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Abstract In this paper, we introduce and analyze the notion of Tykhonov well-posedness and Tykhonov

well-posedness in the general sense for parametric generalized vector equilibrium problems. Metric char-

acterizations of well-posedness and well-posedness in the general sense are explained in terms of approxi-

mate solution sets. We consider characterizations of these well-posedness under compactness assumptions.

Sufficient conditions of well-posedness in the general sense, in the form of boundedness of approximate

solution sets, are investigated. Numerous examples are provided to ensure the importance of the imposed

assumptions.
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1. Introduction

Equilibrium problems were proposed by Blum and Oettli [1] as a generalization
of variational inequalities and optimization problems and include also many optimization
related problems like the fixed point and coincidence point problems, the complementarity
problems, the traffic equilibria problems, and the Nash equilibrium problems. Recently,
the vector equilibrium problem has received much attention by many authors because
it provides a unified model including vector optimization problems, vector variational
inequality problems, vector complementarity problems and vector saddle point problems
as special cases. A great deal of results of various kinds of vector equilibrium problems
have been obtained, such as existence or stability of solutions for example, [2–9] and the
references therein.

On the other hand, well-posedness plays an important role in the stability analysis
and numerical methods for optimization theory and applications. Since any algorithm
can generate only an approximating solution sequence which is meaningful only if the
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problem is well-posed under consideration. This fact of well-posedness has inspired many
authors to study the well-posedness of extension problems for optimization. Tykhonov
[10] introduced well-posedness, which requires the existence and uniqueness of the solu-
tion and convergence of each minimizing sequence to the solution. Well-posedness prop-
erties have been intensively studied and the two classical well-posedness notions have
been extended and blended. For parametric problems, well-posedness is closely related
to stability. Up to now, there have been many works dealing with well-posedness of
optimization-related problems as mathematical programming [11, 12], constrained mini-
mization [13–16] variational inequalities [13, 17–20], Nash equilibria [20, 21], and equilib-
rium problems [14, 22, 23]. Recently, Y.P. Fang considered well-posedness for equilibrium
problems and for optimization problems with equilibrium constraints [24]. Very recently,
P. Boonman et al. in [25] studied Levitin-Polyak wellposedness and Levitin-Polyak well-
posedness in the generalized sense for strong vector mixed quasivariational inequality
problems of the Minty type and the Stampacchia type and P.T. Vui et al. in [26] inves-
tigated B-well-posedness for set optimization problems involving three kinds of set order
relations.

Very Recently, Yu Han and Nan-jing Huang in [27] introduced and investigated para-
metric generalized vector equilibrium problems. They also had been studied existence,
concerning the strong efficient solutions and the weakly efficient solutions, and stability
of solutions for a class of generalized vector equilibrium problems.

Motivated by the above works, we study the well-posedness and the well-posedness
generalized sense aspects for parametric generalized vector equilibrium problems with
set-valued mapping.

The rest of the paper is organized as follows: In section 2, we present some necessary
notations, definitions, and lemmas. In section 3, we investigate the well-posedness of the
parametric generalized vector equilibrium problems and characterizations of this well-
posed. In section 4, we give the notion of well-posedness in the generalized sense by using
the well-posedness introduced in the previous section of parametric generalized vector
equilibrium problems and consider some sufficient conditions for this problem. Many
examples are shown to explain that all imposed assumptions are very relaxed and cannot
be dropped.

2. Preliminaries

In this section, we recall some definitions and preliminary results which are used in
the next sections. Let X be a Banach space, A be a nonempty closed convex subspace of
X, and W,Y and Λ be normed vector spaces. Let F : X×X×W ⇒ Y and K : Λ ⇒ X be
two set-valued mapping. For (u, λ) ∈ W×Λ, consider the following parametric generalized
vector equilibrium problems consist of finding x0 ∈ K(λ) ∩A such that

(PGV EP ) F (x0, y, u) ∩ (−Ω) = ∅, ∀y ∈ K(λ),

where Ω ∪ {0} is a cone in Y.
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Definition 2.1. Let F : X ⇒ Y be a set-valued map. Then,

(i) F is said to be upper semicontinuous (u.s.c.), if and only if for each closed set
B ⊂ Y,

F (B) := {x ∈ X : F (x) ∩B ̸= ∅} is closed in X.

