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improve some recent results.
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1. Introduction

In what follows, let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm
∥·∥. Let C be a nonempty subset of H. The equilibrium problem is the problem of finding
a point x̂ ∈ C such that

F (x̂, y) ≥ 0 (1.1)

for all y ∈ C. The set of solutions of this problem (1.1) is denoted by EP (F ). Given a
mapping A : C → H, let F (x, y) = ⟨Ax, y − x⟩ for all y ∈ C. Then x̂ ∈ EP (F ) if and
only if x̂ ⊂ C is a solution of the variational inequality

⟨Ax, y − x⟩ ≥ 0

for all y ∈ C. Since its inception by Blum and Oettli [1] in 1994, the equilibrium problem
(1.1) has received much attention due to its applications in a large variety of problems
arising in numerous problems in physics, optimizations and economics. Some methods
have been proposed to solve the equilibrium problem (see [2–6]).
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In the recent years, solving the problem of finding a common solutions of equilibrium
problems and fixed points of a singlevalued mapping in the framework of Hilbert spaces
has been intensively studied by many authors (see, for instance, [7–15]).

A subset C ⊂ H is said to be proximinal if, for each x ∈ H,

∥x− y∥ = d(x,C) = inf{∥x− z∥ : z ∈ C}.
Let CB(C),K(C) and P (C) denote the families of nonempty closed bounded subsets,

nonempty compact subsets and nonempty proximinal bounded subset of C, respectively.
The Hausdorff metric on CB(C) is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for A,B ∈ CB(C), where d(x,B) = infz∈B ∥x − z∥. An element p ∈ C is called a
fixed point of T : C → CB(C) if p ∈ Tp. The set of fixed points of T is denoted by F (T ).

Now, we recall that T : C → CB(C) is:
(1) nonexpansive if

H(Tx, Ty) ≤ ∥x− y∥
for all x, y ∈ C;

(2) quasi-nonexpansive if

H(Tx, Tp) ≤ ∥x− p∥
for all x ∈ C and p ∈ F (T ).

Recently, the existence of fixed points and the convergence theorems of multivalued
mappings have been studied by many authors (see [16–21]).

Hussain and Khan [22] presented the fixed point theorems of a *-nonexpansive multi-
valued mapping and the strong convergence of its iterates to a fixed point defined on a
closed and convex subset of Hilbert spaces by using the best approximation operator PTx,
which is defined by PTx = {y ∈ Tx : ∥y−x∥ = d(x, Tx)}. The convergence theorems and
its applications in this direction have been established by many authors (see, for instance,
[19, 23, 24]).

In 2011, Song and Cho [25] gave the example for a multivalued mapping T which is
not necessary nonexpansive, but PT is nonexpansive. It would be interesting to study the
property of multi-valued mapping T with the help of PT .

In 2008, Kohsaka and Takahashi [26] introduced a class of mappings which is called
nonspreading mapping. Let C be a subset of Hilbert spaces H. A mapping T : C → C is
said to be nonspreading if

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2

for all x, y ∈ C. Recently, in 2009, Iemoto and Takahashi [27] showed that T : C → C is
nonspreading if and only if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + 2⟨x− Ty, y − Ty⟩
for all x, y ∈ C. In 2012, Jiang and Su [28] introduced an iterative scheme for finding a
common element of the set of fixed points of a nonexpansive singlevalued mappings and
nonspreading singlevalued mappings and the set of solution of an equilibrium problem on
the setting of real Hilbert spaces. Recently, in 2013, Eslamian [29] extended the results to
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a finite family of nonspreading singlevalued mappings and a finite family of nonexpansive
multivalued mappings.

Also, recently, in 2013, Liu [9] introduced the following class of multivalued mappings:

A mapping T : C → CB(C) is said to be nonspreading if

2∥ux − uy∥2 ≤ ∥ux − y∥2 + ∥uy − x∥2

for some ux ∈ Tx and uy ∈ Ty for all x, y ∈ C. Also, he proved a weak convergence
theorem for finding a common element of the set of solutions of an equilibrium problem
and the set of common fixed points.

