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Abstract In this paper, we study Painlevé-Kuratowski convergence of the solution sets with a sequence
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1. Introduction

Equilibrium problems first considered by Blum and Oettli [12] have been playing an
important role in optimization theory with many striking applications particularly in
transportation, mechanics, economics, etc. Equilibrium models incorporate many other
important problems such as: optimization problems, variational inequalities, complemen-
tarity problems, saddlepoint/minimax problems, and fixed points. Equilibrium problems
with scalar and vector objective functions have been widely studied. The crucial issue of
solvability (the existence of solutions) has attracted the most considerable attention of
researchers, see, e.g., [9, 14, 18]. A relatively new but rapidly growing topic is the stability
of solutions, including semicontinuity properties in the sense of Berge and Hausdorff, see,
e.g., [4, 7] and the Hölder/Lipschitz continuity of solution mappings, see, e.g., [1, 5, 6, 8].

Most works on vector variational inequality and vector equilibrium problems are based
on orders induced by convex closed cones, i.e., they used various extensions of the Pareto
order. However, it is known from the theory of vector optimization that the set of Pareto-
optimal points is usually too large, so that one needs certain additional rules to reduce it.
One of the possible approaches is to utilize the lexicographic order, which was investigated
in connection with its applications in optimization and decision making theory. Konnov
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[21] studied vector equilibrium problems using the lexicographic order and obtained that
several classes of inverse lexicographic optimization problems can be reduced to lexi-
cographic vector equilibrium problems. In [10] Bianchi et al. investigated equivalence
properties between various kinds of lexicographic variational inequalities and obtained
several existence results for lexicographic variational inequalities. In [11] Bianchi et al.
analyzed lexicographic equilibrium problems on a topological Hausdorff vector space, their
relationships with some other vector equilibrium problems, and existence results for the
tangled lexicographic problem are proved via the study of a related sequential problem.
Fang et al. [17] studied parametric vector equilibrium problem in a lexicographic order.
They obtained the lower semicontinuity of the solution set map based on the density
of the solution set mapping for a parametric lexicographic vector equilibrium problem
by using an auxiliary problem. Anh et al. [2] investigated lexicographic vector equilib-
rium problems in metric spaces and established sufficient conditions for a family of such
problems to be (uniquely) well-posed at the reference point. Recently, Anh et al. [3] es-
tablished the sufficient conditions for the upper semicontinuity, closedness, and continuity
of solution maps for a parametric lexicographic equilibrium problem. Very recently, Ra-
bian et al. studied the well-posedness for lexicographic vector equilibrium problems and
optimization problems with lexicographic equilibrium constraints in metric spaces and
obtained sufficient conditions for a family of such problems to be (uniquely) well-posed
at the reference point.

Well-posedness of optimization-related problems can be defined in two ways. The
first and oldest is Hadamard well-posedness [19], which means existence, uniqueness and
continuous dependence of the optimal solution and optimal value from perturbed data.
The second is Tikhonov well-posedness [26], which means the existence and uniqueness of
the solution and convergence of each minimizing sequence to the solution. Well-posedness
properties have been intensively studied and the two classical well-posedness notions have
been extended and blended. Recently, the Tikhonov notion has been more interested.
The major reason is its vital role in numerical methods. Any algorithm can generate only
an approximating sequence of solutions. Hence, this sequence is applicable only if the
problem under consideration is well-posed. For parametric problems, well-posedness is
closely related to stability.

As for the stabile results investigated on the convergence of the sequence of mappings,
there are some results for the vector optimization, vector variational inequality prob-
lems and vector equilibrium problems with a sequence of sets converging in the sense
of Painlevé-Kuratowski (see e.g., [15, 16, 20, 22, 24]). In [20], Huang discussed the
convergence of the approximate efficient sets to the efficient sets of vector-valued and
set-valued optimization problems in the sense of Painlevé-Kuratowski and Mosco. In
[16], Fang et al. investigated the Painlevé-Kuratowski convergence of the solution sets
of the perturbed set-valued weak vector variational inequality problems. In [22], Lalitha
and Chatterjee investigated the Painlevé-Kuratowski set convergence of the solution sets
of a nonconvex vector optimization problem. In [24], Peng and Yang investigated the
Painlevé-Kuratowski set convergence of the solution sets of the perturbed vector equilib-
rium problems without monotonicity in real linear metric spaces. Very recently, Li et al.
[23] concerned with the stability for a generalized Ky Fan inequality when it is perturbed
by vector-valued bifunction sequence and set sequence. By continuous convergence of
the bifunction sequence and Painlevé-Kuratowski convergence of the set sequence, they
established the Painlevé-Kuratowski convergence of the approximate solution mappings
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of a family of perturbed problems to the corresponding solution mapping of the original
problem.