(ii) F is said to be lower semicontinuous (l.s.c.), if and only if for each open set
B ⊂ Y,

F (B) := {x ∈ X : F (x) ∩B ≠ ∅} is open in X.

(iii) F is said to be closed if and only if the set Gr(F ) = {(x, y) ∈ X×Y : y ∈ F (x)}
is closed in X × Y.

Lemma 2.2 ([28]). A set-valued mapping F : X ⇒ Y is said to be

(i) u.s.c. if and only if for any sequence {xn} ⊆ X converging to x ∈ X and for
each sequence {yn} with yn ∈ F (xn), there is y ∈ F (x) and a subsequence {ynk

}
of {yn} converging to y, where F is compact.

(ii) l.s.c. if and only if for every sequence {xn} ⊆ X converging to x ∈ X and each
y ∈ F (x), there exists a sequence {yn} converging to y with yn ∈ F (xn), for any
n.

(iii) closed at x ∈ X if for every sequence {xn} in X converging to x and {yn}
converging to y in Y such that yn ∈ F (xn), we have y ∈ F (x).

3. Tykhonov Well-Posedness for Parametric Generalized Vec-
tor Equilibrium Problems

In this section, we consider the well-posedness of the parametric generalized vector
equilibrium problems.

Definition 3.1. Let {(un, λn)} ⊆ W × Λ be a sequence converging to (u, λ) ∈ W × Λ.
A sequence {xn} ⊆ K(λn) ∩ A is said to be an approximating sequence corresponding
to {(un, λn)} for problem (PGV EP ), if there exists a sequence of positive real numbers
{εn} with εn → 0 such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn).

Definition 3.2. The problem (PGV EP ) is said to be well-posed if

(i) there exists a unique solution for problem (PGV EP ),
(ii) for any sequence {(un, λn)} ⊆ W × Λ converging to (u, λ) ∈ W × Λ, every
approximating sequence {xn} for problem (PGV EP ) corresponding to {(un, λn)}
converges to the unique solution for (PGV EP ).

For any (u, λ) ∈ W ×Λ, we denote the solution of the problem (PGV EP ) by SF (u, λ).

SF (u, λ) = {x ∈ K(λ) ∩A : F (x, y, u) ∩ (−Ω) = ∅, ∀y ∈ K(λ)}.
In this section, we investigate and characterize well-posedness for problem (PGV EP )

via the notion of some approximate solution of problem (PGV EP ). In order to consider,
let δ, γ, ε ∈ R+ be given and let us introduce the approximate solution set

Π(λ̄, ū, δ, γ, ε) :=
∪

λ∈B(λ̄,δ)∩Λ

u∈B(ū,γ)∩W

{x ∈ K(λ) ∩A : (F (x, y, u) + εe) ∩ (−Ω) = ∅,∀y ∈ K(λ)},

where B(λ̄, δ) = {λ ∈ Λ : ∥λ− λ̄∥ ≤ δ} and B(ū, γ) = {u ∈ W : ∥u− ū∥ ≤ γ}.
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Observe that

SF (λ̄, ū) = Π(λ̄, ū, 0, 0, 0) and Π(λ̄, ū, 0, 0, 0) ⊆ Π(λ̄, ū, δ, γ, ε), ∀δ, γ, ε > 0.

We recall that the diameter of a nonempty set B in Y is defined as

diam B = sup
u,v∈B

∥u− v∥.

Theorem 3.3. If the following conditions hold:

(i) K is closed and l.s.c. at {λ̄},
(ii) F is l.s.c. on X ×X × {ū},
(iii) −Ω is open,

then (PGV EP ) is well-posed if and only if Π(λ̄, ū, δ, γ, ε) ̸= ∅, δ, γ, ε > 0 and

diam Π(λ̄, ū, δ, γ, ε) → 0 as (δ, γ, ε) → (0, 0, 0).

