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1. Introduction

Nonlinear systems caught much interest to engineers, biologists, physicists, mathemati-
cians and many other scientists by various phenomena concealed in the nature. Nonlinear
differential equations are used extensively in mathematical modelling to explain various
systems. In recent decades, the development of differentiation and integration has been
extended from integer order to arbitrary order which is known as fractional calculus. The
area of fractional calculus becomes a vibrant research area due to the fact that some
phenomena can be described more accurately with fractional derivative. There are sev-
eral applications of fractional differential equation in areas of application, for example,
economics, signal identification, image processing and so on (see [3, 9, 11, 12]). Several
definitions of fractional derivatives are found in the literature such as Riemann-Liouville,
Hadamard, Riesz, etc (see [1, 2]). One of the definitions was presented by Caputo and
was studied by many experts (see [2, 13, 14, 16]). The Caputo fractional derivatives are
widely used in physical application because the corresponding initial conditions involve
integer order derivatives which reflect a conventional meaning.
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For the development in theory of fractional differential equations, the topics that caught
much attention include the study on existence and uniquess of solutions, stability of solu-
tions, multiplicity of solutions and positive solutions for boundary value problems. There
are several techniques used to display the existence and uniqueness of solutions such as
Banach fixed point theorem, upper-lower solution method, Schaefer fixed point theorem,
Schauder fixed point theorem and so on (see [5, 7, 8, 10, 14, 17]). Furthermore, the per-
turbation of nonlinear differential equations appeals to several interests. In particular,
the perturbation of the derivative term in a differential equation by subtracting a non-
linear term is known as a hybrid differential equation. The existence of solutions of the
first-order hybrid differential equation given by

d

dt
[x(t)− f(t, x(t))] = g(t, x(t)), for t ∈ [t0, t0 + a]

x(0) = x0

was first studied (see [8]). In 2016, the problem was extended to fractional order derivative
by [14] to study the existence and approximation of solutions to fractional order hybrid
differential equation in the sense of Caputo derivative given by

dα

dtα
[x(t)− f(t, x(t))] = g(t, x(t)), for t ∈ [t0, t0 + a]

x(0) = x0.

In 2018, [15] studied fractional diffrential equations involving a variable order RiemannLiou-
ville fractional derivative of order α(t) given by

D
α(t)
a+ =

d

dt

∫ t

a

(t− τ)−α(t)

Γ(1− α(t))
x(τ)dτ .

In 2019, [16] studied existence and unique result of approximate solutions to initial value
problem for fractional differential equation of variable order of the form

D
p(t)
0+ x(t) = f(t, x,D

q(t)
0+ x) , 0 < t <∞

x(0) = 0,

where the variable order Caputo fractional derivative was considered. Apart from the
existence and uniqueness of solution, the Ulam-Stability of fractional order differential
equation also caught much attention. In 2019, Ulam-stability for fractional initial value
problem

Dα
0−u(t) = f(t, u(t)) , t > 0

Dα−1
0+ u(0+) = u0

with Riemann fractional derivative was studied in [4].
Motivated by these works, the purpose of this research is to extend the study of exis-

tence and Ulam-stability of solution of Caputo fractional order hybrid differential equa-
tions to the one with variable order given by

0D
α(t)
t [x(t)− f(t, x(t))] = g(t, x(t)), for t ∈ [0, T ], 0 < α(t) ≤ 1

x(0) = x0
(1.1)

where

0D
α(t)
t =

1

Γ(1− α(t))

∫ t

0

(t− τ)−α(t)x′(τ)dτ .
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Our result displays existence and stability of solutions to Caputo fractional order hy-
brid differential equation of one variable order which is more general than a differential
equation with a noninteger constant order appeared in the literature.

This paper is designed as follows. In Section 2, the notation and concepts of fractional
order hybrid differential equations of one variable order will be introduced and our frame-
work will be discussed. The existence of solutions to equation (1.1) and their stability
will be proved in Section 3 and Section 4, respectively. Lastly, in Section 5, an example
will be given to illustrate the obtained results.