Motivated and inspired by research work mentioned above, in this paper, we study the
lexicographic vector equilibrium problems and their relationships. Namely, we study the
sufficient conditions for a family of such problems to be generalized Hadamard well-posed
in the sense of Painlevé-Kuratowski. By using some technique, the inner convergence
of sequence solution sets for a lexicographic vector equilibrium problem are established
and then we establish Painlevé-Kuratowski convergence of the solution sets with a se-
quence of mappings converging continuously and sequence of set converging in the sense
of Painlevé-Kuratowski. In addition, we also consider particular cases lexicographic vari-
ational inequalities and lexicographic optimization problems.

This paper is organized as follows. Section 2 presents some necessary notations and
definitions. In Section 3, the concepts of generalized Hadamard well-posed in the sense of
Painlevé-Kuratowski for lexicographic vector equilibrium problem (LEP) are introduced.
Section 4 contains some important particular cases as examples of applications of our
results.

2. Preliminaries

Definition 2.1. Let g be an extended real-valued function on a metric space X and ε
be a real number. g is upper ε-level closed at x0 if for any sequence {xn} ⊆ X, xn → x0,

[g(xn) ≥ ε, ∀n] ⇒ [g(x0) ≥ ε].

Definition 2.2. Let X and Y be two metric spaces and G : X → 2Y be a set-valued
mapping.

(i) G is said to be lower semicontinuous at x0 ∈ X, if G(x0) ∩ U ̸= ∅ for some
open set U ⊂ Y implies the existence of a neighborhood N of x0 such that
G(x) ∩ U ̸= ∅,∀x ∈ N . G is said to be lower semicontinuous in X if it is lower
semicontinuous at each x0 ∈ X.

(ii) G is said to be upper semicontinuous at x0 ∈ X, if for each open set U ⊇ G(x0),
there is a neighborhood N of x0 such that U ⊇ G(x),∀x ∈ N . G is said to be
upper semicontinuous in X if it is upper semicontinuous at each x0 ∈ X.

(iii) G is said to be continuous at x0 ∈ X, if it is both lower semicontinuous and
upper semicontinuous at x0. G is said to be continuous in X if it is both lower
semicontinuous and upper semicontinuous at each x0 ∈ X.

(vi) G is said to be closed at x0, if for each sequence {(xn, yn)} ⊂ graphG :=
{(x, y)|y ∈ G(x)}, (xn, yn) → (x0, y0), it follows that (x0, y0) ∈ graphG. G is said
to be closed in X if it is closed at each x0 ∈ X.

Lemma 2.3. Let X and Y be two metric spaces and G : X → 2Y be a set-valued mapping.
If G has compact values, then G is upper semicontinuous at x0 if and only if, for each
sequence {xn} ⊂ X which converges to x0 and for each sequence {yn} ⊂ G(xn), there are
y ∈ G(x) and a subsequence {ym} of {yn} such that ym → y.

Lemma 2.4. Let X and Y be topological spaces. If a set-valued mapping T : X → 2Y

is upper semicontinuous with compact values, then for every compact set K ⊂ X, the set
T (K) = ∪x∈KT (x) is compact.
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Definition 2.5. [25] Let {Cn} be a sequence of sets of Rm and C be a subset of Rm.

(i) lim supn Cn := {x ∈ Rm | ∃xnk
∈ Cnk

, xnk
→ x} is its outer limit;

(ii) lim infn Cn := {x ∈ Rm | ∃xn ∈ Cn, xn → x} is its inner limit;

(iii) {Cn} is said to be Painlevé-Kuratowski convergent to C, denoted by Cn
P.K.−−−→

C, if and only if lim supn Cn ⊆ C ⊆ lim infn Cn.

The relations lim supn Cn ⊂ C and C ⊂ lim infn Cn are, respectively, referred as the
upper part and the lower part of the convergence. Clearly, lim infn Cn ⊂ lim supn Cn.

Definition 2.6. [25] Let S : X → 2Y be a set-valued mapping.