Proof. If the problem (PGV EP ) is well-posed, then there is a unique solution x0. That
is

x0 ∈ SF (ū, λ̄) = Π(λ̄, ū, 0, 0, 0)

and hence

Π(λ̄, ū, δ, γ, ε) ̸= ∅, ∀δ, γ, ε > 0 as Π(λ̄, ū, 0, 0, 0) ⊆ Π(λ̄, ū, δ, γ, ε).

Suppose diam Π(λ̄, ū, δ, γ, ε) ↛ 0 as (δ, γ, ε) → (0, 0, 0). Then xn, x
′
n ∈ Π(λ̄, ū, δn, γn, εn)

and there exists r > 0, a positive interger m, δn, γn, εn > 0, (δn, γn, εn) → (0, 0, 0) such
that

∥xn − x′
n∥ > r, ∀n ≥ m. (3.1)

Since xn, x
′
n ∈ Π(λ̄, ū, δn, γn, εn), we get that {xn} ⊆ K(λn)∩A, {x′

n} ⊆ K(λ′
n)∩A and

there exist λn, λ
′
n ∈ B(λ̄, δn), un, u

′
n ∈ B(ū, γn) such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn),

and

(F (x′
n, y, u

′
n) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λ′

n).

As δn → 0 and γn → 0, we obtain the sequences λn → λ̄, λ′
n → λ̄, un → ū and u′

n → ū.
It follows that both {xn} and {x′

n} are approximating sequences for (PGV EP ). Because
(PGV EP ) is well-posed, we have both sequences converge to the unique solution x0 which
leads to a contradiction with (3.1).

Conversely, let {(un, λn)} be a sequence converging to (ū, λ̄) and {xn} be approxi-
mating sequence for the problem (PGV EP ) corresponding to {(un, λn)}. Then {xn} ⊆
K(λn) ∩A for some sequences un → ū, λn → λ̄, εn → 0 such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn). (3.2)

If we select δn = ∥λn − λ̄∥ and γn = ∥un − ū∥, then δn → 0, γn → 0 implies that
xn ∈ Π(λ̄, ū, δn, γn, εn). As A is closed subspace in Banach space, we obtain that A is
complete. Because diam Π(λ̄, ū, δn, γn, εn) → 0 as (δn, γn, εn) → (0, 0, 0) it implies that
{xn} is a Cauchy sequence in A which converges to some x0 ∈ A. Since K is a closed
map on {λ̄}, we have x0 ∈ K(λ̄)∩A. On the contrary, suppose x0 /∈ SF (ū, λ̄), that is, for
(ū, λ̄) ∈ W × Λ, there exists y ∈ K(λ̄), such that

F (x0, y, ū) ∩ (−Ω) ̸= ∅,
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it follows that there exists z ∈ F (x0, y, ū) and z ∈ −Ω. Since K is l.s.c. at {λ̄}, there
exists {yn} ⊆ K(λn) and yn → y. From (3.2), we obtain that

(F (xn, yn, un) + εne) ∩ (−Ω) = ∅. (3.3)

Because F is l.s.c. at (x0, y, ū) and (xn, yn, un) → (x0, y, ū) with z ∈ F (x0, y, ū), there
is a sequence zn ∈ F (xn, yn, un) such that zn → z. Considering zn ∈ F (xn, yn, un) and
(3.3), we obtain that

zn + εne /∈ −Ω.

As Y \ −Ω is closed and zn + εne ∈ Y \ −Ω with zn → z, we get that z ∈ Y \ −Ω. Hence
z /∈ −Ω, which leads to a contradiction with z ∈ −Ω. Therefore, x0 ∈ SF (ū, λ̄).

