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Abstract This paper considers mixed H~ and passive synchronization of complex dynamical networks
with discrete time-varying delay for a class of mixed coupling and hybrid delay feedback control. The
discrete delay is assumed to be interval time-varying delay, which means that the upper and lower bound
of delay are adopted. The purpose of this work provided by designing hybrid delay feedback control, which
contains error linear term and time-varying delay error linear term, using appropriate Lyapunov-Krasovkii
functional (LKF) deal with some new integral inequalities and combined with improved reciprocally
convex such that the synchronization error system is exponentially stable with a mixed Ho, and passive
performance index simultaneously. The sufficient conditions are presented in the term of linear matrix
inequalities (LMIs). Finally, the effectiveness of our proposed method is employed to demonstrate via

numerical example.
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1. INTRODUCTION

Over the past few decades, complex dynamical networks (CDNs) have been widely
studied by abundant researchers. It is structure of a large set of interconnected nodes
in which each node is a unit with their respective dynamical equations. In recent years,
complex networks have been an attractive research topic since it can be used to model
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and describe many phenomena in nature such as the World Wide Web, cellular and meta-
bolic networks, transportation networks, communication networks, social networks, and
electrical power grids etc.

Synchronization of CDNs is one of the most important and interesting subject in a lot
of research and application fields. Many phenomena in nature are described by the syn-
chronization of complex networks, which have been published in [5, 16, 18]. Moreover, a
lot of synchronization criteria for CDNs have been proposed. For instant, [20] introduced
simple uniform networks model without time delays and they can achieve synchronization
of small-world dynamical network. However, in reality time delay is an unavoidable situ-
ation in real dynamic systems. It is well known that there exists in a network may lead
to instability, poor performances, oscillations and divergences. There are many examples
that can be found in networks such as application engineering, electrical power networks,
physical networks and so forth. CDNs, especially are caused by the fitness of signal trans-
mission and switching speed [3]. So, Li and Chen, [(] investigated a complex dynamical
network model with a coupling delay for both continuous-time and discrete-time cases
and they can derive synchronization conditions for both delay-independent and delay-
dependent asymptotical stabilities. Gao et al. [1] studied synchronization for general
of complex dynamical networks with coupling delays which they can find new criterion
for guaranteeing the asymptotically stable of synchronized states. As we all know, time-
varying delays case which is more regular than the constant time delay. So, there are many
of researchers challenge this topic which their works available in literature [7, 14, 26]. In
the past decades, synchronization control problems have been received considerable at-
tention. These issue occurred for achieving synchronization for an asynchronous complex
network for example, impulsive control [25], feedback control [3], pinning control [22],
sample-data control [9, 21] and so forth.

On the other hand, the passivity theory acts as vital part in analysis of linear and
nonlinear systems, which has background knowledge in circuit theory [4]. It has been a
hot subject in analysis and design of networks control which has been available in [12].
The concept of passive synchronization control is to remain the system internally stable.
Furthermore, H,, synchronization control is important tool for stable effectiveness of dis-
turbances or noises in CDNs [2, 17]. In control theory, H,, approach plays an important
role in the synthesizing controllers to achieve stabilization with guaranteed performance.
In recently year, the problem of mixed H,, and passive has been become a popular topic
in various research. It was first presented in [10, 11]. The coping with the mixed Ha,
and passive analysis is proposed. For example, Shen et al. [19] investigated the problem
of mixed H,, and passive synchronization of complex networks with time-varying delay
via a sampled-data control and they derived the sufficient conditions which lead to stable
system and satisfy mixed H., and passive performance level. Wang et al. [23] studied on
the topic of mixed H, and passive sampled-data synchronization control of CDNs which
pay attention to distributed coupling delay.

Inspired by the above discussions, in this paper, we aim to design a set of hybrid
delay feedback controllers which composed of error linear term and time-varying delay
error linear term to achieve mixed H., and passive synchronization of complex dynamical
networks with time-varying delay and mixed coupling. In our works, we focus on inter-
val time-varying delay which some researchers have not studied yet. By constructing an
appropriate Lyapunov-Krasovskii functional comprising double and triple integral terms
and using the information on the boundedness of the time-varying delay, improved Jensen
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inequalities together with reciprocally convex combination which the sufficient conditions
are derived for analysis of the problem. Finally, illustrative example is provided to show
the effectiveness of the proposed methods.