(i) S is outer semicontinuous (osc) at x̄ if lim supx→x̄ S(x) ⊂ S(x̄) with
lim supx→x̄ S(x) := ∪xn→x̄ lim supn→∞ S(xn).

(ii) S is inner semicontinuous (isc) at x̄ if S(x̄) ⊂ lim infx→x̄ S(x) with
lim infx→x̄ S(x) := ∩xn→x̄ lim infn→∞ S(xn).

(iii) S is said to be continuous at x̄, written as S(x) → S(x̄) as x → x̄
if it is both outer semicontinuous and inner semicontinuous.

Definition 2.7. [25]A sequence of vector-valued bifunctions {fn : Kn × Kn → Rl}
converges continuously to vector-valued bifunction f : K × K → Rl and is denoted by

(Kn, fn)
c−→ (K, f) if and only if Kn

P.K.−−−→ K and for any sequence {(xn, yn)} in Kn ×Kn

converging to (x, y),
fn(xn, yn) → f(x, y).

Definition 2.8. Let A be a convex subset of X. A function f : A → R is said to be
strictly concave if for all x, y ∈ A, x ̸= y and t ∈ (0, 1), one has

f(tx+ (1− t)y) > tf(x) + (1− t)f(y).

Let {Kn} be a sequence of sets of Rm and K be a subset of Rm. When limn→∞ Kn

exists in the sense of Painleavé-Kuratowski and equals K, the sequence {Kn}n∈N is said
to converge to K, written

Kn
P.K.−−−→ K.

Set convergence in this sense is known more specifically as Painlevé-Kuratowski conver-
gence. The following results investigate some properties of the sequence of sets when it
converge in the sense of Painlevé-Kuratowski.

Lemma 2.9. Assume that Kn
P.K.−−−→ K.

(i) If Kn is convex then K is convex;
(ii) If Kn is bounded then K is bounded;
(iii) If Kn is compact then K is compact.

Proof. (i) Let x, y ∈ K, λ ∈ [0, 1]. We claimed that λx+ (1− λ)y ∈ K, ∀λ ∈ [0, 1]. Since

Kn
P.K.−−−→ K and x, y ∈ K, there exist sequences {xn}, {yn} in Kn converging to x, y,

respectively. Thanks to the convexity of Kn, one has λxn + (1− λ)yn ∈ Kn. So,

infd(λxn + (1− λ)yn,Kn) = 0.

Then,
λxn + (1− λ)yn ∈ lim sup

n→∞
Kn.

One obtains that
λx+ (1− λ)y ∈ lim sup

n→∞
Kn,
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as lim supn→∞ Kn is closed. By lim supn→∞ Kn ⊂ K, one has λx+ (1− λ)y ∈ K. So K
is convex.

(ii) Suppose to the contrary that K is not bounded. Then for any positive real r,

there exist x, y ∈ K satisfying d(x, y) > r. Due to Kn
P.K.−−−→ K and x, y ∈ K, there exist

sequences {xn}, {yn} in Kn converge to x, y, respectively. For each i = 1, n, one has

d(x, y) ≤ d(x, xi) + d(xi, yi) + d(yi, y).

Taking limit two sides, one obtains that d(xi, yi) > r. So, Ki is not bounded, which
contradicts with the above assumption.

(iii) By (ii) and the closedness of K, we obtain (iii).

We next recall the concept of lexicographic cone in finite dimensional spaces and models
of equilibrium problems with the order induced by such a cone. The lexicographic cone
of Rn, denoted Cl, is the collection of zero and all vectors in Rn with the first nonzero
coordinate being positive, i.e.,

Cl := {0} ∪ {x ∈ Rn|∃i ∈ {1, . . . , n} s.t. xi > 0 and xj = 0, ∀j < i}.

This cone is convex and pointed, and induces the total order as follow:

x ≥L y ⇔ x− y ∈ Cl.

We also observe that it is neither closed nor open. Indeed, when comparing with the cone
C1 := {x ∈ Rn|x1 ≥ 0}, we see that intC1 ⊊ Cl ⊊ C1, while

intCl = intC1 and clCl = C1.

