(ρi), i = 1, ...,m, (3.16)

where wi is control parameter of the pursuer zi. Dummy pursuers may move out of the
convex set K ⊂ Rn. The aim of the dummy pursuer is to complete the pursuit in a finite
time.
We define the dummy pursuers strategies in the time interval [0, θ1] as follows:

wm(t) =
ηq−1(t)

aq(θ1)
(yk0 − xm0) + vk(t), 0 ≤ t ≤ θ1, (3.17)

wi(t) ≡ 0, i = 1, ...,m− 1, 0 ≤ t ≤ θ1, (3.18)
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where θ1 is any number satisfying inequalities

a(θ1) ≥ |yk0 − xm0|
(ρm − σk)

, (3.19)

m∑
i=1

ρpi >

k∑
j=i

σpj +
|y0 − x0|
a(θ1)

. (3.20)

Since by assumption a(t)→∞ as t→∞, it follows from (3.1) that such θ1 exists. Equa-
tions (3.17) and (3.18) mean that all dummy pursuers, z1, . . . , zm−1 do not move on the
time interval [0, θ1], and only one dummy pursuer, zm, moves according to (3.17).
We will now show that if inequality (3.1) holds and the dummy pursuers use the strate-
gies (3.17) and (3.18), then the pursuit problem with the pursuers z1, . . . , zm and evaders
y1, . . . , yk is reduced to a pursuit problem with the pursuers z1, . . . , za and evaders
y1, . . . , yb, for which

a∑
i=1

ρpi (θ1) >

b∑
j=1

σpj (θ1) (3.21)

and a+ b < m+ k. Hence, by the time θ1, the number of players is reduced to a+ b.
Indeed, in the first phase of the game, if the dummy pursuers use the strategy (3.17) and
(3.18), and if ρm ≤ σk, and the equality zm(θ1) = yk(θ1) holds then the mth pursuer will
catch the kth evader. Therefore the number of pursuers and evaders is reduce to m − 1
and k − 1, respectively.
Now a game problem with pursuers z1, . . . , zm−1 and evaders y1, . . . , yk−1 is considered
with the condition

m−1∑
i=1

ρpi >

k−1∑
j=1

σpj (a = m− 1, b = k − 1). (3.22)

If zm(θ1) 6= yk(θ1), according to (3.6), we obtain that

σpk(θ1) ≤ σpk − ρ
p
m +

|x0 − y0|
a(θ1)

. (3.23)

Then, in view of (3.20) and (3.23), we obtain

m−1∑
i=1

ρpi >

k∑
j=1

σpj (a = m− 1, b = k), (3.24)

and at the time θ1, we consider the pursuit problem with the pursuers z1, . . . , zm−1 and
evaders y1, . . . , yk. We now turn to the second phase of the game, that is if ρm > σk.
Then the pursuer zm ensures the equality zm(θ1) = yk(θ1) and according to lemma 3.2
(see, (3.5))

ρpm(θ1) ≥ ρpm − σ
p
k −
|y0 − x0|
a(θ1)

. (3.25)

Then from equations (3.20) and (3.25), we obtain

m−1∑
i=1

ρpi + ρpm(θ1) >

k−1∑
j=1

σpj (a = m, b = k − 1), (3.26)
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and therefore at the time θ1 we considered the pursuit problem with the pursuers z1, . . . , zm
and evaders y1, . . . , yk−1.

Let θ2 be an arbitrary fixed number satisfying inequalities
θ2 > θ1,

a(θ2 − θ1) ≥ |yb(θ1)−zl(θ1)|
(ρl(θ1)−σb(θ1))

,

ρp1(θ1) + · · ·+ ρpl (θ1) > σp1(θ1) + · · ·+ σpb (θ1) + |y0,x0|
a(θ2−θ1) ,

(3.27)

where l and b are the numbers of pursuers and evaders, respectively, which take part in
the pursuit problem at time θ1. Define the pursuers strategy as follows:

wa(t) =
η(t)q−1

aq(θ2 − θ1)
(yb(θ1)− zl(θ1)) + vb(t), θ1 < t ≤ θ2,

wi ≡ 0, θ1 < t ≤ θ2, i ∈ {1, ...,m}\{l}.
(3.28)