2. PRELIMINARIES

Consider the following complex dynamical network with N identical coupled nodes

N N
ti(t) = flzi(t)) +g(zi(t — (1)) + 1 Z aijDiz;(t) + c2 Z bijDaxj(t — h(t))
+ui(t) 4+ wi(t), (2.1)
yi(t) = Zxi(t), i=1,2,...,N, (2.2)

where z;(t) € R™ and u;(t) € R™ are respectively, the state vector and the control input
of the node i. f,g : R® — R™ are continuous nonlinear vector valued functions. The
function h(t) denotes the time-varying delay satisfying:

0< A\ <h(t) <A, 0<h(t)<y<], (2.3)

where A1, A3 and v are known positive constants. The constant ¢; > 0 and ¢, > 0 de-
note the non-delayed and delayed coupling strength, respectively, D and D, are con-
stant inner-coupling matrices, w;(t) € R™ is the external disturbance which belongs
to £4[0,00),Z is a known matrix with appropriate dimensions. A = (aij) yun B =
(bij) yxy € RN are the outer-coupling matrices of the non delay and the time-varying
delay of the network in which a;;,b;; are defined as follows: if there is a connection
between node ¢ and node j(j # %), then a;; = a;; = 1,b;; = bj; = 1; otherwise,
ai; = aj; = 0,b;; = bj; = 0, and the diagonal elements of matrices A and B are de-
fined by

N N
Q5 = — Z aij, bii:_ Z bij7 Z:].,Q,,N (24)
=] J=Li#j
The system of the unforced isolate node is given as follows
$(t) = f(s(t) + g(s(t — h(t))), (2.5)
Ya(t) = Zs(t), (2.6)

Yo (t) is the unforced isolate output, we define the synchronization error as e;(t) = x;(t) —
s(t). Then, the error dynamics of complex network (2.1) and (2.2) can be transformed as
follows:

N N
éi(t) = &(ei(t)) + et —h(t)) +c Z aijD1e;(t) + c2 Z bijDae;(t — h(t))
+u;(t) + wi(t), (2.7)
Gi(t) = Zei(t), i=1,2,...,N,
where £(e;(t)) = f(zi(t)) — f(s(t), T:(t) = yi(t) — ya(?)
Clei(t = h(t)) = g(xi(t — h(t))) — g(s(t — h(2))).
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In this work, we design hybrid feedback control as follows:
ui(t) = Kiei(t) —|—F¢€i(t—d(t))7 1=1,2,3,...,N, (2.9)

where K; and K; are the feedback gain to be determined and the time-varying delay
function d(t) satisfies the condition

0<dt)<d, 0<dt)<p<]l, (2.10)

where d and 8 are known constants. For given matrices R;, Ro,S1 and S the nonlinear
function f, g satisfy

[F(@) = F() = Ra(e =) [f(2) = () = S1(x —y)] <0,
l9(2) = 9(y) = Rae —))" [9(z) — 9(y) = Sa(a —y)] <0, Vr,y €R™.  (2.11)
By substituting (2.9) into (2.7), such that the resulting closed-loop error system

N N
éi(t) = &(es(t)) + (et — h(t)) + e Y aiDiej(t) +c2 ¥ bizDaej(t — h(t))
j=1 j=1
+Kiei(t) + Kiei(t —d(t)) + wi(t), (2.12)
Gi(t) = Zeit) i=1,2,...,N. (2.13)
The equation (2.12) and (2.13) can be simplified as the following form:
() = &le(t) +C(e(t — h(t)) + c1 (A® Dy)e(t) + ca (B @ Dy) e(t — h(t))
+Ke(t) + Ke(t —d(t)) + w(t), (2.14)
y(t) = Ze(t), (2.15)
where e(-) = [eT(:) e (1) ... e ()T, K = diag {K1, K2, ..., KN},

K = diag { K, Ko, KN} y(t) =y 1T()y ).y @],
z:diag{z,z,..., },sm) (€7 (ex(£)) €7 (ea () €7 (en (DI,
g ) = (¢ (ex(t = h(2)) ¢ (ealt = b)) ... CT (en(t — AE))]T,

w(t) = [wi (t) wi (t) ... wy ()]

Remark 2.1. If g(-) =0, ¢1 = 1, ¢3 = 1, a;; = b;;, the network model (2.1) turns into
the complex dynamical network proposed by [19]

N N
#i(t) = [@i(t)+ Y ByBu(t)+ ) EyAw;(t — (1) +wi(?) (2.16)
j=1 j=1
Fwi(t)
If g() = 0,c1 = c2 = 1,a;; = bij,w;(t) = 0 the network model (2.1) turns into the
complex dynamical network presented by [21]

N N
#i(t) = f@(®)+Y GuyDr;(t)+ ) GyAw;(t — (1)) +ust)  (2.17)

j=1 =1

Hence, our model (2.1) is general networks model, with (2.16), 2.17) as the special case.