Let f = (f1, f2) : K × K → R2 is a vector-valued function. Let us now consider the
following lexicographic vector equilibrium problem in the space R2:

(LEP) find x̄ ∈ K such that

f(x̄, y) ≥L 0, ∀y ∈ K. (2.1)

The set of solutions of the problems will be denoted by SLEP .
For each n ∈ N, let fn : K × K → R. We consider the following sequence of the

lexicographic vector equilibrium problem:

(LEP)n find xn ∈ Kn such that

fn(xn, yn) ≥L 0, ∀yn ∈ Kn. (2.2)

The set of solutions of the problems will be denoted by Sn
LEP . In this work, we always

assume that SLEP and Sn
LEP are nonempty sets.

It is worth noticing that (LEP) can be written in the following equivalent way:

(LEP) find x̄ ∈ K such that{
f1(x̄, y) ≥ 0,∀y ∈ K;
f2(x̄, z) ≥ 0,∀z ∈ Z(x̄).

(2.3)
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where Z : SEP1(K) → 2K , Z(x) = {y ∈ K : f(x, y) = 0} and EP1(K): find x̄ ∈ K such
that

f1(x̄, y) ≥ 0, ∀y ∈ K. (2.4)

Similarly, (LEP)n can be presented in the following equivalent way:

(LEP)n find xn ∈ Kn such that{
f1
n(xn, yn) ≥ 0,∀yn ∈ Kn;
f2
n(xn, zn) ≥ 0,∀zn ∈ Zn(xn).

(2.5)

where Zn : SEP1(K) → 2K is defined by

Zn(xn) = {yn ∈ Kn : f1
n(xn, yn) = 0}. (2.6)

3. Main results

In this section, the concepts of generalized Hadamard well-posed in the sense of
Painlevé-Kuratowski for (LEP) are introduced and their sufficient criteria are proposed.

Picking up the ideas in [3] , we first introduce the following lemma to ensure the lower
semicontinuity of mapping Z.

Lemma 3.1. Suppose that f1 is continuous; the Fréchet derivative of f1 with respect to
the second argument exists and D2f

1(x, y) is surjective for all x, y ∈ X,x ̸= y. Then Z
is lsc.

Proof. Suppose that there is z̄ ∈ Z(x̄) \ {x̄}. We show that there exists a sequence of
points zn ∈ Zn(xn) with zn → z̄. To see this, we claim that for each neighborhood V
of z̄, V ⊆ X, there exist a neighborhood U of x̄ and a function sn : U → V such that
sn(x) ∈ Zn(x) for all x ∈ U . Let m =

∥∥D2f
1(x̄, z̄)−1

∥∥ and α be a positive real number

such that Bα(z̄) ⊆ V . From assumptions on f1, one can choose a real number β ∈ (0, α]
such that∣∣f1(x̄, z)− f1(x̄, z̄)−

⟨
D2f

1(x̄, z̄), z − z̄
⟩∣∣ ≤ 1

2m
∥z − z̄∥ , for all z ∈ Bβ(z̄),

and consequently,

|f1(x̄, z)− ⟨D2f1(x̄, z̄), z − z̄⟩| ≤ β

2m
, for all z ∈ Bβ(z̄).

Since f1 is continuous in Bα(x̄)×Bα(z̄) and f1
(n) → f1, there exists a positive real number

γ ≤ β such that for all x ∈ Bγ(x̄), z ∈ Bβ(z̄), one has∣∣f1(x, z)− f1(x̄, z)
∣∣ ≤ β

4m
,

and ∣∣∣f1
(n)(x, z)− f1(x, z)

∣∣∣ ≤ β

4m
, for n sufficiently large.

These two inequalities give us∣∣∣f1
(n)(x, z)− f1(x̄, z)

∣∣∣ ≤ ∣∣∣f1
(n)(x, z)− f1(x, z)

∣∣∣+ ∣∣f1(x, z)− f1(x̄, z)
∣∣ ≤ β

2m
.
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For each x ∈ Bγ(x̄), we consider the function ξ
(n)
x : Bβ(z̄) → X defined by

ξ(n)x (z) = D2f
1(x̄, z̄)−1

(⟨
D2f

1(x̄, z̄), z
⟩
− f1

(n)(x, z)
)
.