2. Preliminaries and Framework

Let J = [0, T ] be an interval in R where T > 0. We denote by C(J,R) the space of
continuous functions x : J → R . The space C(J,R) is a Banach space with the supremum
norm ∥.∥ defined by

∥x∥ = sup
t∈J

| x(t) |.

In this work, we consider the fractional order hybrid differential equation with initial
condition given by (1.1), where f ∈ C(J ×R,R), g ∈ C(J ×R,R) and initial data x0 ∈ R.
The fractional derivative involved in this study is in the sense of Caputo which is defined
as follows.

Definition 2.1. [14] Let α > 0 , the left Caputo fractional derivative of order α for a
function x(t) is defined by

aD
α
t x(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ)dτ

where n− 1 < α < n and n ∈ N.

Definition 2.2. [14] Let α > 0, the left Riemann-Lioville fractional integral of order α
for a function x(t) is defined by

aI
α
t x(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1x(τ)dτ .

Definition 2.3. [1] Let 0 < α(t) ≤ 1 , the left Riemann-Lioville fractional integral of
order α(t) for function x(t) is defined by

aI
α(t)
t x(t) =

1

Γ(α(t))

∫ t

a

(t− τ)α(t)−1x(τ)dτ , t ∈ J.

Definition 2.4. [16] Let 0 < α(t) < 1 , the left Caputo fractional derivative of order α(t)
for function x(t) is defined by

aD
α(t)
t x(t) =

1

Γ(1− α(t))

∫ t

a

(t− τ)−α(t)x′(τ)dτ , t ∈ J.

Theorem 2.5. [1] Let α : [a, b] → (n− 1, n];n ∈ N, then

aI
α
t aD

α
t x(t) = x(t)−

n−1∑
k=0

x(k)(a)

k!
(t− a)k, t ∈ [a, b].
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Let P = {[0, T1], (T1, T2], (T2, T3], ..., (TN−1, T ]} where Pk ∈ P is the kth subinterval of
P and let α : [0, T ] → (0, 1] be a piecewise constant function with respect to P . Thus, we
define the function α(t) as follow

α(t) =

N∑
k=1

αkIk(t) , t ∈ [0, T ] (2.1)

where 0 < αk ≤ 1, k = 1, 2, ..., N , and Ik is the indicator function on Pk, that is Ik(t) = 1
for t ∈ Pk, Ik(t) = 0 for elsewhere.
Thus the function α(t) can be written by

α(t) =



α1 , t ∈ [0, T1]

α2 , t ∈ (T1, T2]

α3 , t ∈ (T2, T3]

...

αN , t ∈ (TN−1, T ].

According to (2.1) we get∫ t

0

(t− s)−α(t)

Γ(1− α(t))
x′(s)ds =

N∑
k=1

Ik(t)

∫ t

0

(t− s)−αk

Γ(1− αk)
x′(s)ds. (2.2)

so (1.1) can be written by

N∑
k=1

Ik(t)

∫ t

0

(t− s)−αk

Γ(1− αk)
x′(s)ds−

N∑
k=1

Ik(t)

∫ t

0

(t− s)−αk

Γ(1− αk)
f ′(s, x(s))ds = g(t, x(t))

, 0 ≤ t ≤ T.

(2.3)

Hence, on the interval [0, T1], (2.3) satisfies∫ t

0

(t− s)−α1

Γ(1− α1)
x′(s)ds−

∫ t

0

(t− s)−α1

Γ(1− α1)
f ′(s, x(s))ds = g(t, x(t)) , 0 ≤ t ≤ T1.

(2.4)

Again on the interval (T1, T2], (2.3) satisfies∫ t

0

(t− s)−α2

Γ(1− α2)
x′(s)ds−

∫ t

0

(t− s)−α2

Γ(1− α2)
f ′(s, x(s))ds = g(t, x(t)) , T1 < t ≤ T2.