The following definition and lemmas are introduced for deriving the main result.
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Definition 2.2. [19] The system (2.14) and (2.15) with w(t) = 0 are exponentially stable,
if there exist two constants 7 > 0 and @ > 0 such that

le(t)[* < ne™ =" max{ sup lle(o)]?, sup 1€(0)]1%}-
— max{A2,d}<6<0 — max{A2,d}<6<0

Definition 2.3. [19] For given scalar o € [0,1], the system (2.14) and (2.15) are expo-
nentially stable with a mixed H,, and passivity performance index 9§, if the following two
conditions can be guaranteed simultaneously:

(1) the system (2.14) and (2.15) are exponentially stable in view of Definition 2.2.
(2) under zero original condition, there exists a scalar ¢ > 0 such that the following
inequality is satisfied:

/ " T (0)2(t) + 201 — )67 (1)(t)] dt
O 2 Te T
> 5 /O W7 (Bw(t)] dt, (2.18)

for any 7, > 0 and any non-zero w(t) € £2[0, 00).

Lemma 2.4. [2/] For a positive definite matriz R > 0, and any continuously differentiable
function x : [a,b] — R™, the following inequality holds:

1 3 5 4
—_— —_— 2.1
b_awlRwl—i— b—an Rwsy + b_awg Ruws, (2.19)

/ T () Ri(s)ds >

where

wy = xz(b) —z(a),

b
wo = z(b) +x(a) — bia/ x(s)ds,

ws = x(b) —z(a) + 2 ? " /abx(s)ds - ﬁ /ab /ubx(s)dsdu.

Lemma 2.5. (Jensen’s inequality [15]) Suppose z(t) € R™, for any positive definite
matriz P the following inequality holds:

/ab 2T (s)Px(s) ds > ﬁ /ab z7(s)dsP /abac(s) ds. (2.20)

Lemma 2.6. [2/] For a positive definite matriz R > 0, and any continuously differentiable
function x : [a,b] — R™, the following inequality holds:

b b
/ / 7 (s)Ri(s)dsdu > 2w} Rwy + 4wl Rws + 6wd Rws, (2.21)
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where

b
wy = x(b)—bia/ x(s)ds,
b b b
ws = x(b)—l—i x(s)ds_(b—%)?/a /u z(s)dsdu,

b—a J,

b b b
we = x(b)—% ’ x(s)ds—i—ﬁ/ﬂ /u x(s)dsdu

—(bfoa)g/ab /ub/sb:r(r)drdsdu.

Lemma 2.7. ( Reciprocal convexity lemma [13]) For any vectors x1,x2, matrices U >
0,V, and real scalars a > 0, 8 > 0 satisfying o + 8 = 1, the following inequality holds:

T
1 T 1 T 1 U Vi |z
—— Uz, — Bxg Uzy < — [332} [VT U] [332 (2.22)
subject to
u v
<[ Y]

3. MAIN RESULTS

Firstly, we present a sufficient condition which guarantees the synchronizaion error
system (2.14) and (2.15) to be exponentially stable and satisfy with a prescribed mixed
H, and passivity performance level 6. Then the desired controllers are proposed. For
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simplicity, we denote

I
I, =

II; =

Py =

Oy =

ri € RV*20nN g defined as r; = [0 nx(i—1)nn> InNy Onnx(20—i)nn ]
for 1 =1,2,...,

2T8 ’ Tl

- 127‘?5} ’ )

T —Te,

T T T

[ri — 7’4 14Ty —

T

Ty 71"5 +67’9 - 121"11] ,
T T T

[ri —r3,71 +73 —
T

ry —rg + 67

r —7Trs,

T T T

[7"1 — iy 21l —
T

[rl T8 ,7’1 +2T8
T 71T

[T17T18] )

T 11T

[7“377"19] )

RAi Sh, + 517\11 R,

2

diagy{R;},

[diag{Ug, 3U3,5U2}

[diag{U373U3,5U3}

2G4
0

| 0

2G5
0
0

20.

*

*

0
4G,
0

0
4G,
0

ri 4 6rd —12rT) 1T —

21"?2, TlT — r:? + 67’{2 —
67“14, 7"1 37“12 + 24r14
67’10,1"1 37’8 + 241“10
RY, + 5%,
AT T T

Sy, = diagy{Si}, i =1,2

0]

0

6G1 |
-

0
6G |

X
diag{Ug, 3U2, 5U2}

Y
diag{Us, 3U3, 5U3}

E
|\

T
—27"9,

T
— 2113,

(3.1)

(3.2)
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X(t) = [e"(@), eT(t), e"(t = h(t), " (t = d(t)),e" (t = d), e (t = A1), (3.3)

-, - [ s — [
e’ (t— o), —/ e / e ds,
? d(t) b d(t) Cd—d(t)
t—d(t) pt— d(t)
/ dsdu / / dsdu
t d t

1 t—h(t)
%/t h(t)e T(s)ds, 7)\27h( ) /t_ el (s)dsdu,

1 t—h(t) pt— h(t)
s)dsd
h2(t s)dsdu, )\ — h M /t / sdu,

L
d31(t/ // r)drdsdu, t/th(t // r)drdsdu,
( .