It is clear that ξ
(n)
x is continuous in Bβ(z̄). Further, for any z ∈ Bβ(z̄), one has∥∥∥ξ(n)x (z)− z̄

∥∥∥ =
∥∥∥D2f

1(x̄, z̄)−1
(⟨

D2f
1(x̄, z̄), z

⟩
− f1

(n)(x, z)
)
− z̄

∥∥∥
=

∥∥D2f
1(x̄, z̄)−1

∥∥ ∣∣∣⟨D2f
1(x̄, z̄), z − z̄

⟩
− f1

(n)(x, z)
∣∣∣

≤ m
(∣∣⟨D2f

1(x̄, z̄), z − z̄
⟩
− f1(x̄, z)

∣∣+ ∣∣∣f1(x̄, z)− f1
(n)(x, z)

∣∣∣)
≤ m

(
β

2m
+

β

2m

)
= β.

Hence, thanks to the Brouwer’s fixed-point theorem, for all x ∈ Bγ(x̄), there exists a

point sn(x) ∈ Bβ(z̄) ⊆ V such that ξ
(n)
(x) (sn(x)) = sn(x). Thus,

sn(x) = D2f
1(x̄, z̄)−1

(⟨
D2f

1(x̄, z̄), sn(x)
⟩
− f1

(n)(x, sn(x))
)
,

which is equivalent to f1
(n)(x, sn(x)) = 0, i.e. sn(x) ∈ Zn(x).

We now focus on the Painlevé-Kuratowski upper convergence and the closedness of the
solution sets.

Theorem 3.2. Suppose that

(i) Kn converges to K;
(ii) f1

n(·, ·) converges continuously to f1 and upper 0-level closed at (x0, y0), f
1
n(x, ·)

Fréchet differentiable with respect to y, Dyf
1
n(x, y) is surjective for all x ̸= y;

(iii) f2
n(·, ·) is converges continuously to f2(·, ·) and upper 0-level closed at (x0, y0).

Then, Sn
LEP is closed and

lim sup
n→∞

Sn
LEP ⊆ SLEP .

Proof. Without loss of generality, we suppose that n = 1. We prove that S1
LEP is closed.

Suppose to the contrary that there are sequences {xm} ⊆ S1
LEP satisfying xm → x0

but x0 /∈ S1
LEP . Note that x0 ∈ K1 because K1 is closed. Then, there exists y0 ∈ K1

satisfying

f1
1 (x0, y0) < 0, (3.1)

and there exists z0 ∈ Z1(x0) such that

f2
1 (x0, z0) < 0. (3.2)

As y0 ∈ K1 ⊆ K1, there exists a sequence {ym} ⊆ K1 such that ym → y0. Since z0 ∈
Z1(x0) and Z1(·) is inner semicontinuous at x0, one has z0 ∈ lim infn→∞ Z1(xm). Then,
we can find a sequence {zm} in Z1(xm) such that zm → z0. Since xm ∈ S1

LEP , we have
f1
1 (xm, ym) ≥ 0 and f2

1 (xm, zm) ≥ 0, respectively. By using (ii) and (iii), we obtain that
f1
1 (x0, y0) ≥ 0 and f2

1 (x0, z0) ≥ 0, respectively. This is a contradiction to (3.1) and (3.2).
Thus, we can conclude that x0 ∈ S1

LEP and S1
LEP is closed.
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Next, we prove that lim supn→∞ Sn
LEP ⊆ SLEP . Let x0 ∈ lim supn→∞ Sn

LEP . Then,
there exists a subsequence {xnk

} in Snk

LEP such that

xnk
→ x0 as k → ∞, (3.3)

one has x0 ∈ lim supn→∞ Kn. As Kn outer converges continuously to K, we have x0 ∈ K.
Let y ∈ K. We prove that

f(x0, y) ≥L 0.

As {xnk
} ⊆ Snk

LEP , we have

f1
nk
(xnk

, ynk
) ≥ 0, ∀ynk

∈ Knk
(3.4)

and

f2
nk
(xnk

, znk
) ≥ 0, ∀znk

∈ Znk
(xnk

). (3.5)

Because Kn inner converges continuously to K, it implies y ∈ lim infn→∞ Kn. Then, we
can find a sequence yn in Kn such that yn → y. Clearly, ynk

∈ Knk
and

ynk
→ y as k → ∞. (3.6)

By (3.3), (3.6), and f1
nk

converges continuously to f1, we get that

lim sup
k→∞

f1
nk
(xnk

, ynk
) ⊆ f1(x0, y) ⊆ lim inf

k→∞
f1
nk
(xnk

, ynk
).

