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Metric-preserving Functions, W-distances
and Cauchy W-distances
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Abstract : A function f : [0,∞) → [0,∞) is called metric-preserving if for
every metric space (X, d), f ◦ d is a metric on X. The notion of w-distance on
a metric space was introduced by Shioji, Suzuki and Takahashi in 1998. By a
w-distance on a metric space (X, d), they mean a function p : X × X → [0,∞)
having the properties that for all x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z), p(x, ·) is
lower semicontinuous and for any ε > 0, there is a δ > 0 such that p(z, x) ≤ δ and
p(z, y) ≤ δ imply d(x, y) ≤ ε. Then we call such a p a Cauchy w-distance if every
Cauchy sequence (xn) in (X, d) has the property relating to p that for every ε > 0,
there exists a positive integer N such that p(xn, xm) < ε for all m > n ≥ N. Our
purpose is to show that the metric f ◦ d is a w-distance on (X, d) if f is lower
semicontinuous and it is a Cauchy w-distance if f is continuous.
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1 Introduction

A function f : [0,∞) → [0,∞) is called metric-preserving if for every metric space
(X, d), f ◦ d is a metric on X.

Three important necessary conditions for f : [0,∞) → [0,∞) to be metric-
preserving are as follows:

Proposition 1.1 ([1]). If f : [0,∞) → [0,∞) is metric-preserving, then

(C1) for all x ∈ [0,∞), f(x) = 0 ⇔ x = 0.

Proposition 1.2 ([2]). If f : [0,∞) → [0,∞) is metric-preserving, then

(C2) for all x, y ∈ [0,∞), f(x + y) ≤ f(x) + f(y).

Proposition 1.3 ([2]). If f : [0,∞) → [0,∞) is metric-preserving and f is con-
tinuous at 0, then f is continuous on [0,∞).
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Example 1.4. Define f : [0,∞) → [0,∞) by

f(x) =

{
x if 0 ≤ x ≤ 1,
1
2 if x > 1.

By Proposition 1.3, f is not metric-preserving. However, f satisfies (C1) and (C2).

It is known that adding “ nondecreasing ”to (C1) and (C2) and “ concave ”to
(C1) yield sufficient conditions for f to be metric-preserving.

Proposition 1.5 ([2]). If f : [0,∞) → [0,∞) satisfies (C1) and (C2) and f is
nondecreasing, then f is metric-preserving.

Proposition 1.6 ([1]). If f : [0,∞) → [0,∞) satisfies (C1) and f is concave that
is, f(αx + (1− α)y) ≥ αf(x) + (1− α)f(y) for all x, y ∈ X and α ∈ [0, 1], then f
is metric-preserving.

Example 1.7. (1) Let a > 1 and f(x) = loga(1 + x) for all x ∈ [0,∞). Then f
satisfies (C1) and f is increasing. Also, for x, y ∈ [0,∞),

f(x + y) = loga(1 + x + y) ≤ loga(1 + x + y + xy)
= loga((1 + x)(1 + y))
= loga(1 + x) + loga(1 + y)
= f(x) + f(y).

By Proposition 1.5, f is metric-preserving.

(2) Let r ∈ (0, 1] and g : [0,∞) → [0,∞) defined by g(x) = xr for all x ∈ [0,∞).
Then g satisfies (C1) and g is concave. Hence by Proposition 1.6, g is metric-
preserving.

(3) Let c > 0 and define h : [0,∞) → [0,∞) by

h(x) =

{
0 if x = 0,

c if x > 0.

Then h is metric-preserving by Proposition 1.5.

The metric-preserving functions f, g and h in Example 1.7 are obtained from [2]
or [3].

Notice that the metric-preserving functions f, g and h in Example 1.7 are all
nondecreasing. In fact, a metric-preserving function may be strictly decreasing on
(0,∞).

Example 1.8 ([2]). Define f : [0,∞) → [0,∞) by

f(x) =

{
0 if x = 0,

1 + 1
x+1 if x > 0.

Then f is a metric-preserving function which is strictly decreasing and continuous
on (0,∞).
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The following necessary condition of a metric-preserving function will be used.

