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Abstract This paper proposes three (3) three term conjugate gradient (CG) methods based on the well

known conjugate descent (CD) CG parameter. The two directions were obtained by adding a term to

the CD direction such that the sufficient descent property is satisfied. Under some assumptions, we

establish the convergence of the proposed methods. In addition, numerical examples were given to show

the capability of the two methods in solving nonlinear monotone equations with convex constraints.
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1. Introduction

A nonlinear monotone equation with convex constraints is an equation of the form

F (x) = 0, subject to x ∈ Ω, (1.1)

where F : Rn → Rn is continuous and monotone. The set Ω ⊂ Rn is assumed to be
nonempty, closed and convex.

The above problem feature in many applications, such as the subproblems in the gen-
eralized proximal algorithms with Bregman distance [1], reformulation of ℓ1-norm reg-
ularized problems [2], and conversionn of variational inequality problems into nonlinear
monotone equations via fixed point maps [3].
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Among famous and efficient methods for solving (1.1) are the conjugate gradient (CG)
methods. They are iterative methods for solving unconstrained optimization problem and
nonlinear systems, due to low memory requirement (see [4–10] and references their in).
This and other reasons inspired many authors to propose CG methods combined with
the projection method by Solodov and Svaiter [11].

Given an initial guess xk, the conjugate gradient algorithm combined with the projec-
tion method computes the next guess xk+1 as

xk+1 = PΩ[xk − ζkF (zk)] (1.2)

where

PΩ(x) = argmin{∥x− y∥ : y ∈ Ω.},

ζk = F (zk)
T (xk−zk)

∥F (zk)∥2 and zk = xk + αkdk. αk is the step size obtained using a suitable line

search procedure and the search direction

dk =

{
−F (xk), if k = 0,

−F (xk) + βkdk−1, if k ≥ 1,
(1.3)

with βk being the conjugate gradient parameter. An important condition needed for the
direction to satisfy is

F (xk)
T dk ≤ −c∥F (xk)∥2, c > 0. (1.4)

This condition ensures a decrease in the norm of the residual at each iteration. A nice
property of the projection map is it’s nonexpansiveness, that is

∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn. (1.5)

Among such methods are the two directions proposed by Ahookhosh et al. [12]. The
search directions are defined as

dk =

{
−F (xk), if k = 0,

−F (xk) + βPRP
k wk−1 − θikyk−1, if k ≥ 1 and i=1,2,

(1.6)

where

βPRP
k =

F (xk)
T yk−1

∥F (xk−1)∥2
,

θ1k =
F (xk)

T yk−1∥wk−1∥2

∥F (xk−1)∥4
,

θ2k =
F (xk)

Twk−1

∥F (xk−1)∥2
+

F (xk)
T yk−1∥yk−1∥2

∥F (xk−1)∥4
,

yk−1 = F (xk)− F (xk−1), wk−1 = zk−1 − xk−1 = αk−1dk−1.

The global convergence was established under the line search

−F (zk)
T dk ≥ σαk∥F (zk)∥∥dk∥2, σ > 0. (1.7)

Another is that proposed by Papp and Rapajic̀ [13] which is modified Fletcher-Reeves
(FR) CG method. The directions are defined as

dk =

{
−F (xk), if k = 0,

−F (xk) + βFR
k wk−1 − θikF (xk), if k ≥ 1 and i=1,2,3,

(1.8)
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where

βFR
k =

∥F (xk)∥2

∥F (xk−1)∥2
,

θ1k =
F (xk)

Twk−1

∥Fk−1∥2
,

θ2k =
∥F (xk)∥2∥wk−1∥2

∥∥F (xk−1)∥∥4
,

θ3k =
F (xk)

Twk−1

∥∥F (xk−1)∥∥2
+

∥F (xk)∥2

∥∥F (xk−1)∥∥4
.

The three directions based on θ1k, θ
2
k, and θ3k are called M3TFR1, M3TFR2 and M3TFR3

respectively. Numerical results presented reveals that overall, M3TFR1 has the least
number of iterations. However, in terms of number of function evaluations and CPU
time, M3TFR2 was the most efficient and robust.
Likewise, Feng et al. [14] proposed a search direction given by

dk =

{
−F (xk), if k = 0,

−
(
1 + βk

F (xk)
T dk−1

∥F (xk)∥2

)
F (xk) + βkdk−1, if k ≥ 1,

(1.9)

where βk = ∥F (xk)∥
∥dk−1∥ .