So, the limit of f1
nk
(xnk

, ynk
) exists and limk→∞ f1

nk
(xnk

, ynk
) = f1(x0, y). From (3.4),

we have f1(x0, y) ≥ 0. Next, we prove that f2(x0, z) ≥ 0, ∀z ∈ Z(x0). Let z ∈ Z(x0). As
Zn(·) is inner converges continuously to Z(·) , one has z ∈ lim infn→∞ Znk

(xnk
). Then,

there exists a sequence {znk
} in Znk

(xnk
) such that

znk
→ z as k → ∞. (3.7)

By (3.3), (3.7), and f2
nk

converges continuously to f2, we obtain that

lim sup
k→∞

f2
nk
(xnk

, znk
) ⊆ f2(x0, z) ⊆ lim inf

k→∞
f2
nk
(xnk

, znk
).

Thus, limk→∞ f2
nk
(xnk

, znk
) = f2(x0, z). By (3.5), we obtain that f2(x0, z) ≥ 0. Since

y ∈ K was arbitrary. Then,

f(x0, y) ≥L 0, ∀y ∈ K.

Hence, x0 ∈ SLEP . So, lim supn→∞ Sn
LEP ⊆ SLEP . This complete the proof.

The essentialness of all assumptions are now explained by the following examples.

Example 3.3. (Assumption (i) cannot be dropped) Let X = R,K = [−1, 1],Kn =
[− 1

n ,
1
n ]. Define mapping f := (f1, f2) : K ×K → R2 by

f(x, y) = (y − x, y − x)

and sequence mapping fn := (f1
n, f

2
n) : Kn ×Kn → R2 by

fn(x, y) = ((1 +
1

n
)(y − x), (1 +

1

n
)(y − x)).

Obviously, we can check that assumption (ii) be true. From direct computation, we obtain
SEP1(K) = {−1} and SEP1(Kn) = {− 1

n}. Note we also obtain that Z(x) = {−1} hence,
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assumption (iii) is satisfied. Furthermore, we get that SLEP = {−1} and Sn
LEP = {− 1

n};
however,

{0} = lim sup
n→∞

Sn
LEP ⊈ SLEP = {−1},

i.e., {Sn
LEP } is not upper convergence in the sense of Painlevé-Kuratowski to SLEP .

Example 3.4. (Assumption (ii) is essential) Let X = R,K = Kn = [1, 2]. (It is clear

that Kn
P.K.−−−→ K). Define mapping f := (f1, f2) : K ×K → R2 by

f(x, y) = (0, x− y)

and sequence mapping fn := (f1
n, f

2
n) : Kn ×Kn → R2 by

fn(x, y) = (x− 1

n
, 0), n = 2, 3, 4, ... .

It is clear that f i
n do not converge to f i in the sense of Painlevé-Kuratowski. Indeed,

x = lim sup
n→∞

f1
n(x, y) ̸= f1(x, y) = 0,

and

0 = lim sup
n→∞

f2
n(x, y) ̸= f2(x, y) = x− y.

Thus, it is enough to conclude that the assumption (ii) is not satisfied. From direct
computation, we get that SEP1(K) = SEP1(Kn) = [1, 2] (we also get Z(x) = [1, 2], and

hence the assumption (iii) is satisfied) so, we obtain SLEP = {2} and Sn
LEP = [ 1n , 2 +

1
n ].

At a result, we find that

[0, 2] = lim sup
n→∞

Sn
LEP ⊈ SLEP = {2}.

Thus, {Sn
LEP } is not an upper convergence in the sense of Painlevé-Kuratowski to SLEP .

Example 3.5. (Assumption (iii) is essential) Let X = R,K = [0, 1],Kn = [− 1
n , 1 +

1
n ].

Define mapping f := (f1, f2) : K ×K → R2 by

f(x, y) = (x(x− y)2, ey(x− y)),

and sequence mapping fn := (f1
n, f

2
n) : Kn ×Kn → R2 by

fn(x, y) =

((
x+

1

n

)
(x− y)2,

(
1 +

y

n

)n

(x− y)

)
.

Obviously, we can check that assumption (ii) be true. From direct computation, we obtain
SLEP = (0, 1] and Sn

LEP = (− 1
n , 1 +

1
n ]. Hence, lim supn→∞ Sn

LEP ⊈ SLEP . The reason
is that assumption (iii) is violated. Indeed, one has Z(0) = [0, 1] and Z(x) = {x}, for all
x ∈ (0, 1].