Corollary 3.4. If the conditions (i), (ii) and (iii) of the previous theorem hold then
(PGV EP ) is well-posed if and only if SF (ū, λ̄) ̸= ∅ and

diam Π(λ̄, ū, δ, γ, ε) → 0 as (δ, γ, ε) → (0, 0, 0).

We now give an example of the metric characterization of Tykhonov well-posedness.

Example 3.5. Let W = X = Y = Λ = R, and for all x, y, u, λ ∈ R, A = (−1,+∞),Ω =
(0,+∞), and e = 1. Define set-valued maps K : Λ ⇒ R and F : R × R × R ⇒ R as
follows:

K(λ) = [0,+∞)

and

F (x, y, u) = [y − x,+∞).

SF (u, λ) = {x ∈ K(λ) ∩A : F (x, y, u) ∩ −Ω = ∅, ∀y ∈ K(λ)}
= {x ∈ [0,+∞) ∩ (−1,+∞) : [y − x,+∞) ∩ (−(0,∞)) = ∅, ∀y ∈ [0,+∞)}
= {x ∈ [0,+∞) : [y − x,+∞) ∩ (−∞, 0) = ∅, ∀y ∈ [0,+∞)}
= {0}.

Π(λ̄, ū, δ, γ, ε) =
∪

λ∈B(λ̄,δ)∩Λ

u∈B(ū,γ)∩W

{x ∈ K(λ) ∩A : (F (x, y, u) + εe) ∩ (−Ω) = ∅,∀y ∈ K(λ)}

=
∪

λ∈[λ̄−δ,λ̄+δ]

u∈[ū−γ,ū+γ]

{x ∈ [0,+∞) : [y − x+ ε,+∞) ∩ (−∞, 0) = ∅,∀y ∈ [−1, 2]}

= [0, ε]

Thus diam Π(λ̄, ū, δ, γ, ε) = sup
u,v∈Π(λ̄,ū,δ,γ,ε)

∥u− v∥ = ε → 0 as (δ, γ, ε) → (0, 0, 0). By the

theorem 3.3, this problem is well-posed.

The following theorem explains that if we give a compact subset A in Y, then the
well-posedness of (PGV EP ) is equivalent to the existence and uniqueness of solution.

Theorem 3.6. If A is a compact subset in Y, and the conditions (i), (ii) and (iii) of the
theorem 3.3 hold, then (PGV EP ) is well-posed if and only if it has a unique solution.
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Proof. Suppose that (PGV EP ) is well-posed. By definition of well-posedness, there exists
a unique solution for problem (PGV EP ).

Conversely, let the unique solution of problem (PGV EP ) be x̄, then SF (ū, λ̄) = {x̄}.
Let {(un, λn)} be a sequence converging to (ū, λ̄) and {xn} be approximating sequence
with respect to {(un, λn)}. Then there exists a sequenc εn > 0 with εn → 0 such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn). (3.4)

As {xn} ⊆ K(λn) ∩ A, we obtain {xn} ⊆ K(λn) and {xn} ⊆ A. Since A is a compact
subset in Y , the sequence {xn} ⊆ A has a subsequence {xnk

} ⊆ A which converges to an
element x0 ∈ A. Furthermore, we get that {xnk

} ⊆ K(λnk
) with λnk

→ λ̄ and since K is
closed at λ̄, it follows that x0 ∈ K(λ̄). By the converse part of theorem 3.3, we obtain that
x0 ∈ SF (ū, λ̄). Because problem (PGV EP ) has a unique solution, it implies that x0 and
x̄ are the same. By the uniqueness of the solution, for every subsequence converges to the
unique point x0. Hence the sequence {xn} converges to x0 and the problem (PGV EP ) is
well-posed.

The following example demonstrates the above theorem.

Example 3.7. Let W = X = Y = Λ = R, and for all x, y, u, λ ∈ R, A = [1, 3],Ω =
(0,+∞), and e = 1. Define set-valued maps K : Λ ⇒ R and F : R × R × R ⇒ R as
follows:

K(λ) = [1,+∞]

and
F (x, y, u) = [y − x2,+∞).