€7 (e(t)). CT(elt — h(t)). wit)]

Theorem 3.1. For given scalars A1, 2,7, B,d,e1 and €2, matrices Ry, R, 51, and Ss, if
there exist matrices P = diag{Py, Ps,..., Py} > 0,T; >0, U; >0 (i =1,2,3,4),G; > 0,
Gy > 0, Tl, Ty

X1 Xo X3 Vi V5 V5
X=Xy X5 Xg| eR¥NXN vV — |V, Yy Yg| € RVXN quch that:
X7 Xg Xg Y7 Yé Y9
U = 2r1 Pro+1ry Ty — TG ITire + rq Typy — rs T Tor, + rq TTup, — (1—9) ’I"ng’l”g

+7‘1T4T177‘5T4T5+)\1T2U1T27H1U1H1+d T2U2T27H2U2H1H2

)\2
+)\§7€1U37A2 - H3T<I>2H3 + AgT;UM@ — (1 — )H4 Uylly + 5
2

d
—(]. — 7)1’[?@11_[5 + ?TgGQTQ — (1 — /B)HTG)QH(S 27’1 T’{’I"Q + 2’1"1 Tl 18

-T2 GlTQ

+2rT YT g + 2rTYT e (A@ Dy) 7y + 2rT YT ey (B ® Do) s + 20T YT Koy
+2r YT Kry — 200 gy + 272X g + 20T YT 019 4+ 20T YT ey (A Dy) 1y
+2rT YT ey (B @ Do) rs + 2rE YT Ky + 27 I YT Ky + 20T YTy

+2r3 Y50 — &1 117 Fﬁl SIAI] II7 — eoII% F:Q S}\?} g+ 71 02" Zr,

—2(1 — 0)or] ZT g0 — 13,62 Ireg < 0, (3.4)

o, > 0, (3.5)
o, > 0, (3.6)
a

then, the synchronization error system (2.14) and (2.15) are exponentially stable with
prescribed mized Hyo and passivity performance level 6.

Proof. Consider a LyapunovKrasovskii functional candidate for system (2.14) and (2.15)

11
=D Vi)
=1
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where

Va(t)
Va(t)
Vo(t)
Vio(t)

Vi (t)

s)Uré(s)dsdf

o /

A1 Jt+0

// $)Usé(s)dsdf
t+0

)\2/ / U3€ d8d9
Ao Jt+40

)\2/ / U46 d8d9
h(t) Jt+6

I //

t—h(t)

IYNECE

t—d(t)

s)dsdfdr

s)dsdfdr.

(3.7)

Calculating the time derivative of V'(¢) along the trajectories of system (2.14) and (2.15)

give the following result:

IA

— d2-T

2¢T () Pé(t),
eT(t)Tle(t) — eT(t — /\1)T16(t — Al)
eT(t)TQe(t) — €T(t — /\2)T2€(t — /\2)7
e’ (t)Tse(t) — (1 — h(t))e™ (t — h(t))Tse(t — h(t))
el (t)Tse(t) — (1 —y)el (t — h(t))Tse(t — h(t)),
el (t)Tye(t) — et (t — d)Tye(t — d),
= NeT(Ue(t) — M t eI (s)Uré(s)ds
= METOUD -0 [ T
é Ke(t) — e (s 26(s)ds,
Oai(t) —d [ T Ua(s)a
Age‘T(t)Ugé(t)—AQ/ eI (s)Usé(s)ds,
t—A2
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Vo (t)

Vio(t)

Vi (t)

IN

IN

IN

Aah(t)eT () Uge(t) — Ay(1 — h(t)) /t e ¢T'(s)Usé(s)ds

¢
NBET (Use(t) — No(1 — h(t)) / 6T (3)Usé(s)ds (3.16)
2

h(t) T(t)Ge(t) / / $)G1é(s)dsdf

2 t—h(t)

/\2

2T t)G1é(t) — (1 —~ / / $)G1é(s)dsdb,

2 t—h(t)

2
d() ( )Gaé(t) / / $)Gaé(s)dsdf

2 t—d(t)
d

2 H)Geé(t) — (1 - / / s)Gaé(s)dsdb. (3.17)

d(t)

Utilizing Lemma 2.5, the following relation is easily obtained

T

-\ /tth el(s)Uié(s)ds < — </tth éT(s)ds) Uy </:Al é(s)d5>

= T OOTU I, (). (3.18)