In this paper, we introduce, by using Hausdorff metric, the class of nonspreading multi-
valued mappings. We say that a mapping T : C → CB(C) is a k-nonspreading multivalued
mapping if there exists k > 0 such that

H(Tx, Ty)2 ≤ k
(
d(Tx, y)2 + d(x, Ty)2

)
(1.2)

for all x, y ∈ C. It is easy to see that, if T is 1
2 -nonspreading, then T is nonspreading in

the case of singlevalued mappings (see [26, 30]). Moreover, if T is a 1
2 -nonspreading and

F (T ) ̸= ∅, then T is quasi-nonexpansive. Indeed, for all x ∈ C and p ∈ F (T ), we have

2H(Tx, Tp)2 ≤ d(Tx, p)2 + d(x, Tp)2

≤ H(Tx, Tp)2 + ∥x− p∥2

and so it follows that

H(Tx, Tp) ≤ ∥x− p∥. (1.3)

We now give an example of a 1
2 -nonspreading multivalued mapping which is not non-

expansive.

Example 1.1. Consider C = [−3, 0] with the usual norm. Define a multi-valued mapping
T : C → CB(C) by

Tx =

{
{0}, x ∈ [−2, 0];[
− |x|

|x|+1 , 0
]
, x ∈ [−3,−2).

Now, we show that T is 1
2 -nonspreading. In fact, we have the following 3 cases:

Case 1: If x, y ∈ [−2, 0], then H(Tx, Tx) = 0.

Case 2: If x ∈ [−2, 0] and y ∈ [−3,−2), then Tx = {0} and Ty =
[
− |y|

|y|+1 , 0
]
. This

implies that

2H(Tx, Ty)2 = 2
( |y|
|y|+ 1

)2

< 2 < y2 ≤ d(Tx, y)2 + d(x, Ty)2.

Case 3: If x, y ∈ [−3,−2), then Tx =
[
− |x|

|x|+1 , 0
]
and Ty =

[
− |y|

|y|+1 , 0
]
. This implies

that

2H(Tx, Ty)2 = 2
( |x|
|x|+ 1

− |y|
|y|+ 1

)2

< 2 < d(Tx, y)2 + d(x, Ty)2.

On the other hand, T is not nonexpansive since, for x = −2 and y = − 5
2 , we have

Tx = {0} and Ty =
[
− 5

7 , 0
]
. This shows that

H(Tx, Ty) =
5

7
>

1

2
=

∣∣− 2−
(
− 5

2

)∣∣ = ∥x− y∥.
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In this paper, inspired by Jiang and Su [28], Eslamian [29] and Liu [9], we study
the definition of a nonspreading multivalued mapping by using the Hausdorff metric
and introduce an iterative method to approximate a common solution of the equilibrium
problem and a common fixed point problem for a 1

2 -nonspreading multivalued mapping
and a nonexpansive multivalued mapping. Furthermore, we prove the weak convergence
theorem in Hilbert spaces and, also, give some examples and numerical results.

2. Preliminaries

We now provide some basic results for the proof. In a Hilbert space H, we know
the following lemma:

Lemma 2.1. Let H be a real Hilbert space. Then the following equations hold:
(1) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩ for all x, y ∈ H;
(2) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩ for all x, y ∈ H;
(3) ∥tx + (1 − t)y∥2 = t∥x∥2 + (1 − t)∥y∥2 − t(1 − t)∥x − y∥2 for all t ∈ [0, 1] and

x, y ∈ H;
(4) If {xn}∞n=1 is a sequence in H which converges weakly to z ∈ H, then

lim sup
n→∞

∥xn − y∥2 = lim sup
n→∞

∥xn − z∥2 + ∥z − y∥2

for all y ∈ H.

A space X is said to satisfy Opial’s condition if, for any sequence xn with xn ⇀ x,
then

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

for all y ∈ X with y ̸= x. It is known that every Hilbert space satisfies Opial’s condition.

Lemma 2.2. [31] Let X be a Banach space which satisfies Opial’s condition and let {xn}
be a sequence in X. Let u, v ∈ X be such that limn→∞ ∥xn − u∥ and limn→∞ ∥xn − v∥
exist. If {xnk

} and {xmk
} are subsequences of {xn} which converge weakly to u and v,

respectively, then u = v.