The global convergence was proved using the line search

−F (zk)
T dk ≥ σαk∥dk∥2, σ > 0. (1.10)

. Just recently, Abubakar et. al [15] proposed a modified version of the method proposed
by [13] defined as

dk =

{
−F (xk), if k = 0,

−F (xk) +
∥F (xk)∥2wk−1−F (xk)

Twk−1F (xk)
max{µ∥wk−1∥∥F (xk)∥,∥F (xk−1)∥2} , if k ≥ 1,

(1.11)

where µ > 0 is a positive constant. The difference between the M3TFR1 direction and
the above direction is the scaling term appearing in the denominator of Equation (1.11).
To have more incite on conjugate gradient projection methods, the reader is referred to
[16–22].

Motivated by the above methods and in particular the method proposed in [12, 13],
we present three spectral conjugate descent projection methods. Section 2 gives detail of
the proposed methods. In Section 3, the global convergence of the proposed methods is
discussed. Numerical experiments are carried out in section 4. Finally section 5 has the
conclusion.

2. Algorithm: Inspiration and convergence analysis

We begin this section by defining the projection map, then introduce our proposed
method together with is convergence analysis.

Definition 2.1. Let Ω ⊂ Rn be a nonempty closed convex set. Then for any x ∈ Rn, its
projection onto Ω, denoted by PΩ(x), is defined by

PΩ(x) = argmin{∥x− y∥ : y ∈ Ω}.
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Indeed, PΩ is nonexpansive, That is,

∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn. (2.1)

All through, we assume the followings

(K1) The function F is monotone, that is,

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

(K2) The function F is Lipschitz continuous, that is there exists a positive constant
L such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

(K3) The solution set of (1.1), denoted by Ω, is nonempty.

An important property that is required of a method for solving equation (1.1) to possess
is that the direction dk satisfy

F (xk)
T dk ≤ −δ∥F (xk)∥2, (2.2)

where δ > 0. The above relation (2.2) is called the sufficient descent condition if F (x) is
the gradient vector of a real valued function f : Rn → R.

Inspired by the directions proposed in [12] and [13], we propose the following search
direction

dk =

{
−F (xk), if k = 0,

−F (xk) + βCD
k wk−1 − λkF (xk), if k ≥ 1,

(2.3)

where

βCD
k =

∥F (xk)∥2

−dTk−1F (xk−1)
, (2.4)

wk−1 = zk−1 − xk−1 = αk−1dk−1. The parameter λk will be derived in three different
approaches such that (2.2) is satisfied.
M3TCD1 direction: Multiplying (2.3) by F (xk)

T and substituting (2.4) in (2.3), we
have

F (xk)
T dk = −∥F (xk)∥2 +

∥F (xk)∥2

−dTk−1F (xk−1)
F (xk)

Twk−1 − λk∥F (xk)∥2.

By choosing

λk =
F (xk)

Twk−1

−dTk−1F (xk−1)
, (2.5)

then (2.2) is satisfied with δ = 1, that is F (xk)
T dk = −∥F (xk)∥2.

we call the first modified three term CD like direction M3TCD1 which is defined by
(2.3),(2.4) and (2.5).
M3TCD2 direction: Applying similar approach used in [12] and [13], we have

F (xk)
T dk

=
[
− ∥F (xk)∥2(dTk−1F (xk−1))

2 − dTk−1F (xk−1)∥F (xk)∥2

× F (xk)
Twk−1 − λk∥F (xk)∥2(dTk−1F (xk−1))

2
]/
(dTk−1F (xk−1))

2.
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Using the relation uT v ≤ 1
2 (∥u∥

2 + ∥v∥2) and letting u = − 1√
2
(dTk−1F (xk−1))F (xk) and

v =
√
2∥F (xk)∥2wk−1, then

F (xk)
T dk

=
[
− ∥F (xk)∥2(dTk−1F (xk−1))

2 +
1

4
(dTk−1F (xk−1))

2∥F (xk)∥2

+ ∥F (xk)∥4∥wk−1∥2 − λk∥F (xk)∥2(dTk−1F (xk−1))
2
]/
(dTk−1F (xk−1))

2

= −∥F (xk)∥2 +
1

4
∥F (xk)∥2 +

∥F (xk)∥4∥wk−1∥2

(dTk−1F (xk−1))2
− λk∥F (xk)∥2

= −3

4
∥F (xk)∥2 +

∥F (xk)∥4∥wk−1∥2

(dTk−1F (xk−1))2
− λk∥F (xk)∥2.