Apply with Lemma 2.4 and the reciprocally convex approach, we have

IN

—d/t_dé (8)Usze(s)ds

t—d(t)

_d/t_

el'(s)Uqé(s)ds — d/tl o et'(s)Uqé(s)ds

d

— _dd(t) le(t — d(t)) — e(t — d)|T Uy [e(t — d(t)) — et — d)]

_d_Ld(t) [e(t —d(t)) + et — d) - d—id(t) /t:d( ) e(s)ds] )

30y | e(t — d(t)) + e(t — d) — d_id(t) /t tddm e(s)ds]

— _dd(t) [e(t — d(t)) + et = d) + _Gd( . /t tdd(t) e(s)ds
m /t :d(t) / T (s T5U2 le(t — d(t)) + e(t — d)
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<

d
an le(t) — e(t — d(t)]" Uz [e(t) — e(t — d(t))] (3.19)
2 [t ’
27 [0+ et =) - 225 /t_d(t) e(s)ds| 3Us [e(t) + e(t — (1))
2 t
d
d(t) /t—d(t)e(S) s]
—d 6 [ 12 t
w le(t) —e(t—d(t)) + @ /t_d(t) e(s)ds — o /t_d(t)/u (s)dsdu]
6 [ 12 [ t
x5Us |e(t) —e(t —d(t)) + FO) /t_d(t) e(s)ds — 20 /t_d(t) /u e(s)dsdu}
] e(t) —e(t — d(t)t) T
Wt) e(t) +e(t —d(t)) — d(t ft d(t) e(s)ds
t
e(t) —e(t —d(t)) + % ft_d(t) s)ds — d2(t ft det) f s)dsdu
Uy 0 0
0 30U, 0 |x
0 0 55U,
e(t) —elt - d(t)
e(t) +e(t —d(t)) — d(t) S t) e(s)ds
t
e(t) —e(t —d(t)) + % j;fd(t) dQ(t) ft d(t) f s)dsdu
d
d—dit)
(t = d(0) - eft - ) g
e(t = d(O) + elt = d) - 7= o] ft 1 e(s)ds
(t—d(t)) —e(t—d)+ i d(t) ft at) o (s)ds — = d @=dm)? ftt dd(t) ft d(t>e(s)dsdu
Uy 0 0
0 30U, 0 |x
0 0 5U,
e(t—d(t))—e(lt— d)
e(t = d(0) + et~ d) ~ =i ft {0 e(s)ds
e(t —d(t) —e(t — d) + ;=57 [ =" e(s)ds — =225z [0 [T e(s)dsdu
—x" (H)115 D1 Ty x (). (3.20)

Utilizing Lemma 2.4 and the reciprocally convex approach, we get

¢
—)\2/ el (s)Usé(s)ds
t—Ao

t—h(t) t
Y / &T (5)Usé(s)ds — Mg / &T (5)Usé(s)ds
t t—h(t)

—o
A2

e gy [~ ) = et = X Us [e(t = h(t)) —e(t = 2o)]
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— AQ
Ns — h(?)

9 t—h(t) T
e(t = h(t) + elt = o) = 5 /H e(s)ds]

><3U3

t—h(t)
et — h(t)) + e(t — Ao) — %h(t) /t e(s)ds]

— o

A 6 t—h(t)
_>\2 2h( ) [e(t — h(t)) + €(t — )\2) + m /t_)\2 e(s)ds

h(t)
)\2 — / / s)dsdu

t—h(t)
x [e(t —h(t)) +e(t—A2) + )\Q—Lh(t) /t e(s)ds—

— o

t—h(t) pt—h(t)
/ / e(s)dsdu
/\2 - t u

h)é) le(t) = e(t — (D))" Us [e(t) — e(t = h(1)

5U3

T

A2 2 [
0] e(t) +e(t—h(t)) — 0] /t_h(t) e(s)ds| 3Us
x |e(t) +e(t—h(t)) — %/t - e(s)ds}
- 6
Wt; [e(t) —e(t —h(t)) + m/t o ds — /t o / dsdu]
x5Us |e(t) —e(t — h(t)) + % /t_h(t) 12 /t - / dsdu]

\ { e(t) —e(t — h(t)) }
_r2 e(t) +e(t —h(t)) — h(t ft h(t) e(s)ds
e(t) —e(t —h(t)) + h?t ft h(t) € h2(t ft h(t) f s)dsdu

Us 0

0
x |0 3U;3 0
0 0 50U

e(t) —e(t — h(t))
X e(t) + ( h(t)) — h(t) ft h(t) e(s)ds
e(t) —e(t = h(t) + h(t ft h(t) € e(s)ds — h2(t ft h(t) f e(s)dsdu
Ao
Ao — h(t)