Observe that according to (3.28), all pursuers except zl will not move on the time interval
(θ1, θ2]. Let the pursuers use the strategies (3.28). Applying the same arguments above,
we arrive at the following:

(i) If ρl(θ1) ≤ σb(θ1) and zl(θ2) = yb(θ2), then starting from θ2 we consider a pursuit
problem with the pursuers z1, . . . , zl−1 and evaders y1, ..., yb−1 under the condition

l−1∑
i=1

ρpi (θ2) >

b−1∑
j=1

σpj (θ2). (3.29)

(ii) If ρl(θ1) ≤ σb(θ1) and zl(θ2) 6= yb(θ2), then starting from θ2 we consider a pursuit
problem with the pursuers z1..., zl−1 and evaders y1, . . . , yb under the condition

l−1∑
i=1

ρpi (θ2) >

b∑
j=1

σp1(θ1). (3.30)

(iii) If ρa(θ1) > σb(θ1, then by lemma 3.2 the equality zl(θ2) = yb(θ2) holds. In this case,
starting from θ2 the pursuit problem with the pursuers z1, . . . , zl and evaders y1, . . . , yb−1
is considered under the condition

l∑
i=1

ρpi (θ2) >

b−1∑
j=1

σp1(θ2). (3.31)

Repeated application of this procedure enables us to complete the pursuit for some finite
time T since the number of players is finite and decreasing. Thus, we have proved that
dummy pursuers can complete the pursuit.

3. Completion of the proof of the theorem: We will now show that the actual
pursuers also can complete the pursuit. Define the controls u1, · · · , um by the control of
the DPs w1, · · · , wm. Let PK(x) denote the projection of the point x ∈ Rn on the set K,
(where K is a closed convex subset of Rn), then we obtain the following results. Note
that PK(x) = x if x ∈ Rn, the we have

|x− y| ≤ |x− PK(x)|, (3.32)

and

|PK(x)− PK(y)| ≤ |x− y|. (3.33)
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Hence the operator PK(x) relates any absolute continuous function z(t), 0 ≤ t ≤ T, to
an absolute continuous function

x(t) = PK(z(t), 0 ≤ t ≤ T, (3.34)

where T is the time in which pursuit can be completed by DPs. We construct the strategy
for the actual pursuers to satisfy

xi(t) = PK(zi(t)), 0 ≤ t ≤ T, i ∈ {1, · · · ,m}. (3.35)

We now show that the strategy (3.35), is admissible. Indeed from (3.32), (3.33), and
(3.35), we have almost everywhere on [0, T ], that is

η(t)|ui(t)| = |ẋi(t)|

= lim
k→0+

∣∣∣∣xi(t+ k)− x(t)

k

∣∣∣∣
= lim
k→0+

|PC(z(t+ k))− PC(z(t))|
|k|

≤ lim
k→0+

|zi(t+ k)− zi(t)|
|k|

= |ż(t)|
= η(t)|wi(t)|dt.

(3.36)

This implies∫ T

0

|ui(t)|pdt ≤
∫ T

0

|wi(t)|pdt (3.37)

and therefore at some time ti ≤ T and ni ∈ {1, · · · ,m}, the equality

zni(ti) = yi(ti). (3.38)

holds for any evader yi, i ∈ {1, · · · ,m}. In particular, yi(ti) ∈ C, by (3.35), and the fact
that PK(x) = x if x ∈ Rn, we have

xni(ti) = PK(zni(ti)) = zni(ti) = yi(ti). (3.39)

This means the differential game can be completed for the time T . therefore the proof of
the theorem is complete.

Corollary 3.3. If p = q = 2, condition (3.1) of the theorem reduces to ρ21 + · · · + ρ2m ≥
σ2
2 + · · ·+ σ2

k, and therefore pursuit can be completed [29].

4. Conclusions

We have studied a pursuit differential game of many but finite number of pursuers
and evaders on a closed convex subset K of Rn. The main contribution of this paper
(Theorem 3.1) is that, we extend the result of [29] in the space Rn to the functional
space Lp. That is, if p = q = 1, the condition (3.1) of Theorem 3.1 takes the form
ρ21 + · · ·+ ρ2m ≥ σ2

2 + · · ·+ σ2
k, then pursuit can be completed.
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