(2.5)

In the same way on the interval (Ti−1, Ti] , i = 3, 4, 5, ..., N(TN = T ), (2.3) satisfies∫ t

0

(t− s)−αi

Γ(1− αi)
x′(s)ds−

∫ t

0

(t− s)−αi

Γ(1− αi)
f ′(s, x(s))ds = g(t, x(t)) , Ti−1 < t ≤ Ti.

(2.6)

Now, we present the definition of solution to problem (1.1) , which is fundamental in our
work.
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Definition 2.6. [15] We say that (1.1) has a solution, if there exist x1 ∈ C[0, T1] satis-
fying (2.4) and x1(0) = x0; x2 ∈ C[0, T2] satisfying (2.5) and x2(0) = x0; xi ∈ C[0, Ti]
satisfying (2.6) and xi(0) = x0 (i = 3, 4, ..., N).

Definition 2.7. The function x ∈ C(J,R) is called a solution of (1.1) if it satisfied the
integral equation

0I
α(t)
t 0D

α(t)
t [x(t)− f(t, x(t))] = 0I

α(t)
t g(t, x(t))

From Theorem 2.5 and (2.1) the integral representation of a solution of equation (1.1)
satisfies

x1(t) = x0 + f(t, x1(t))− f(0, x0)) +
1

Γ(α1)

∫ t

0

(t− s)α1−1g(s, x1(s))ds (2.7)

on [0, T1].
Again the solution of equation (1.1) satisfies

x2(t) = x0 + f(t, x2(t))− f(0, x0)) +
1

Γ(α2)

∫ t

0

(t− s)α2−1g(s, x2(s))ds (2.8)

on (T1, T2].
Repeatly, on the interval (Ti−1, Ti], we have

xi(t) = x0 + f(t, xi(t))− f(0, x0)) +
1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, xi(s))ds. (2.9)

Let X be a Banach space. A mapping A : X → X is called a nonlinear contraction if
there exists a continuous function ϕ : R+ → R+ such that

∥Ax−Ay∥ ≤ ϕ(∥x− y∥),
for all x, y ∈ X, which ϕ(r) < r for r > 0. In particular if ϕ(r) = cr, 0 ≤ c < 1, then A is
called a contraction on X with contraction constant c.

Theorem 2.8. [6] Let K be a closed, convex, and nonempty subset of X. Let A,B :
K → X be two operators satisfying:
(a) Ax+By ∈ K for all x, y ∈ K
(b) A is a contraction on K
(c) B is completely continuous on K
Then the operator equation Ax+Bx = x has a solution.

Definition 2.9. Let f : J × R → R be a function. Then f(t, u) is globally Lipshitz
continuous if there is a constant C > 0 such that

∥f(t, u)− f(t, v)∥ ≤ C∥u− v∥
for all x, y ∈ R and all t ∈ J .

Definition 2.10. [4] The equation (1.1) is Ulam-Hyers stable if for each ε > 0 and for
each solution xi ∈ C([0, Ti],R), i = 1, 2, . . . , N of the inequality

|0Dαi
t [xi(t)− f(t, xi(t))]− g(t, xi(t))| ≤ ε (2.10)

there exist a real number ci > 0 and a solution yi ∈ C([0, Ti],R) of equation (1.1) with

|xi(t)− yi(t)| ≤ ciε.
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Definition 2.11. [4] The equation (1.1) is generalized Ulam-Hyers stable if for each ε > 0
and for each solution xi ∈ C([0, Ti],R), i = 1, 2, . . . , N of the inequality

|0Dαi
t [xi(t)− f(t, xi(t))]− g(t, xi(t))| ≤ ε (2.11)

there exist a function ψi : R+ → R+ with ψ(0) = 0 and a solution yi ∈ C([0, Ti],R) of
(1.1) with

|xi(t)− yi(t)| ≤ ψi(ε).