Lemma 2.3. [32] Let C be a nonempty weakly compact subset of a Banach space X
with Opial’s condition and T : C → K(X) be a nonexpansive mapping. Then I − T is
demiclosed.

Lemma 2.4. [1] Let D be a nonempty closed and convex subset of a real Hilbert space
H. Let F be a bifunction from D×D to R satisfying (A1)-(A4) and let r > 0 and x ∈ H.
Then there exists z ∈ D such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0

for all y ∈ D.

Assumptiom 2.5. [33] Let D be a nonempty closed convex subset of a Hilbert space H.
Let F : D ×D → R be a bifunction satisfying the following assumptions:

(A1) F (x, x) = 0 for all x ∈ D;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ D;
(A3) For each x, y, z ∈ D,

lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);
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(A4) For each x ∈ D, y 7→ F (x, y) is convex and lower semi-continuous.

Lemma 2.6. [2] Assume that F : C × C → R satisfying (A1)-(A4). For r > 0, x ∈ H,
define the mapping Tr : H → D as follows:

Tr(x) =
{
z ∈ D : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ D

}
.

Then the followings hold:
(1) Tr is single-value;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

Condition (A). Let H be a Hilbert space and C be a subset of H. A multivalued
mapping T : C → CB(C) is said to satisfy Condition (A) if ∥x − p∥ = d(x, Tp) for all
x ∈ H and p ∈ F (T ).

Assumptiom 2.7. We see that T satisfies Condition (A) if and only if Tp = {p} for
all p ∈ F (T ). It is known that the best approximation operator PT , which is defined by
PTx = {y ∈ Tx : ∥y − x∥ = d(x, Tx)}, also satisfies Condition (A).

Lemma 2.8. [34] Let C be a closed and convex subset of a real Hilbert space H and
T : C → K(C) be a 1

2 -nonspreading multi-valued mapping. Let {xn} be a sequence in C
such that xn ⇀ p and limn→∞ ∥xn − yn∥ = 0 for some yn ∈ Txn. Then p ∈ Tp.

3. Main results

We are now ready to prove the weak convergence theorem for 1
2 -nonspreading

multivalued mapping and nonexpansive multivalued mapping in Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space, C be a nonempty closed convex subset of H
and F : C × C → R be a bifunction satisfying (A1)-(A4). Let S : C → K(C) be a
1
2 -nonspreading multivalued mapping and T : C → K(C) be a nonexpansive multivalued
mapping such that Θ = F (S) ∩ F (T ) ∩ EP (F ) ̸= ∅. Let {xn} and {un} be the sequences
defined by

x1 ∈ C arbitrarily,
F (un, y) +

1
rn
⟨y − un, un − xn⟩,

xn+1 ∈ (1− αn)un + αn

{
βnSun + (1− βn)Tun

} (3.1)

for all y ∈ C and n ≥ 1, where {αn} and {βn} are the sequences in ⊂ (0, 1) and rn ⊂
(0,∞) satisfying the following conditions: (1) lim infn→∞ αn(1− αn) > 0;

(2) lim infn→∞ βn(1− βn) > 0;
(3) lim infn→∞ rn > 0.

If S and T satisfy Condition (A), then the sequences {xn} and {un} defined by (3.19)
converge weakly to an element of Θ.

Proof. Let p ∈ Θ. We divide the proof into five Steps as follows:
Step 1. Show that {xn} is bounded. From un = Trnxn, we have

∥un − p∥ = ∥TrnxnTrnp∥ ≤ ∥xn − p∥ (3.2)
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for all n ≥ 1. Since T satisfies Condition (A), for all zn ∈ Tun,

∥(1− αn)un + αnzn − p∥2 ≤ (1− αn)∥un − p∥2 + αn∥zn − p∥2

= (1− αn)∥un − p∥2 + αnd(zn, Tp)
2

≤ (1− αn)∥un − p∥2 + αnH(Tun, Tp)
2

≤ ∥un − p∥2. (3.3)