SF (ū, λ̄) = {x ∈ K(λ) ∩A : F (x, y, u) ∩ (−Ω) = ∅, ∀y ∈ K(λ)}
= {x ∈ [1,+∞) ∩ [1, 3] : [y − x2,+∞) ∩ (−(0,+∞)) = ∅, ∀y ∈ [1,+∞)}
= {x ∈ [1, 3] : [y − x2,+∞) ∩ (−∞, 0) = ∅, ∀y ∈ [1,+∞)}
= {1}.

Thus the problem has a unique solution. Therefore, by the theorem 3.6, this problem is
well-posed.

4. Tykhonov well-posedness in the generalized sense for Para-
metric Generalized Vector Equilibrium Problems

In this section, we give the notion of well-posedness in the generalized sense by using
the well-posedness introduced in the previous section of parametric generalized vector
equilibrium problems having more than one solution.

Definition 4.1. The problem (PGV EP ) is said to be well-posed in the general sense if

(i) there exist solutions for Problem (PGV EP );
(ii) for any sequence {(un, λn)} ⊆ W × Λ converging to (u, λ) ∈ W × Λ, every
approximating sequence {xn} for problem (PGV EP ) corresponding to {(un, λn)}
has a subsequence converging to element in SF (λ, u).

Obviously, if problem (PGV EP ) is well-posed, then it is well-posed in the general
sense.

Proposition 4.2. Well-posedness in the general sense implies that the solution set SF (ū, λ̄)
of the problem (PGV EP ) is nonempty compact set.
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Proof. Let {xn} be any sequence in SF (ū, λ̄). Then xn ∈ Π(λ̄, ū, 0, 0, 0), we have for any
δ, γ, ε > 0 and xn ∈ Π(λ̄, ū, δ, γ, ε) since Π(λ̄, ū, 0, 0, 0) ⊆ Π(λ̄, ū, δ, γ, ε). If we select λn =
λ, un = u, δn = 1

n , γn = 1
n , εn = 1

n for every n, then xn is an approximating sequence
with respect to {(un, λn)}. As the problem (PGV EP ) is well-posed in the general sense,
there exists a subsequence converging to some element in SF (ū, λ̄). Therefore, SF (ū, λ̄) is
compact set.

Theorem 4.3. The problem (PGV EP ) is well-posed in the general sense if and only if
SF (ū, λ̄) is nonempty compact set and for any approximating sequence {xn} such that

d(xn, SF (ū, λ̄)) → 0.

Proof. Suppose that (PGV EP ) is well-posed in the general sense. Then SF (ū, λ̄) is
nonempty set. Let {xn} be an approximating sequence with respect to {(un, λn)}. Then
there exists x0 ∈ SF (ū, λ̄) such that xn → x0. Thus

d(xn, SF (ū, λ̄)) = inf
x∈SF (ū,λ̄)

∥xn − x∥ → 0.

Conversely, let {xn} be approximating sequence with respect to {(un, λn)} and SF (ū, λ̄)
be a compact. Assume that d(xn, SF (ū, λ̄)) → 0, we obtain xn ∈ SF (ū, λ̄). Since SF (ū, λ̄)
is compact set, there exists a subsequence {xnk

} of {xn} such that {xnk
} converging to

some point x0 ∈ SF (ū, λ̄). Therefore, the problem (PGV EP ) is well-posed in the general
sense.

Now, we present a metric characterization for the well-posedness in the general sense
for (PGV EP ). We recall that for two nonempty subset A and B of Y, the distance of a
point a from the set B is defined as d(a,B) = inf

b∈B
∥a − b∥, and the exess of A over B is

defined as e(A,B) = sup
a∈A

d(a,B).

Theorem 4.4. The problem (PGV EP ) is well-posed in the general sense if and only if
SF (ū, λ̄) ̸= ∅, SF (ū, λ̄) is compact and

e(Π(λ̄, ū, δ, γ, ε), SF (ū, λ̄)) → 0 as (δ, γ, ε) → (0, 0, 0).