3. Existence of solution

In this section, solution of fractional order hybrid differential equation of one variable
order is obtained via Krasnoselkii fixed point theorem in a suitable function space. The
initial value problem (1.1) can be reformulated as an integral representation of a solution
given by

xi(t) = x0 + f(t, xi(t))− f(0, x0) +
1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, xi(s))ds,

for t ∈ (Ti−1, Ti]. We denote by Lp(J,R) the space of all Lebesque integrable functions
on J with ∥.∥Lp -norm given by

∥x∥Lp
=

[∫ T

0

|x(t)|pdt

] 1
p

.

Definition 3.1. A mapping β : J ×R → R said to satisfy Lq-Caratheodory’s conditions
if
(i) t→ β(t, x) is measurable for each x ∈ R
(ii) x→ β(t, x) is continuous a.e. t ∈ J and
(iii) for each r > 0, there exist function hr ∈ Lq(J,R) such that

|β(t, x)| ≤ hr(t), t ∈ J, x ∈ R, |x| ≤ r.

We state the assumptions used in this paper as follows:
(A0) There exist positive constants Mf < 1 and M̃f < 1 such that

∥f(t, u)− f(t, v)∥ ≤Mf∥u− v∥ and |f(t, u)| ≤ M̃f (∥u∥+ 1),

for all u, v ∈ C(J,R).
(A1) The function g(t, x) is Lq-Caratheodory.
(A2) There exist positive constants Mg such that

∥g(t, u)− g(t, v)∥ ≤Mg∥u− v∥,
for all u, v ∈ C(J,R).

Theorem 3.2. Suppose assumptions (A0)-(A1) are satisfied, then the fractional hybrid
differential equation with variable order (1.1) has a solution if α(t) ∈ ( 1q , 1].

Proof. For each i = 1, 2, . . . , N , we define A,B : C([0, Ti],R) → C([0, Ti],R) by
Ax(t) = x0 + f(t, x(t))− f(0, x0)

Bx(t) =
1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, x(s))ds.
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We set BR(x0) := {x ∈ C([0, Ti],R)||x − x0| ≤ R}. Clearly BR(x0) ⊆ C([0, Ti],R) and
BR(x0) is closed bounded subset of Banach space.
We first show that Ax+By ∈ BR(x0) when x, y ∈ BR(x0). For any t ∈ [0, Ti], we apply
Hölder inequality to get

|Ax(t) +By(t)− x0| ≤ |f(t, x(t))− f(0, x0)|

+
1

Γ(αi)

(∫ t

0

|(t− s)αi−1|pds
) 1

p
(∫ t

0

|g(s, x(s))|qds
) 1

q

≤ M̃f (∥x∥+ 1) + M̃f (|x0|+ 1)

+
1

Γ(αi)

(∫ t

0

|(t− s)αi−1|pds
) 1

p
(∫ t

0

|g(s, x(s))|qds
) 1

q

≤ M̃f (|x0|+R+ 1) + M̃f (|x0|+ 1)

+
1

Γ(αi)

(∫ t

0

|(t− s)αi−1|pds
) 1

p
(∫ t

0

|g(s, x(s))|qds
) 1

q

≤ RM̃f + 2M̃f (∥x0∥+ 1) +
1

Γ(αi)

(
tαip−p+1

αip− p+ 1

) 1
p

∥hr∥q

≤ RM̃f + 2M̃f (∥x0∥+ 1) +
1

Γ(αi)

(
Tαip−p+1

αip− p+ 1

) 1
p

∥hr∥q

≤ RM̃f + 2M̃f (∥x0∥+ 1) +
1

Γ(αi)

(
T

q
q−1αi− 1

q−1

q
q−1αi − 1

q−1

) q−1
q

∥hr∥q

< R

when R is large enough and 1
p + 1

q = 1. Hence, Ax+By ∈ BR(x0).

Next, we show that A is contraction on BR(x0). Clearly from Assumption (A0), we
have

∥Ax(t)−Ay(t)∥ = ∥f(t, x(t))− f(t, y(t))∥
≤Mf∥x− y∥.