X
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(6 h) —elt =) !
e(t — h(t)) te(t —A2) — 5= h(t) fft Agt) s)ds
e(t — h(t)) — e(t — Aa) + = h(t) ft h(t) e(s)ds — o h(t))2 ftt h(t) ft h(t) e(s)dsdu
Us O 0
X 0 3Us 0 | x
0 5U;
elt—h(t)) —et=22)
€(t = () +elt = da) = 5 J1- ;‘” e(s)ds
h(t)) —e(t — A2) + 5= h(t . Ahzt) e(s)ds — 55 h(t))2 ft 5 L " e(s)dsdu
< —xT ()15 @oTT3x (). (3.21)

Moreover, we have the following relations from Lemma 2.6

(1~ /t ht)/ §)Gré(s)dsdb
< 21—+ [eos) o ih(t) e(s)ds] "o [e(t) i/ ih(t) e(s)ds
) o [ et [ [ etsyintn T

T ey e
6(1— ) [e(t) 5 | t RO ol ;(t) / e(s)dsdu

85 ]
. [e@) o [ e i [
[ [ [eowes]

—4(1—7) Gy

G1

Similarly, we have

- (1-p / / $)G2é(s)dsdf
t—d(t)

< =21-0) le(t) - % /td(t) e(s)ds

T
Ga

1t
e(t) — o /td(t) e(s)ds]



HYBRID DELAY FEEDBACK CONTROL FOR MIXED H,, /PASSIVE

e(t) + % /t td(t)
et [ et dft ds)dsdu]
~6(1- ) [ew i e [ ety
50 [, [ et
. [e@ S /t_d@ a . [ etopasin
60 [ ol [ ]

—(1 = B)x" (t)II§ O2llgx(t).

531

s)dsdu

2

t—d(t) Ju

G2

(3.23)
From (2.11), it is not difficult to verify that for any €1, e3 > 0 the nonlinear functions

&(e(t)) and ((e(t — h(t))) satisty

o [gé%ﬁf ] e 20 (3:24)
= |efe - %?»]T e 5] o] 2° (3.25)

where Rp,, Rp,, Sa, and Sy, are also defined in (3.1).

Then, it is clearly that for any appropriately dimensioned matrices Y7 and YZ the fol-
lowing equation holds:

2 [ (OTT + ()T | =ét) +E(e(t)) + Clelt -
“+cCo (B ® DQ) e(t —

0

(1)) + c1 (A® Dy)e(t)

h(t)) + Ke(t) + Ke(t — d(t)) + w(t)] . (3.26)

Adding the right-hand sides of (3.24)-(3.26) to V(t), we can get from (3.8)-(3.23) that

V(1) + oy (Dy(t) — 2(1 = 0)dy" (Hw(t) — 6*T (w(t) < xT () Tx(1). (3.27)
Thus, according to Eq. (3.4) we have
V(t) + oy ()y(t) — 201 — 0)dyT ()w(t) — 62w (Hw(t) < 0. (3.28)

Then, under the zero original condition, it can be inferred that for any 7,

T
/O oy (t)yt) — 2(1 — 0)dy” ()w(t) — 2w (t)w(t) dt

< /Tp V(t) 4+ oyt (t)y(t) — 2(1 — 0)dy” (t)w(t) — 82wl (t)w(t) dt < 0,
0
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which indicates that

Tp Tp
/ oy By () — 21 — 0)oyT (B (t) dt < 62 / W7 (w(t) dt.
0 0

In this case, the condition (2.18) is assured for any non-zero w(t) € L2[0,00). If w(t) = 0,
in view of equation (3.27), we have

V(t) < —oy" Oyt) + xT O Tx(t) € —0Amin (Z7Z) [le®)])? + /\max(\Il)||é(t)(|:|))2.29)

Also, from the definitions of V;(t), it is not difficult to obtain the following inequalities:
Vi(t) Amax(P)le(®)]I?,
¢
/ el (s)Tse(s) ds,
¢

—As

IA

Va(t)

IA

IN

Velt) < A2 /t () Uré(s) ds,

-1

Va(t)

IN

t
e / T (s)Usé(s) ds,
t—d

Vi(t)

IN

2 K .T .
A2 /t T )U(s) ds (3.30)

Vo (t)

IN

¢
Y / el (s)Uysé(s) ds,
t—Ao

2 t
A2

2 t—A2

dz [t
Vii(t) < — e’
2 Ji—q

Vlo(t) S éT(S)Glé(S) dS,

(s)Gaé(s) ds.