Similarly, since S satisfies Condition (A), for all yn ∈ Sun,

∥(1− αn)un + αnyn − p∥2 ≤ (1− αn)∥un − p∥2 + αn∥yn − p∥2

= (1− αn)∥un − p∥2 + αnd(yn, Sp)
2

≤ (1− αn)∥un − p∥2 + αnH(Sun, Sp)
2

≤ ∥un − p∥2. (3.4)

From (3.2), (3.3) and (3.4), for all yn ∈ Sun and zn ∈ Tun, we obtain

∥xn+1 − p∥2 = ∥βn

{
(1− α)un + αnyn

}
+ (1− βn)

{
(1− α)un + αnzn

}
− p∥2

≤ βn∥(1− α)un + αnyn − p∥2 + (1− βn)∥(1− α)un + αnzn − p∥2

≤ βn∥(1− α)un + αnyn − p∥2 + (1− βn)∥un − p∥2

≤ ∥un − p∥2

≤ ∥xn − p∥2 (3.5)

for all n ≥ 1. Hence limn→∞ ∥xn − p∥ exists. Therefore, {xn} is bounded and so is {un}.
Step 2. Show that there exists a subsequence {uni

} ⊂ {un} which converges weakly
to q ∈ F (S) ∩ F (T ). From (3.5), we have

0 ≤ ∥un − p∥2 − βn∥(1− α)un + αnyn − p∥2 − (1− βn)∥un − p∥2

= βn

(
∥un − p∥2 − ∥(1− α)un + αnyn − p∥2

)
≤ ∥xn − p∥2 − ∥xn+1 − p∥2. (3.6)

Since lim infn→∞ βn(1− βn) > 0 and limn→∞ ∥xn − p∥ exists, it follows from (3.6) that

lim
n→∞

(
∥un − p∥2 − ∥(1− α)un + αnyn − p∥2

)
= 0. (3.7)

By Lemma 2.1, we have

∥(1− α)un + αnyn − p∥2

≤ (1− α)∥un − p∥2 + αn∥yn − p∥2 − (1− αn)αn∥un − yn∥2

= (1− α)∥un − p∥2 + αnd(yn, Sp)
2 − (1− αn)αn∥un − yn∥2

≤ (1− α)∥un − p∥2 + αnH(Sun, Sp)
2 − (1− αn)αn∥un − yn∥2

≤ ∥un − p∥2 − (1− αn)αn∥un − yn∥2.
This implies that

(1− αn)αn∥un − yn∥2 ≤ ∥un − p∥2 − ∥(1− α)un + αnyn − p∥2. (3.8)

Since lim infn→∞(1− αn)αn > 0, it follows from (3.8) that

lim
n→∞

∥un − yn∥ = 0. (3.9)

Since {un} is a bounded sequence, there exists a subsequence {uni
} ⊂ {un} such that

{uni} converges weakly to q ∈ C. From Lemma 2.8, we obtain q ∈ F (S).
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Now, we show that q ∈ F (T ). From (3.2), (3.3) and (3.4), it follows that, for all
yn ∈ Sun and zn ∈ Tun,

∥xn+1 − p∥2 = ∥βn

{
(1− α)un + αnyn

}
+ (1− βn)

{
(1− α)un + αnzn

}
− p∥2

≤ βn∥(1− α)un + αnyn − p∥2 + (1− βn)∥(1− α)un + αnzn − p∥2

≤ βn∥un − p∥2 + (1− βn)∥(1− α)un + αnzn − p∥2

≤ ∥un − p∥2

≤ ∥xn − p∥2 (3.10)

for all n ≥ 1. This implies that

0 ≤ ∥un − p∥2 − βn∥un − p∥2 − (1− βn)∥(1− α)un + αnzn − p∥2

= (1− βn)
(
∥un − p∥2 − ∥(1− α)un + αnzn − p∥2

)
≤ ∥xn − p∥2 − ∥xn+1 − p∥2. (3.11)

Since lim infn→∞ βn(1− βn) > 0 and limn→∞ ∥xn − p∥ exists, it follows from (3.11) that

lim
n→∞

(
∥un − p∥2 − ∥(1− α)un + αnzn − p∥2

)
= 0. (3.12)