It follows that A is a contraction on BR(x0).
Let {xn} be a bounded sequence of functions in C([0, Ti],R) such that ∥xn∥ ≤ r for

all n = 1, 2, 3, .... By Hölder inequality and (A1) we get

∥Bxn∥ ≤ sup
t∈[0,Ti]

1

Γ(αi)

∫ t

0

∣∣(t− s)αi−1g(s, xn(s))
∣∣ds

≤ sup
t∈[0,Ti]

1

Γ(αi)

(∫ t

0

|(t− s)αi−1|pds
) 1

p
(∫ t

0

|g(s, xi(s))|qds
) 1

q

≤ sup
t∈[0,Ti]

1

Γ(αi)

(
tαip−p+1

αip− p+ 1

) 1
p

∥hr∥q

≤ 1

Γ(αi)

(
T

q
q−1αi− 1

q−1

q
q−1αi − 1

q−1

) q−1
q

∥hr∥q
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Since αi ∈ ( 1q , 1], it follows that
q

q−1αi− 1
q−1 > 0. This show that B(BR(x0)) is uniformly

bounded in C([0, Ti],R).
Next we will show that the sequence is equicontinuous. Let t1, t2 ∈ [0, Ti] which t1 ≤ t2

| Bxn(t1)−Bxn(t2) |

≤ 1

Γ(αi)

∣∣∣∣∫ t1

0

(t1 − s)αi−1g(s, xn(s))ds−
∫ t2

0

(t2 − s)αi−1g(s, xn(s))ds

∣∣∣∣
≤ 1

Γ(αi)

∣∣∣∣∫ t1

0

[
(t1 − s)αi−1 − (t2 − s)αi−1

]
g(s, xn(s))ds

∣∣∣∣
+

1

Γ(αi)

∣∣∣∣∫ t2

t1

(t2 − s)αi−1g(s, xn(s))ds

∣∣∣∣
≤ 1

Γ(αi)

∫ t1

0

∣∣(t1 − s)αi−1 − (t2 − s)αi−1
∣∣hr(s)ds

+
1

Γ(αi)

∫ t2

t1

∣∣(t2 − s)αi−1g(s, xn(s))
∣∣ds

→ 0,

as |t1 − t2| → 0. Since B(BR(x0)) is equicontinuous, we apply Arzela-Ascoli theorem
to claim that B(BR(x0)) is relatively compact in BR(x0). Since this result holds for
each interval [0, Ti], i = 1, 2, ..., N , we obtain the existence of solution to (1.1) from the
Krasnoselkii fixed point theorem (Theorem 2.8 ).

4. Ulam-Hyers stability

From the integral representation of solution of (1.1) for each t ∈ Pi is given by (2.9),
we have the following stability result.

Theorem 4.1. Suppose that assumptions (A0)-(A2) is satisfied. Then the fractional
hybrid differential equation (1.1) is Ulam-Hyers stable.

Proof. Let vi ∈ C([0, Ti],R) satisfies the inequality (2.10), i = 1, 2, . . . , N . It follows that∣∣∣∣vi(t)− vi(0)− f(t, vi(t)) + f(0, vi(0))−
1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, vi(s))ds

∣∣∣∣
≤ ε

1

Γ(αi)

∫ t

0

(t− s)αi−1ds

≤ ε
1

Γ(αi + 1)
tαi

≤ ε
Tαi

Γ(αi + 1)

We let ui ∈ C([0, Ti],R), i = 1, 2, . . . , N be a solution of

0D
αi
t [x(t)− f(t, x(t))] = g(t, x(t)), for t ∈ [0, Ti],

x(0) = vi(0).
(4.1)

Hence, it satisfies

ui(t) = vi(0) + f(t, ui(t))− f(0, vi(0))) +
1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, ui(s))ds.
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So we obtain from (A0) and (A2)

|vi(t)− ui(t)|

=

∣∣∣∣vi(t)− vi(0)− f(t, ui(t)) + f(0, vi(0)))−
1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, ui(s))ds

∣∣∣∣
≤
∣∣∣∣vi(t)− vi(0)− f(t, vi(t)) + f(0, vi(0)))−

1

Γ(αi)

∫ t

0

(t− s)αi−1g(s, vi(s))ds

∣∣∣∣
+ |f(t, vi(t))− f(t, ui(t))|+

1

Γ(αi)

∫ t

0

(t− s)αi−1 |g(s, vi(s))− g(s, ui(s))|ds

≤ ε
Tαi

Γ(αi + 1)
+Mf |vi(t)− ui(t)|+

Mg

Γ(αi)

∫ t

0

(t− s)αi−1 |vi(s)− ui(s)|ds.