Proposition 1.9 ([2]). If f : [0,∞) → [0,∞) is metric-preserving, then for each
ε > 0, there is a δ > 0 such that

for all x ∈ [0,∞), f(x) < δ ⇒ x < ε.

Recall that for a topological space X, a function f : X → R is said to be
lower semicontinuous on X if for every a ∈ R, f−1((−∞, a]) is closed in X, or
equivalently, f−1((a,∞)) is open in X. Hence every continuous function from X
into R is lower semicontinuous.

For nonempty sets X and Y , if f : X → Y and g : Y → R, then (g ◦
f)−1((−∞, a]) = f−1(g−1(−∞, a]) for all a ∈ R. Hence we have

Proposition 1.10. If X and Y are topological space, f : X → Y is continuous and
g : Y → R is lower semicontinuous, then g ◦ f : X → R is lower semicontinuous.

The following result is a direct consequence of Proposition 1.10.

Corollary 1.11. For a metric space (X, d), if f : [0,∞) → [0,∞) is lower semi-
continuous, then f ◦ d : X ×X → [0,∞) is lower semicontinuous.

A w-distance on a metric space (X, d) is a function p : X × X → [0,∞)
satisfying the following conditions :

(W1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X,

(W2) for each x ∈ X, p(x, ·) : X → [0,∞) is lower semicontinuous,

(W3) for every ε > 0, there is a δ > 0 such that for all x, y, z ∈ X, p(z, x) ≤ δ
and p(z, y) ≤ δ imply d(x, y) ≤ ε.

The notion of w-distance on a metric space was first introduced by Shioji, Suzuki
and Takahashi in [4]. In [5], various properties and examples of w-distances are
given. In addition, some fixed point theorems are given in terms of w-distances.

We define Cauchy w-distances on a metric space naturally as follows : A w-
distance p on a metric space (X, d) is called a Cauchy w-distance if every Cauchy
sequence (xn) in (X, d) has the property that for every ε > 0, there is an N ∈ N
such that p(xn, xm) < ε for all m > n ≥ N .

Example 1.12. (1) Let (X, d) be a metric space and c > 0. Define

p1(x, y) = cd(x, y) and p2(x, y) = c for all x, y ∈ X

Then p1 and p2 satisfy (W1)-(W3). It is clearly seen that p1 is also Cauchy but
p2 is not (by using ε = c

2 ).

(2) Consider R as the metric space with usual metric. Define

p3(x, y) = |y| for all (x, y) ∈ X × Y.

Then p3 satisfies (W1)-(W3). Then p3 is a w-distance on R. Since (xn) =
(1, 1, 1, . . .) is a convergent sequence in R and p3(xn, xm) = 1 for all m,n ∈ N, it
follows that p3 is not Cauchy.
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Our purpose is to consider when the metric f ◦ d : X × X → [0,∞) is a w-
distance and a Cauchy w-distance on (X, d) where (X, d) is a metric space and
f : [0,∞) → [0,∞) is metric-preserving. It is shown that f ◦ d is a w-distance
and a Cauchy w-distance on (X, d) if f is lower semicontinuous and continuous on
[0,∞), respectively.

2 Main Results

The first main result is the following.

Theorem 2.1. Let (X, d) be a metric space and f : [0,∞) → [0,∞) a metric-
preserving function. If f is lower semicontinuous, then f ◦ d is a w-distance on
(X, d).

Proof. Since f ◦ d is a metric on X, we have that f ◦ d satisfies (W1). From
Corollary 1.11, f ◦ d : X × X → [0,∞) is lower semicontinuous. Then we have
that f ◦ d(x, ·) : X → [0,∞) is lower semicontinuous for all x ∈ X, that is, f ◦ d
satisfies (W2).

To show that f ◦ d satisfies (W3), let ε > 0 be given. Since f is metric-
preserving, by Proposition 1.9, there is a ρ > 0 such that

for all x ∈ [0,∞), f(x) < ρ ⇒ x <
ε

2
. (2.1)

Let δ =
ρ

2
. Let x, y, z ∈ X be such that (f ◦ d)(z, x) ≤ δ and (f ◦ d)(z, y) ≤ δ.