Proof. If (PGV EP ) is well-posed in the general sense, then SF (ū, λ̄) ̸= ∅. From propor-
sition 4.2, we have SF (ū, λ̄) is compact. Suppose that e(Π(λ̄, ū, δ, γ, ε), SF (ū, λ̄)) ↛ 0 as
(δ, γ, ε) → (0, 0, 0), there exist r > 0, δn, γn, εn with δn → 0, εn → 0, γn → 0, xn ∈
Π(λ̄, ū, δn, γn, εn) and a positive integer m such that

xn /∈ SF (ū, λ̄) +B(0, r) ∀n ≥ m. (4.1)

Since xn ∈ Π(λ̄, ū, δn, γn, εn), we get {xn} ⊆ K(λn)∩A and there exist λn ∈ B(λ̄, δn), un ∈
B(ū, γn) such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn).

As δn → 0 and γn → 0, we have λn → λ̄ and un → ū. Hence {xn} is approximating
sequence for (PGV EP ). Since (PGV EP ) is well-posed in the general sense, we get that
{xn} has a subsequence {xnk

} converging to some point in SF (ū, λ̄) which is contradiction
with (4.1).

Conversely, suppose that e(Π(λ̄, ū, δ, γ, ε), SF (ū, λ̄)) → 0 as (δ, γ, ε) → (0, 0, 0), and
let {xn} be an approximating sequence for (PGV EP ). Then {xn} ⊆ K(λn) ∩ A and
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there exists λn → λ̄, un → ū such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn).

If we choose δn = ∥λn − λ̄∥ and γn = ∥un − ū∥, then δn → 0, γn → 0 and xn ∈
Π(λ̄, ū, δn, γn, εn). As e(Π(λ̄, ū, δ, γ, ε), SF (ū, λ̄)) → 0 as (δ, γ, ε) → (0, 0, 0), we obtain
that

d(xn, SF (ū, λ̄)) = inf
x∈SF (ū,λ̄)

∥xn − x∥ ≤ sup
xn∈Π(λ̄,ū,δ,γ,ε)

inf
x∈SF (ū,λ̄)

∥xn − x∥

= e(Π(λ̄, ū, δ, γ, ε), SF (ū, λ̄)) → 0.

Since SF (ū, λ̄) is compact, there exists x′
n ∈ SF (ū, λ̄) such that

∥xn − x′
n∥ = d(xn, SF (ū, λ̄)) → 0. (4.2)

By Theorem 4.3, we can conclude that (PGV EP ) is well-posed in the general sense.

The following example demonstrates the above theorem.

Example 4.5. Let W = X = Y = Λ = R, and for all x, y, u, λ ∈ R, A = [−1, 3],Ω =
(0,+∞), and e = 1. Define set-valued maps K : Λ ⇒ R and F : R × R × R ⇒ R as
follows:

K(λ) = [−1, 2]

and

F (x, y, u) = [x2 − y,+∞).

SF (ū, λ̄) = {x ∈ K(λ) ∩A : F (x, y, u) ∩ (−Ω) = ∅, ∀y ∈ K(λ)}
= {x ∈ [−1, 2] ∩ [−1, 3] : [x2 − y,+∞) ∩ (−(0,+∞)) = ∅, ∀y ∈ [−1, 2]}
= {x ∈ [−1, 2] : [x2 − y,+∞) ∩ (−∞, 0) = ∅, ∀y ∈ [−1, 2]}
= [

√
2, 2].