Also, by Lemma 2.1, it follows that

∥(1− α)un + αnzn − p∥2

≤ (1− α)∥un − p∥2 + αn∥zn − p∥2 − (1− αn)αn∥un − zn∥2

= (1− α)∥un − p∥2 + αnd(zn, Tp)
2 − (1− αn)αn∥un − yn∥2

≤ (1− α)∥un − p∥2 + αnH(Tun, Tp)
2 − (1− αn)αn∥un − zn∥2

≤ ∥un − p∥2 − (1− αn)αn∥un − zn∥2,
which implies that

(1− αn)αn∥un − zn∥2 ≤ ∥un − p∥2 − ∥(1− α)un + αnzn − p∥2. (3.13)

Since lim infn→∞(1− αn)αn > 0, from (3.8), it follows that

lim
n→∞

∥un − zn∥ = 0. (3.14)

Using (3.9), we obtain

lim
n→∞

d(un, Tun) ≤ lim
n→∞

∥un − zn∥ = 0. (3.15)

Thus, by Lemma 2.3, we conclude that q ∈ F (T ).
Step 3. Show that ∥xn − un∥ → 0 as n → ∞. Since un = Trnxn, we see that

∥un − p∥2 = ∥Trnxn − Trnp∥2

≤ ⟨Trnxn − Trnp, xn − p⟩
= ⟨un − p, xn − p⟩

=
1

2

(
∥un − p∥2 + ∥xn − p∥2 − ∥un − xn∥2

)
,

which yields

∥un − p∥2 ≤ ∥xn − p∥2 − ∥xn − un∥2.
From (3.3), we have

∥xn − un∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2.
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Since limn→∞ ∥xn − p∥ exists,

lim
n→∞

∥xn − un∥ = 0. (3.16)

Step 4. Show that q ∈ EP (F ). Since un = Trnxn,

F (un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0

for all y ∈ C. From (A2), we have

1

rn
⟨y − un, un − xn⟩ ≥ F (y, un)

and hence

⟨y − uni ,
uni − xni

rni

⟩ ≥ F (y, uni).

Since lim infn→∞ rn > 0 and uni
⇀ q, by (A4) and (3.16), we have

F (y, q) ≤ 0

for all y ∈ C. Replacing y with yt = ty + (1− t)q for any t ∈ [0, 1], from (A1) and (A4),
it follows that

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, q) ≤ tF (yt, y)

and hence

F (ty + (1− t)q, y) ≥ 0

for any t ∈ [0, 1] and y ∈ C. So, F (q, y) ≥ 0 for all y ∈ C by (A3) and letting t → 0+.
Hence q ∈ EP (F ) and so q ∈ Θ.

Step 5. Show that {xn} and {un} converge weakly to an element of Θ. It is sufficient
to show that ωw(xn) is a single point set. Let p, q ∈ ωw(xn) and {xnk

}, {xnm
} ⊂ {xn} be

such that xnk
⇀ p and xnm

⇀ q. From (3.16), we have unk
⇀ p and unm

⇀ q. By Step
2 and Step 4, we have p, q ∈ Θ. Applying Lemma 2.2, we obtain p = q. This completes
the proof.

If Tp = {p} for all p ∈ F (T ), then T satisfies Condition (A) and so we obtain the
following result:

Theorem 3.2. Let H be a Hilbert space, C be a nonempty closed convex subset of H
and F : C × C → R be a bifunction satisfying (A1)-(A4). Let S : C → K(C) be a
1
2 -nonspreading multi-valued mapping and T : C → K(C) be a nonexpansive multi-valued
mapping such that Θ = F (S) ∩ F (T ) ∩ EP (F ) ̸= ∅. Let {xn} and {un} be the sequences
defined by

x1 ∈ C arbitrarily,
F (un, y) +

1
rn
⟨y − un, un − xn⟩,

xn+1 ∈ (1− αn)un + αn

{
βnSun + (1− βn)Tun

} (3.17)

for all y ∈ C and n ≥ 1, where {αn} and {βn} are the sequences in ⊂ (0, 1) and rn ⊂
(0,∞) satisfying the following conditions:

(1) lim infn→∞ αn(1− αn) > 0;
(2) lim infn→∞ βn(1− βn) > 0;
(3) lim infn→∞ rn > 0.
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If Sp = Tp = {p} for all p ∈ F (S) ∩ F (T ), then the sequences {xn} and {un} defined
by (3.19) converge weakly to an element of Θ.