(2.6)

Choosing

λk =
∥F (xk)∥2∥wk−1∥2

(dTk−1F (xk−1))2
, (2.7)

then then (2.2) is satisfied with δ = 3
4 , that is F (xk)

T dk = − 3
4∥F (xk)∥2. The direction

defined by (2.3),(2.4) and (2.7) is called M3TCD2.
M3TCD3 direction: This third parameter λk is chosen as

λk =
F (xk)

Twk−1

−dTk−1F (xk−1)
+

∥F (xk)∥2

(dTk−1F (xk−1))2
. (2.8)

The first term is (2.5) and the second term is chosen such that (2.2) is satisfied. Now,
multiplying (2.3) by F (xk)

T and substituting (2.4) and (2.8) in (2.3), we have

F (xk)
T dk = −∥F (xk)∥2 +

∥F (xk)∥2

−dTk−1F (xk−1)
F (xk)

Twk−1

−

(
F (xk)

Twk−1

−dTk−1F (xk−1)
+

∥F (xk)∥2

(dTk−1F (xk−1))2

)
∥F (xk)∥2

= −∥F (xk)∥2 −
∥F (xk)∥4

(dTk−1F (xk−1))2

≤ −∥F (xk)∥2.

The above relation shows that (2.2) is satisfied with δ = 1. We call the direction defined
by (2.3), (2.4) and (2.8) M3TCD3.

To prove the global convergence of Algorithm 1, the following lemmas are needed.

Lemma 2.2. The directions M3TCD1, M3TCD2 and M3TCD3 by satisfy the sufficient
descent condition (2.2).

Remark 2.3. Since M3TCD1, M3TCD2 and M3TCD3 by satisfy the sufficient descent
condition (2.2) ∀k ∈ N

∪
{0}, then

F (xk−1)
T dk−1 ≤ −δ∥F (xk−1)∥2,

which implies

1

−F (xk−1)T dk−1
≤ 1

δ∥F (xk−1)∥2
(2.10)
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Algorithm 1

Step 0. Given an arbitrary initial point x0 ∈ Rn, parameters σ > 0, 0 < ρ < 1, Tol > 0
and set k := 0.

Step 1. If ∥F (xk)∥ ≤ Tol, stop, otherwise go to Step 2.
Step 2. Compute dk using Equation (2.3).

Step 3. Compute the step size αk = max{γρi : i = 0, 1, 2, · · · } such that

−F (xk + αkdk)
T dk ≥ σαk∥F (xk + αkdk)∥∥dk∥2. (2.9)

Step 4. Set zk = xk + αkdk. If zk ∈ Ω and ∥F (zk)∥ ≤ Tol, stop. Else compute

xk+1 = PΩ[xk − ζkF (zk)]

where

ζk =
F (zk)

T (xk − zk)

∥F (zk)∥2
.

Step 5. Let k = k + 1 and go to Step 1.

Lemma 2.4. Suppose assumptions (K1)-(K3) holds, {xk} and {zk} defined by Algorithm
1. Then

αk ≥ max

{
γ,

ρδ∥F (xk)∥
(L+ σ∥F (xk + αkdk)∥)∥dk∥2

}
. (2.11)

Proof. By the line search (2.9), if αk ̸= γ, the α
′

k = αkρ
−1 does not satisfy (2.9), that is

−F (xk + α
′

kdk)
T dk < σα

′

k∥F (xk + α
′

kdk)∥∥dk∥2.

Now from (2.2) and assumption (K2), we have

δ∥F (xk)∥2 ≤ −F (xk)
T dk

= (F (xk + α
′

kdk)− F (xk))
T dk − F (xk + α

′

kdk)
T dk

≤ α
′

k(L+ σ∥F (xk + αkdk)∥)∥dk∥2.

The desired result is obtained after solving for α
′

k.