All the assumptions in Theorem 3.2, except (iii), are imposed directly on the data of
the problem. The following remark includes conditions for assumption (iii) to be fulfilled.

Remark 3.6. Since f1(x, x) = 0, for all x ∈ X, one has x ∈ Z(x). Furthermore, for
every x̄ ∈ K, Z is lsc at x̄ if Z(x̄) is singleton; namely, for all xn → x̄ and y ∈ Z(x̄), we
have y = x̄. For each n, let yn = xn ∈ Z(xn). It is clear that yn → x̄ = y. In addition,
f1(x, ·) is injective, assumption (iii) of Theorem 3.2 is satisfied since Z(x̄) is a singleton.
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Now, we state our main result to discuss Painlevé-Kuratowski convergence of sequence
{Sn

LEP }.

Theorem 3.7. Impose all assumptions of Theorem 3.2 and assume further that

(iv) K is convex;
(v) f1(·, y) is strictly concave on K, for all y ∈ K.

Then {Sn
LEP } converges to SLEP in the sense of Painlevé-Kuratowski.

Proof. We need only to prove that SLEP ⊂ lim inf Sn
LEP . Suppose to the contrary that,

there exists x0 ∈ SLEP such that x0 /∈ lim inf Sn
LEP . Then, there is a neighborhood U0 of

origin in X such that

Sn
LEP ∩ (x0 + U0) = ∅, for n sufficiently large. (3.8)

We discuss the following two cases:

Case 1. SLEP = {x0}. Let {xn} be an arbitrary sequence in Sn
LEP . SinceKn

P.K.−−−→ K,
one can assume that xn → x̄0 for some x̄0 ∈ K. The same arguments given in the proof
of Theorem 3.2 show that x̄0 ∈ SLEP . Nothing the fact that SLEP is singleton, we have
x0 = x̄0, and so xn → x̄0 = x0. Thus, xn ∈ x0 + U0 for n large enough. This together
with xn ∈ Sn

LEP implies that Sn
LEP ∩ (x0+U0) ̸= ∅, for n large enough, which contradicts

(3.8).
Case 2. There exists x̄ ∈ SLEP satisfying x̄ ̸= x0. Then, for any y ∈ K, one has

f1(x0, y) ≥ 0 and f1(x̄, y) ≥ 0. (3.9)

By the strict concavity of f1(·, y) on K, one has

f1(tx̄+ (1− t)x0, y) > 0,∀t ∈ (0, 1). (3.10)

Putting x(t) := tx̄+(1−t)x0 implies that x(t) ∈ K. It is worth noting that for the chosen
U0 there exist a neighborhood U1 of origin in X and t0 ∈ (0, 1) satisfying U1 + U1 ⊂ U0

and x(t0) ∈ x0 + U1. Hence,

x(t0) + U1 ⊂ x0 + U1 + U1 ⊂ x0 + U0. (3.11)

Since x(t0) ∈ K and Kn
P.K.−−−→ K, there is x̄n ∈ Kn such that x̄n → x(t0). Thus,

x̄n ∈ x(t0) + U1 ⊂ x0 + U0, for n sufficiently large. Combining this with (3.8), one has
x̄n /∈ Sn

LEP , for n large enough. Hence, there exists ȳn ∈ Kn such that

f1(x̄n, ȳn) < 0. (3.12)

Since Kn
P.K.−−−→ K, there is a sequence {ȳn} ⊂ Kn (taking a subsequence if necessary)

such that ȳn → ȳ, for some ȳ ∈ K. It follows from (3.12) and the continuous convergence
of f1 that

f1(x(t0), ȳ) ≤ 0,

which contradicts (3.10). The proof is complete.

Now, we are in a position to introduce the concept of generalized Hadamard well-posed
in the sense of Painlevé-Kuratowski.



498 Thai J. Math. Vol. 18, No. 1 (2020) / Bantaojai et al.

Definition 3.8. (LEP) is said to be generalized Hadamard well-posed in the sense of
Painlevé-Kuratowski if its solution set SLEP ̸= ∅ and xn ∈ Sn

LEP , there exists a subse-
quence {xni

} of {xn} such that xni
→ x̄ ∈ SLEP .