Π(λ̄, ū, δ, γ, ε) =
∪

λ∈B(λ̄,δ)∩Λ

u∈B(ū,γ)∩W

{x ∈ K(λ) ∩A : (F (x, y, u) + εe) ∩ (−Ω) = ∅,∀y ∈ K(λ)}

=
∪

λ∈[λ̄−δ,λ̄+δ]

u∈[ū−γ,ū+γ]

{x ∈ [−1, 2] : [x2 − y + ε,+∞) ∩ (−∞, 0) = ∅,∀y ∈ [−1, 2]}

= [
√
2,
√
2 + ε]

Hence h(Π(λ̄, ū, δ, γ, ε), SF (ū, λ̄)) = sup
x∈Π(λ̄,ū,δ,γ,ε)

inf
y∈SF (ū,λ̄)

∥x − y∥ =
√
2 + ε −

√
2 → 0

as (δ, γ, ε) → (0, 0, 0). By the theorem 4.4, we obtain that this problem is the general
well-posedness.

Theorem 4.6. If the conditions (i), (ii) and (iii) of the theorem 3.3 hold, and A is a
compact set in Y, then (PGV EP ) is well-posed in the general sense if and only if the
solution set SF (ū, λ̄) ̸= ∅.
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Proof. Assume that (PGV EP ) is well-posed in the general sense. By the definition of
well-posed in the general sense, we have SF (ū, λ̄) ̸= ∅.

Conversely, let {xn} be an approximating sequence with respect to (un, λn). Since the
converse part of the theorem 3.3, we have {xn} converges to some solution in SF (ū, λ̄).
Therefore, the problem (PGV EP ) is well-posed in the general sense.

The following example explains that boundedness of the set SF (ū, λ̄) of the set SF (ū, λ̄)
in theorem cannot be dropped.

Example 4.7. Let W = X = Λ = R, Y = R2 and for all x, y, u, λ ∈ R, define A =
[−1,∞), K(λ) = R, Ω = (0,+∞) × (0,+∞), e = (1, 1), and F : R × R × R → R2 be
defined by

F (x, y, u) = [x,+∞)× R+.

SF (ū, λ̄) = {x ∈ K(λ) ∩A : F (x, y, u) ∩ −Ω = ∅}
= {x ∈ R ∩ [−1,∞) : ([x,+∞)× R+) ∩ (−(0,∞)× (0,∞)) = ∅}
= {x ∈ [−1,∞) : ([x,+∞)× R+) ∩ ((−∞, 0)× (−∞, 0)) = ∅}
= [0,∞)

If {xn} = {n}, λn = 1/n, un = 1/n, then xn ∈ K(λn) ∩ A = [−1,∞) and hence for any
εn → 0, such that

(F (xn, y, un) + εne) ∩ −Ω = ∅,

([xn,+∞)× R+ + (εn, εn)) ∩ (−(0,+∞)× (0,+∞)) = ∅.

Therefore, {xn} is approximating sequence but {xn} is not convergent. Thus, this problem
is not well-posed.

Theorem 4.8. If the conditions (i), (ii), and (iii) of the theorem hold, and if for any
x ∈ X there exists some ε > 0 such that Π(λ̄, ū, ε, ε, ε) is nonempty and bounded, then
(PGV EP ) is well-posed in the general sense.

Proof. Let {xn} be an approximating sequence with respect to {(un, λn)} converging to
(ū, λ̄) for (PGV EP ). Then we have {xn} ⊆ K(λn) ∩ A and there exist λn → λ̄, un → ū
such that

(F (xn, y, un) + εne) ∩ (−Ω) = ∅, ∀y ∈ K(λn).

If we choose δn = ∥λn − λ̄∥ and γn = ∥un − ū∥, then γn → 0 and xn ∈ Π(λ̄, ū, δn, γn, εn).
Let there exist some ε > 0 such that Π(λ̄, ū, ε, ε, ε), is nonempty and bounded for each
x ∈ X. Then there exists some positive integer m such that xn ∈ Π(λ̄, ū, ε, ε, ε) for all
n ≥ m. By the boundedness of set Π(λ̄, ū, ε, ε, ε), there exists some subsequence {xnk

} of
{xn} such that xnk

→ x0 as k → ∞. Taking the limit of the subsequence {xnk
} and the

converse part of theorem 3.3, we can conclude that x0 ∈ SF (ū, λ̄).
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