Lemma 2.5. Suppose assumptions (K1)-(K3) holds, then {xk} and {zk} defined by Al-
gorithm 1 are bounded. In addition, we have

lim
k→∞

∥xk − zk∥ = 0 (2.12)

and

lim
k→∞

∥xk+1 − xk∥ = 0. (2.13)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose
x̄ ∈ Ω, then by monotonicity of F , we get

F (zk)
T (xk − x̄) ≥ F (zk)

T (xk − zk). (2.14)

Also by definition of zk and the line search (2.9), we have

F (zk)
T (xk − zk) ≥ σα2

k∥F (zk)∥∥dk∥2 ≥ 0. (2.15)
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So, we have

∥xk+1 − x̄∥2 = ∥PΩ[xk − ζkF (zk)]− x̄∥2 ≤ ∥xk − ζkF (zk)− x̄∥2

= ∥xk − x̄∥2 − 2ζkF (zk)
T (xk − x̄) + ∥ζF (zk)∥2

≤ ∥xk − x̄∥2 − 2ζkF (zk)
T (xk − zk) + ∥ζF (zk)∥2

= ∥xk − x̄∥2 −
(
F (zk)

T (xk − zk)

∥F (zk)∥

)2

≤ ∥xk − x̄∥2

(2.16)

Thus the sequence {∥xk − x̄∥} is decreasing and convergent, and hence {xk} is bounded.
Furthermore, from equation (2.16), we have

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2, (2.17)

and we can conclude recursively that

∥xk − x̄∥2 ≤ ∥x0 − x̄∥2, ∀k ≥ 0.

Then from Assumption (G2), we obtain

∥F (xk)∥ = ∥F (xk)− F (x̄)∥ ≤ L∥xk − x̄∥ ≤ L∥x0 − x̄∥.

If we let L∥x0 − x̄∥ = M , then the sequence {F (xk)} is bounded, that is,

∥F (xk)∥ ≤ M, ∀k ≥ 0. (2.18)

By the definition of zk, equation (2.15), monotonicity of F and the Cauchy-Schwatz
inequality, we get

σ∥xk − zk∥ =
σ∥αkdk∥2

∥xk − zk∥
≤ F (zk)

T (xk − zk)

∥xk − zk∥
≤ F (zk)

T (xk − zk)

∥xk − zk∥
≤ ∥F (xk)∥.

(2.19)

The boundedness of the sequence {xk} together with equation (2.18)-(2.19), implies the
sequence {zk} is bounded.

Since {zk} is bounded, then for any x̄ ∈ Ω, the sequence {zk− x̄} is also bounded, that
is, there exists a positive constant ν > 0 such that

∥zk − x̄∥ ≤ ν.

This together with Assumption (G2) yields

∥F (zk)∥ = ∥F (zk)− F (x̄)∥ ≤ L∥zk − x̄∥ ≤ Lν.

Therefore, using equation (2.16), we have

σ2

(Lν)2
∥xk − zk∥4 ≤ ∥xk − x̄∥2 − ∥xk+1 − x̄∥2,
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which implies

σ2

(Lν)2

∞∑
k=0

∥xk − zk∥4 ≤
∞∑
k=0

(∥xk − x̄∥2 − ∥xk+1 − x̄∥2) ≤ ∥x0 − x̄∥ < ∞. (2.20)

Equation (2.20) implies

lim
k→∞

∥xk − zk∥ = 0.

However, using Equation 2.1, the definition of ζk and the Cauchy-Schwartz inequality, we
have

∥xk+1 − xk∥ = ∥PΩ[xk − ζkF (zk)]− xk∥

≤ ∥xk − ζkF (zk)− xk∥

= ∥ζkF (zk)∥

= ∥xk − zk∥,

(2.21)

which yields

lim
k→∞

∥xk+1 − xk∥ = 0.

Equation (2.12) and definition of zk implies that

lim
k→∞

αk∥dk∥ = 0. (2.22)

Theorem 2.6. Suppose that assumptions (K1)-(K3) hold and let the sequence {xk} be
generated by Algorithm 1, then

lim inf
k→∞

∥F (xk)∥ = 0, (2.23)

Proof. Suppose by contradiction that (2.23) is not true, then there exist r0 > 0 such that
∀k ≥ 0

∥F (xk)∥ ≥ r0. (2.24)

This combined with (2.2) yields

∥dk∥ ≥ δr0 ∀k ≥ 0. (2.25)
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Next we will show that the directions M3TCD1, M3TCD2 and M3TCD3 are bounded.
M3TCD1: Using (2.3), (2.4), (2.5), (2.10), (2.18) and (2.24), we have