Theorem 3.9. Assume that X be a nonempty compact subset of X and all of assumptions
in Theorem 3.2 holds. Then (LEP) is generalized Hadamard well-posed in the sense of
Painlevé-Kuratowski.

Proof. Suppose that the solution set SLEP is nonempty and xn ∈ Sn
LEP . We obtain that

xn ∈ Kn. By the closedness of Sn
LEP implies that Sn

LEP is compact. Thus, we can find a
subsequence {xnk

} ⊆ {xn} such that xnk
→ x0 ∈ Sn

LEP so is x0 ∈ lim supn→∞ Sn
LEP . It

follows that, x0 ∈ lim supn→∞ Kn. By our assumption, we have x0 ∈ K. From Theorem
3.2,

lim sup
n→∞

Sn
LEP ⊆ SLEP .

Hence, x0 ∈ SLEP and so (LEP) is Hadamard well-posed. This complete the proof.

4. Applications

As mentioned in the first section, the lexicographic equilibrium problem (LEP) contains
many problems related to optimization with lexicographic cone. Therefore, we can obtain
consequences of the results of Section 3 for such special cases. In this section, we only
discuss to lexicographic variational inequalities as an example.

Let K be as in the preceding sections, X be a normed space with its dual denoted by
X∗ and hi : X → X∗, for i = 1, 2. We consider the following lexicographic variational
inequality (LVI, for shortly):

(LVI) Find x̄ ∈ K such that

(⟨h1(x̄), y − x̄⟩, ⟨h2(x̄), y − x̄⟩) ≥L 0, ∀y ∈ K.

(LVI) can be written in the equivalent way: Find x̄ ∈ K such that{
⟨h1(x), y − x⟩ ≥ 0,∀y ∈ K,
⟨h2(x), z − x⟩ ≥ 0,∀z ∈ Z(x̄),

(4.1)

where

Z : K → 2X , Z(x) := {y ∈ K| ⟨h1(x), y − x⟩ = 0}.
For each n ∈ N, let hn : Kn × Kn → R2. We consider the following sequence of

lexicographic variational inequality:

(LVI)n Find x̄n ∈ Kn such that{
⟨h1

n(x̄n), y − x̄n⟩ ≥ 0,∀y ∈ Kn,
⟨h2

n(x̄n), z − x̄n⟩ ≥ 0,∀z ∈ Zn(x̄n),
(4.2)

where

Zn : Kn → 2X , Zn(xn) := {yn ∈ Kn| ⟨h1
n(xn), yn − xn⟩ = 0}.

We denoted the solution set of (LVI) and (LVI)n by SLV I and Sn
LV I , respectively. By

the way, we always assume that SLV I and Sn
LV I are nonempty. To convert (LVI) to a
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special case of (LEP), setting fi(x, y) = ⟨hi(x), y − x⟩ for i = 1, 2. The following results
are derived from Theorem 3.2 and 3.7.

Theorem 4.1. For (LVI), assume the following conditions are hold:

(i) Kn
P.K.−−−→ K;

(ii) hi
n converges continuously to hi for i = 1, 2;

(iii) h1 is surjective.

Then,
lim sup
n→∞

Sn
LV I ⊂ SLV I .

Proof. This is a direct consequence of Theorem 3.2.

Theorem 4.2. For (LVI), impose the assumptions of Theorem 4.1 and the additional
conditions:

(iv) K is convex;
(v) h1 is strictly concave on K.

Then, {Sn
LV I} converges to SLV I in the sense of Painlevé-Kuratowski.

Proof. In order to apply Theorem 3.7, let fi(x, y) = ⟨hi(x, y), y − x⟩ for i = 1, 2. It is
clear that assumptions (i)-(iv) of Theorem 3.7 are fulfilled. The strictly concave of h1(·)
implies the strictly concave of f1(·, y), i.e., condition (v) of Theorem 3.7 also holds, and
hence Theorem 4.2 is derived from Theorem 3.7

5. Conclusions

In this paper, we study Painlevé-Kuratowski convergence of the solution sets with a
sequence of mappings converges continuously. By considering the solution sets of lexico-
graphic vector equilibrium problems, we establish necessary and/or sufcient conditions to
be Hadamard well-posed for the mentioned problems in the sense of Painlevé-Kuratowski.
Numerous examples are provided to explain that all the imposed assumptions to some
results are very relaxed and cannot be dropped. The results in this paper unified, gener-
alized and extended some known results in the literature.
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