That is,
f(d(z, x)) < ρ and f(d(z, y)) < ρ. (2.2)

We deduce from (1) and (2) that d(z, x) <
ε

2
and d(z, y) <

ε

2
. Hence d(x, y) ≤

d(x, z) + d(z, y) < ε.
This proves that f ◦ d is a w-distance, as desired.

Example 2.2. Let h be the metric-preserving function defined in Example 1.7(3).
Clearly, h is lower semicontinuous but not continuous. If (X, d) is a metric space,
then by Theorem 2.1,

(h ◦ d)(x, y) = h(d(x, y)) =

{
0 if x = y,

c if x 6= y,

is a w-distance on (X, d). If (X, d) has a Cauchy sequence (xn) with xi 6= xj if
i 6= j, then (h ◦ d)(xn, xm) = c if n 6= m, and hence h ◦ d is not Cauchy.

Example 2.3. Let f be the metric-preserving function given in Example 1.8, that
is,

f(x) =

{
0 if x = 0,

1 + 1
x+1 if x > 0.
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Since f is strictly decreasing and continuous on (0,∞) and Imf = {0} ∪ (1, 2), it
follows that

f−1([0, a]) =





{0} if a ≤ 1,

{0} ∪ [f−1(a),∞) if 1 < a < 2,

[0,∞) if a ≥ 2.

Then f is lower semicontinuous. If (X, d) is a metric space, then by Theorem 2.1,

(f ◦ d)(x, y) =

{
0 if x = y,

1 + 1
d(x,y)+1 if x 6= y,

is a w-distance on (X, d). Since 1+ 1
d(x,y)+1 > 1 for all distinct x, y ∈ X, we deduce

that f ◦ d is not Cauchy if X contains a Cauchy sequence (xn) with xi 6= xj if
i 6= j.

The next Theorem is our second main result.

Theorem 2.4. Let (X, d) be a metric space and f : [0,∞) → [0,∞) a metric-
preserving function. If f is continuous, then f ◦ d is a Cauchy w-distance on
(X, d).

Proof. It follows from Theorem 2.1 that f ◦ d is a w-distance on (X, d).
Next, let (xn) be a Cauchy sequence in (X, d) and let ε > 0 be given. By

Proposition 1.1, f(0) = 0. Since f is continuous at 0, there is a δ > 0 such that

for all x ∈ [0,∞), 0 ≤ x < δ ⇒ f(x) < ε. (2.1)

Since (xn) is a Cauchy sequence in (X, d), there is an N ∈ N such that

for all m,n ∈ N, m, n ≥ N ⇒ d(xn, xm) < δ. (2.2)

Hence (1) and (2) yield the result that

for all m,n ∈ N, m, n ≥ N ⇒ (f ◦ d)(xn, xm) = f(d(xn, xm)) < ε.

Therefore f ◦ d is a Cauchy w-distance on (X, d).

Remark 2.5. In the proof of Theorem 2.4, the continuity of f at only 0 required.
Proposition 1.3 tells us that the continuity of f at 0 and the continuity of f on
[0,∞) are equivalent.

Example 2.6. Let f, g : [0,∞) → [0,∞) be the metric-preserving functions de-
fined in Example 1.7(1) and (2), respectively, that is,

f(x) = loga(1 + x) for all x ∈ [0,∞) where a > 1,

g(x) = xr for all x ∈ [0,∞) where r > 0.
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Then f and g are continuous on [0,∞). If (X, d) is a metric space, then by Theorem
2.4, both

(f ◦ d)(x, y) = loga(1 + d(x, y)) for all x, y ∈ X

and
(g ◦ d)(x, y) = d(x, y)r for all x, y ∈ X

are Cauchy w-distances on (X, d).
In particular, p, p′ : R× R→ [0,∞) defined by

p(x, y) = loga(1 + |x− y|) and p′(x, y) = |x− y|r for all x, y ∈ R
are Cauchy w-distances on R.
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