∥dk∥ =

∥∥∥∥∥−F (xk) +
∥F (xk)∥2

−dTk−1F (xk−1)
wk−1 −

F (xk)
Twk−1

−dTk−1F (xk−1)
F (xk)

∥∥∥∥∥
≤ ∥F (xk)∥+ 2

∥F (xk)∥2∥wk−1∥
δ∥F (xk−1)∥2

= ∥F (xk)∥+ 2
∥F (xk)∥2αk−1∥dk−1∥

δ∥F (xk−1)∥2

≤ M +
2M2

δr20
αk−1∥dk−1∥.

(2.26)

Equation (2.22) implies that for all ϵ0 > 0 there exist k0 such that αk−1∥dk−1∥ < ϵ0
for all k > k0. So choosing ϵ0 = r20 and κ = max{∥d0∥, ∥d1∥, · · · , ∥dk0

∥,M1} where
M1 = M(1 + 2M

δ ). Therefore ∥dk∥ ≤ κ.
M3TCD2 direction: Also by (2.3), (2.4), (2.7), (2.10), (2.18) and (2.24), we have

∥dk∥ =

∥∥∥∥∥−F (xk) +
∥F (xk)∥2

−dTk−1F (xk−1)
wk−1 −

∥F (xk)∥2∥wk−1∥2

(dTk−1F (xk−1))2
F (xk)

∥∥∥∥∥
≤ ∥F (xk)∥+

∥F (xk)∥2∥wk−1∥
δ∥F (xk−1)∥2

+
∥F (xk)∥3∥wk−1∥2

δ2∥F (xk−1)∥4

= ∥F (xk)∥+
∥F (xk)∥2αk−1∥dk−1∥

δ∥F (xk−1)∥2
+

∥F (xk)∥3(αk−1∥dk−1∥)2

δ2∥F (xk−1)∥4

≤ M +
M2

δr20
αk−1∥dk−1∥+

M3(αk−1∥dk−1∥)2

δ2r40
.

(2.27)

In a similar way as above, letting κ = max{∥d0∥, ∥d1∥, · · · , ∥dk0∥,M1} where M1 =
M(1 + M

δ + (Mδ )2), we get that ∥dk∥ ≤ κ.
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M3TCD3 direction: Again by (2.3), (2.4), (2.8), (2.10), (2.18) and (2.24), we have

∥dk∥ =

∥∥∥∥∥−F (xk) +
∥F (xk)∥2

−dTk−1F (xk−1)
wk−1 −

(
F (xk)

Twk−1

−dTk−1F (xk−1)
+

∥F (xk)∥2

(dTk−1F (xk−1))2

)
F (xk)

∥∥∥∥∥
≤ ∥F (xk)∥+ 2

∥F (xk)∥2∥wk−1∥
δ∥F (xk−1)∥2

+
∥F (xk)∥3

δ2∥F (xk−1)∥4

= ∥F (xk)∥+ 2
∥F (xk)∥2αk−1∥dk−1∥

δ∥F (xk−1)∥2
+

∥F (xk)∥3

δ2∥F (xk−1)∥4

≤ M +
M2

δr20
αk−1∥dk−1∥+

M3

δ2r40
.

(2.28)

Using same argument and letting κ = max{∥d0∥, ∥d1∥, · · · , ∥dk0∥,M1} whereM1 = M(1+
2M
δ + M2

δ2r40
). Hence ∥dk∥ ≤ κ.

Now multiplying both sides of (2.11) with ∥dk∥, we have

αk∥dk∥ ≥ max

{
γ,

ρδ∥F (xk)∥
(L+ σ∥F (xk + αkdk)∥)∥dk∥2

}
∥dk∥

≥ max

{
γδr0 ,

ρδr20
L(1 + σν)κ

}
.

The above relation contradicts (2.22) and therefore (2.23) must hold.

3. Numerical Experiments

This section investigates the numerical performance of the proposed algorithms with
other conjugate gradient algorithms.