Since PT satisfies Condition (A), we also obtain the following results:

Theorem 3.3. Let H be a Hilbert space, C be a nonempty closed convex subset of H
and F : C × C → R be a bifunction satisfying (A1)-(A4). Let S, T : C → P (C) be two
multi-valued mappings such that Θ = F (S) ∩ F (T ) ∩ EP (F ) ̸= ∅. Let {xn} and {un} be
the sequences defined by

x1 ∈ C arbitrarily,
F (un, y) +

1
rn
⟨y − un, un − xn⟩,

xn+1 ∈ (1− αn)un + αn

{
βnPSun + (1− βn)PTun

} (3.18)

for all y ∈ C and n ≥ 1, where {αn} and {βn} are the sequences in ⊂ (0, 1) and rn ⊂
(0,∞) satisfying the following conditions:

(1) lim infn→∞ αn(1− αn) > 0;
(2) lim infn→∞ βn(1− βn) > 0;
(3) lim infn→∞ rn > 0.

If PS is 1
2 -nonspreading and PT is nonexpansive such that I−S and I−T are demiclosed

at 0, then the sequences {xn} and {un} defined by (3.19) converge weakly to an element
of Θ.

Corollary 3.4. Let H be a Hilbert space, C be a nonempty closed convex subset of
H and F : C × C → R be a bifunction satisfying (A1)-(A4). Let S : C → C be a
1
2 -nonspreading mapping and T : C → C be a nonexpansive mapping such that Θ =
F (S) ∩ F (T ) ∩ EP (F ) ̸= ∅. Let {xn} and {un} be the sequences defined by

x1 ∈ C arbitrarily,
F (un, y) +

1
rn
⟨y − un, un − xn⟩,

xn+1 = (1− αn)un + αn

{
βnSun + (1− βn)Tun

} (3.19)

for all y ∈ C and n ≥ 1, where {αn} and {βn} are the sequences in ⊂ (0, 1) and rn ⊂
(0,∞) satisfying the following conditions:

(1) lim infn→∞ αn(1− αn) > 0;
(2) lim infn→∞ βn(1− βn) > 0;
(3) lim infn→∞ rn > 0.

Then the sequences {xn} and {un} defined by (3.19) converge weakly to an element of Θ.

Remark 3.5. (1) Theorem 3.1-3.3 extend the main results of Jiang and Su [28] from
a nonspreading single-valued mapping to a nonspreading multi-valued mapping and a
nonexpansive single-valued mapping to a nonexpansive multi-valued mapping.

(2) If S is a nonspreading single-valued mapping and T is a nonexpansive single-valued
mapping, then we obtain Corollary 3.4.

4. Examples and Numerical Results

In this section, we give examples and numerical results for supporting our main
theorem.
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Example 4.1. Let H = R and C = [−3, 0]. Let F (x, y) = (x+3)(y−x) for all x, y ∈ C,

Sx =

{
{−3}, x ∈ [−3,−1];[
− 3,−2− |x|

|x|+1

]
, x ∈ (−1, 0],

and

Tx =
[
− 3, 3 sin

(πx
6

)]
.

Choose αn = 1
10n , β = 1

n and rn = n
n+1 . It is easy to check that F satisfies all the

conditions in Theorem 3.1. For each r > 0 and x ∈ C, we first find u ∈ C such that

F (u, y) +
1

r
⟨y − u, u− x⟩ ≥ 0 (4.1)

for all y ∈ C. We see that

F (u, y) +
1

r
⟨y − u, u− x⟩ ≥ 0 ⇐⇒ (u+ 3)(y − u) +

1

r
⟨y − u, u− x⟩ ≥ 0

⇐⇒ r(u+ 3)(y − u) + (y − u)(u− x) ≥ 0

⇐⇒ (y − u)((1 + r)u− (x− 3r)) ≥ 0.