We are now ready to deal with the exponential stability of (2.14) and (2.15). We con-
sider the LyapunovKrasovskii functional e2¥*V(t), where k is a constant to be determined.
Using (3.29), (3.30), we have

d ok
— t
pri )

=e2MV (1) + 2k V (1)

<62k‘t ( _ U)\min (ZTZ) + 2k ()\max(P) + Al)\maX(TI) + )\2)\max<T2) + )\QAmaX(TLQ))
+dAmax(T4)>> sup et + )|
—max{A2,d}<6<0

+ <>\max (\Ij) + 2k <>\%)\max(U1) + dz)\max(UQ) + )\gAmax(US) + )\g)\max(Uél)

)\3 d3
+ 22 Amax(G1) + )\maX(GQ)) sup le(t+ 0)[2|. (3.31)
2 2 — max{A2,d}<6<0
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Given

H1 :)\max(P) + Al)\max(Tl) + )\QAmax(TZ) + )\2)\max(T3) + d)\max(T4)

)\3
H2 :)\%Amax(Ul) + d2Amax(U2) + )\g)\max(US) + A%Amax(Uv4) + ;Anlax(Gl)

d3
+—Amax(G2).
2
>\m1n Z Z — A\max
Set kg = min ( ), A (%)
2/11 2/J,2

From now on, we take k to be a constant satisfying k < ko and then obtain from (3.31)

that
d o
— V(t) < .32
SRV (1) <0, (3:32)

which, together with (3.8) and (3.30), imply that
2ktv Z V
0

0
N (P) |e(O)]? + / ¢ (s)The(s) ds + / T (5)Tae(s) ds

—A1 —A2

0

0 0
+/ el'(s)Tse(s) ds —|—/ el (s)Tye(s) ds + )\%/ eI (s)U1é(s) ds

— g —d —A1
0 0 0
+d2/ T (5)Uné(s )ds+/\2/ T (5)Usé(s )dng/ ¢T(5)Uaé(s) ds
—d — Ao
)\2
+? ( )Gle dS + 7/ G2€
<HomaX{ sup lle(0)]1?, sup [e(0)11°},

— max{A2,d}<6<0 — max{A2,d}<6<0
where

Ho = )\max( ) + )\lAmax( ) + )\2>\max( ) + )\2)\max( ) + d)\max<T4)
+ )\3>\max(U1) + d Amax(UQ) + )\gAmax(UB) + A2)\max((]4)

by d3
2)\max(G1) 2 )\max(GQ);
therefore
V(t) < poe”*M* max{ sup (@), sup [ECIS?
— max{A2,d}<6<0 — max{2,d}<6<0

By noticing Apin (P)|e(t)]|? < V(¢), we obtain

Mo — .
eI < L0 e max s @), swp @),
HllIl( ) —max{A2,d}<6<0 — max{A2,d}<6<0
(3.33)
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By letting n = )\-ﬂio(P) and w = 2k, we can rewrite (3.33) as
le@®)]* < ne™*"max{  sup le(®)1, sup le@)17}-

— max{A2,d}<6<0 — max{\2,d}<6<0

Then, the system (2.14) and (2.15) are exponentially stable. Therefore, according to
Definition 2.3, the system (2.14) and (2.15) are exponentially stable with a mixed Hoo
and passivity performance index §. This completes the proof. n

Theorem 3.2. Consider scalars A1, 2,7, 8,d,a1,a2,61 and €3, matrices Ry, Ry S,
and Sy. The complex network (2.1) and (2.2) are exponentially synchronized by the
hybrid feedback controllers (2.9) if there exist matrices P = diag{Pi, Ps,...,Pn} >
0, M = diag{My, My, ..., My}, T, >0, Uy > 0 (i = 1,2,3,4),G1 > 0,Gs > 0,5 =
diag{El, 22, ey EN}, Q= diag{ﬂl, QQ, ceey QN},

X Xo X3 Yi V5 Y5
X = |Xy X5 Xg| € RBOVSNY — |V, Vs Yo| € RNX3N gych that (3.5),
X7 Xsg X Yz Ys Yo
(3.6) and the following conditions hold:
E = 2lPry++TTir — TngTﬁ + 7T Tyry — r?Tgm + 7T Tyry — (1 =) T3TT3T3

+7’?T47’1 - TgT4T5 + A%TgUlTQ - H?Ull_[l + dzrgUQTQ - HgUgﬂlﬂg
2

A
+A3rg Usry =TIy @olly + Adry Usry — (1= 9) M UaTly + Z2ry Gy
2

d
—(1 — 7)1’[?@11'[5 + ETEGQT‘Q — (]. — ﬂ)HgQQHG — 27‘{&1MT7‘2
+2rTar M rig + 2rTay M rig + 27T oy MT ey (A® Dy)ry
+2r1"1a1MT02 (B® Da)rs + 27”1"1@127"1 + 2rfa19r4 — QT;CKQMT’I’Q
+27‘;C¥2MTT’18 + 2T§a2MT7"19 + 27‘;a2MTcl (A X Dl) T1
+2r§a2MTCQ (B® Da)rs + 2r§a22r1 + 2r§a29r4 + 27:{041MT7"20