We tested the following algorithms:

CGD: the algorithm proposed by Xiao and Zhu [23]

PCG: the algorithm proposed by Liu and Li [24]

M3TCD1: Algorithm 1 with the choice of λk using (2.5)

M3TCD2: Algorithm 1 with the choice of λk using (2.7)

M3TCD3: Algorithm 1 with the choice of λk using (2.8)

All algorithms were coded in MATLAB using a windows 10 operating system of 2.4GHz
Intel(R) Core(TM) i3-7100U CPU with 8GB RAM. The experiments were carried out
on eight benchmark test problems using seven initial points with dimension ranging from
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n =5000 to 100000. Note that one of the initial points was randomly chosen. For the im-
plementation of M3TCD1, M3TCD2 and M3TCD3, we choose the following parameters:
σ = 10−4, ρ = 0.9 and γ = 1. We implemented CGD and PCG as in [23, 24].

The chosen stopping condition was

∥Fk∥ ≤ 10−6

The algorithm is also terminated if the iteration exceeds 1000. To this end, we give a list
of the test problem utilized in this experiment.

Problem 1. This problem is the Exponential function [25] with constraint set C = Rn
+,

that is,

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, ..., n.

Problem 2. Modified Logarithmic function [26] with constraint set C = {x ∈ Rn :∑n
i=1 xi ≤ n, xi > −1, i = 1, 2, . . . , n}, that is,

fi(x) = ln(xi + 1)− xi

n
, i = 2, 3, ..., n.

Problem 3. The Nonsmooth Function [27] with constraint set C = Rn
+.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n.

Problem 4. [28] The function with constraint set C = Rn
+, that is,

fi(x) = min
(
min(|xi|, x2

i ),max(|xi|, x3
i )
)
for i = 2, 3, ..., n

Problem 5. The Strictly convex function [29], with constraint set C = Rn
+, that is,

fi(x) = exi − 1, i = 2, 3, · · · , n.

Problem 6. Tridiagonal Exponential function [30] with constraint set C = Rn
+, that is,

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for 2 ≤ i ≤ n− 1,

fn(x) = xn − ecos(h(xn−1+xn)), where h =
1

n+ 1

Problem 7. Nonsmooth function [31] with with constraint set C = {x ∈ Rn :
∑n

i=1 xi ≤
n, xi ≥ −1, 1 ≤ i ≤ n}.

fi(x) = xi − sin |xi − 1|, i = 2, 3, · · · , n.

Problem 8. The Trig exp function [25] with constraint set C = Rn
+, that is,

f1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2)

fi(x) = 3x3
i + 2xi+1 − 5 + sin(xi − xi+1) sin(xi + xi+1) + 4xi − xi−1e

xi−1−xi − 3 for i = 2, 3, ..., n− 1

fn(x) = xn−1e
xn−1−xn − 4xn − 3, where h =

1

n+ 1
.
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In addition, we employ the performance profile developed in [32] where the performance
metric is based on number of iterations, CPU time (in seconds) and number of function
evaluations which are used to obtain Figures 1-3. These figures present a wealth of
information including efficiency and robustness of the methods. For instance, Fig. 1
shows that the the three proposed method ( M3TCD1, M3TCD2, M3TCD3 ) exhibits
the best overall performance since it illustrates the best probability of being the optimal
solver, outperforming CGD and PCG.

Analytically, the performance profile with respect to number of function evaluations
shows that M3TCD2 solves and wins 51% of the test problems with the least number of
function evaluations while M3TCD1, M3TCD3, CGD and PCG solves and wins about
28%, 19%, 8% and 19% of the test problems, respectively. On the overall, it is worth
noticing that one our proposed method (M3TCD2) outperform CGD and PCG which
implies that the proposed method is computationally efficient.
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Figure 1. Performance based on the number of iterations.
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Figure 2. Performance based function evaluation.
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Figure 3. Performance based on CPU time.

4. Conclusions

In this article, we modified the well known conjugate descent (CD) direction and pro-
posed three distinct spectral conjugate gradient algorithms for solving (1.1). The modifi-
cation was achieved by adding the term −λkF (xk) to the CD direction making it three-
term. Using three different approaches as in [33], we obtained three distinct definition of
λk corresponding to the three directions M3TCD1, M3TCD2 and M3TCD3 respec-
tively. The proposed directions are bounded and satisfy the sufficient descent property.
The convergence of the proposed algorithms was established under suitable assumptions.
Finally, we give some numerical experiments to show the efficiency of the algorithms
compared with two existing algorithms namely; CGD and PCG.
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