By Lemma 2.6, we know that TF
r x is single-valued. Hence u = x−3r

1+r .
Next, we find

xn+1 ∈ (1− αn)un + αn

{
βnSun + (1− βnTun)

}
,

where un = xn−3rn
1+rn

. From

Sx =

{
{−3}, x ∈ [−3,−1];[
− 3,−2− |x|

|x|+1

]
, x ∈ (−1, 0],

and

Tx =
[
− 3, 3 sin(

πx

6
)
]
,

we have

xn+1 =
(
1− 1

10n

)(xn − 3
(

n
n+1

)
1 +

(
n

n+1

) )
+

1

10n

{
1

n
yn +

(
1− 1

n

)
zn

}
, (4.2)

where

yn ∈

{
{−3}, un ∈ [−3,−1];[
− 3,−2− |un|

|un+1

]
, un ∈ (−1, 0],

and

zn ∈
[
− 3, 3 sin(

πun

6
)
]
.

Finally, if we compute the numerical results by choosing x1 = 0 and taking randomly
yn and zn in the above intervals, then we obtain the following Tables:
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n un yn zn xn ∥xn+1 − xn∥
1 -1.00000E+00 -3.00000E+00 -1.60462E+00 0.00000E+00 1.20000E+00

2 -1.92000E+00 -3.00000E+00 -2.90109E+00 -1.20000E+00 7.71527E-01

3 -2.41230E+00 -3.00000E+00 -2.95694E+00 -1.97153E+00 4.59407E-01

4 -2.68385E+00 -3.00000E+00 -2.96544E+00 -2.43093E+00 2.60174E-01

5 -2.83151E+00 -3.00000E+00 -2.99025E+00 -2.69111E+00 1.43619E-01

6 -2.91101E+00 -3.00000E+00 -2.99814E+00 -2.83473E+00 7.77371E-02

7 -2.95331E+00 -3.00000E+00 -2.99982E+00 -2.91246E+00 4.15147E-02

8 -2.97564E+00 -3.00000E+00 -2.99993E+00 -2.95398E+00 2.19607E-02

9 -2.98734E+00 -3.00000E+00 -2.99997E+00 -2.97594E+00 1.15374E-02

10 -2.99344E+00 -3.00000E+00 -2.99999E+00 -2.98748E+00 6.02878E-03

..

.
..
.

..

.
..
.

..

.
..
.

21 -3.00000E+00 -3.00000E+00 -3.00000E+00 -2.99999E+00 3.99991E-06

Table 1. Numerical results of Example 4.1 being randomized in the first time.

n un yn zn xn ∥xn+1 − xn∥
1 -1.00000E+00 -3.00000E+00 -2.36478E+00 0.00000E+00 1.20000E+00

2 -1.92000E+00 -3.00000E+00 -2.83312E+00 -1.20000E+00 7.69828E-01

3 -2.41133E+00 -3.00000E+00 -2.94717E+00 -1.96983E+00 4.59951E-01

4 -2.68321E+00 -3.00000E+00 -2.98064E+00 -2.42978E+00 2.60989E-01

5 -2.83133E+00 -3.00000E+00 -2.98890E+00 -2.69077E+00 1.43756E-01

6 -2.91090E+00 -3.00000E+00 -2.99898E+00 -2.83452E+00 7.78448E-02

7 -2.95326E+00 -3.00000E+00 -2.99917E+00 -2.91237E+00 4.15524E-02

8 -2.97560E+00 -3.00000E+00 -2.99976E+00 -2.95392E+00 2.19868E-02

9 -2.98732E+00 -3.00000E+00 -2.99996E+00 -2.97591E+00 1.15529E-02

10 -2.99343E+00 -3.00000E+00 -2.99999E+00 -2.98746E+00 6.03691E-03

..

.
..
.

..

.
..
.

..

.
..
.

21 -3.00000E+00 -3.00000E+00 -3.00000E+00 -2.99999E+00 4.00538E-06

Table 2. Numerical results of Example 4.1 being randomized in the second time.

From Table 1 and Table 2, we see that −3 is a solution in Example 4.1.
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