+27";C¥2MT7"20 — €1H$ F:l S?I:| H7 — Egng Fﬁz S?Z:| Hg

+rioZ Zry — 2(1 — 0)ér{ ZTrag — rdy6%Irag < 0. (3.34)

Moreover, if the LMIs (3.34) is solvable, the desired controllers gain matrices are given
as

K=M7"'y, K=M'Q (3.35)
Proof. Denote
T, = diag{aan M1, a1 M, ..., a1 My}, To = diag{aoM;,aoMs, ... ,asMpy}.
Then we can obtain (3.34). This completes the proof. n
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4. NUMERICAL EXAMPLE

In this section, a numerical example is adopted to valid our synchronization controller
of the complex network (2.1), (2.2).

Example 4.1. Consider a complex network (2. 1) and (2.2) with three nodes. The outer-

coupling matrix is assumed to be A = (ai;)5, 5, B = (bij)5, 5 With
-1 0 1 -1 1 0
A=10 -1 1 B=|]1 -2 1
1 1 -2 0 1 -1

The inner-coupling matrix is given as Dy = diag{0.4,0.4}, Dy = diag{0.5,0.5} and the
time-varting delay is chosen as h(t) = 1.95 4 0.05sin(10¢). Accordingly, we have A\ =
0.1, A =2, v = 0.5 and we choose w(t) = %,Z =I13® 15,0 =0.5, 6 = 0.2 and the
following parameters

C1 = 1, Co = 1, d= 0.5, B = 0.5, g1 = 0.97 €9 = 07, a1 = 0.9, Qg = 0.7.

The nonlinear functions f(-), g(-) are taken as

—0.5241 (t) + tanh(0.2xi1 (t)) + 0.2x;0 (t)
0.95.’131‘2 (t) — tanh(0.75$1‘2 (t)) ’

—0.5241 (t — h(t)) + tanh(0.2241 (£ — h(£))) + 0.2z:2(t — h(t))
0.45.’1%2 (t — h(t)) — tanh(0.25xi2 (t — h(t)))

Faa(t) = [ 123
glai(t — h(1))) = [

It is easy to see that f(-) and g(-) satisfy (2.11) with

—0.5 0.2 —0.3 0.2
Rl[o 0.95}’ Sl{o 0.2}’

05 0.2 —0.3 0.2
RQ_[O 0.45}’ 52_[0 0.2]

By applying Theorem 3.2, and solving LMIs (3.34), the contoller gain matrices can be
obtained as follows:

= [—46.7963  —0.1141 | B = [—0.0132  0.0000 |
Y| 01276 —38.5714) ' 0.0000 —0.0074]"
Joo — [49-3467  —0.1122] - 0.0024  0.0000
7| -0.1194  —42.3202] >~ ]0.0001 —0.0124]"
Joo — |~41.6409  0.0571 | = [-0.0112  0.0000 |
7] 0.0578  —38.5915] # 7 10.0000 —0.0090] -

In the simulation, the parameters of initial values are settled as z1(0) =
. The state trajectories of the controlled complex

(2 5]7, 23(0) =

(=5 6]"

5(0) =

127

network are shown in Figure 1. and 2. From our simulation results, it can be seen that
the designed hybrid feedback controllers achieve the exponential synchronization of the
complex network (2.1) and (2.2).
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e, (=%, (-5,
e, )=y, (5, ()
3 €=, (s, ()

0 0.5 1 15 2 2.5 3 35 4

FIGURE 1. Error state e;1(t) of the controlled complex network (i = 1,2, 3).

T

——e,5(0=x,(1)-5,()

=550, |
5 )X5,(0-5,(0)

FIGURE 2. Error state e;(t) of the controlled complex network (i = 1,2, 3).

5. CONCLUSIONS

In this paper, we focus on the problem of mixed H., and passive synchronization for
complex dynamical networks with time-varying delay and mixed coupling. By designing
hybrid feedback controller and constructing a Lyapunov-Krasovskii functional is based on
Jensens inequality, relaxed double integral inequality and improved reciprocally convex
approach, the sufficient conditions guaranteed mixed H,, and passive performance level
for CDNs with time-varying delay. These results have been expressed in terms of linear
matrix inequalities (LMIs). Finally, a numerical example demonstrates the effectiveness
of the proposed method.
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