Since Mf < 1, we can write

|vi(t)− ui(t)|

≤ ε
Tαi

(1−Mf )Γ(αi + 1)
+

Mg

(1−Mf )Γ(αi)

∫ t

0

(t− s)αi−1 |vi(s)− ui(s)|ds.

By Gronwall inequality, we obtain

|vi(t)− ui(t)|

≤ ε
Tαi

(1−Mf )Γ(αi + 1)
exp

{
Mg

(1−Mf )Γ(αi)

∫ t

0

(t− s)αi−1ds

}
≤ ε

Tαi

(1−Mf )Γ(αi + 1)
exp

{
MgT

αi

(1−Mf )Γ(αi + 1)

}
.

Therefore, (1.1) is Ulam-Hyers stable.

5. Example

In this section, we give an example of hybrid differential equation of variable order
to illustrate our result. Consider the following hybrid fractional differential equation of
variable order

0D
α(t)
t [x(t)− f(t, x(t))] =

tan−1 x(t)

12
, for t ∈ [0, 6]

x(0) = 0
(5.1)

where

f(t, x(t)) =
x(t)

2(x2(t) + 1)
(5.2)

and the fractional order α(t) defined by

α(t) =



3

4
, t ∈ [0, 2]

3

5
, t ∈ (2, 4]

4

5
, t ∈ (4, 6].
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It can be seen that g(t, x) = tan−1 x
12 satisfies L2-Caratheodory condition since |g(t, x)| ≤

π
24 , and the order αi ∈ ( 12 , 1]. So the assumption (A1) is satisfied. Moreover, by mean
value theorem, we see that

|g(t, x)− g(t, y)| =
∣∣∣∣ tan−1(x)

12
− tan−1(y)

12

∣∣∣∣ ≤ 1

12
|x− y|,

for x, y ∈ R. Hence, (A2) is satisfied.
For the assumption on f , we can see that

d

dx

(
x

2(x2 + 1)

)
=

1− x2

2(x2 + 1)2

and ∣∣∣∣ 1− x2

2(x2 + 1)2

∣∣∣∣ ≤ 1

2

for all x ∈ R. By mean value theorem we get

|f(t, x)− f(t, y)| =
∣∣∣∣ x

2(x2 + 1)
− y

2(y2 + 1)

∣∣∣∣
≤ 1

2
∥x− y∥

Since f(t, 0) = 0, it follows that

|f(t, x)| = |f(t, x)− f(t, 0)| ≤ 1

2
|x| ≤ 1

2
(|x|+ 1),

which means that assumption (A0) holds withMf = M̃f = 1
2 . Therefore, all asuumptions

in Theorem 3.2 and Theorem 4.1 are satisfied. Hence, the hybrid fractional differential
equation of variable order (5.1) has a solution and is Ulam-Hyers stable. We remark that
the solution of (5.1) satisfies

x1(t) =
x1(t)

2(x21(t) + 1)
+

1

12Γ( 34 )

∫ t

0

(t− s)−
1
4 tan−1(x1(s))ds on t ∈ [0, 2]

x2(t) =
x2(t)

2(x22(t) + 1)
+

1

12Γ( 35 )

∫ t

0

(t− s)−
2
5 tan−1 (x2(s))ds on t ∈ (2, 4]

x3(t) =
x3(t)

2(x23(t) + 1)
+

1

12Γ( 45 )

∫ t

0

(t− s)−
1
5 tan−1 (x3(s))ds on t ∈ (4, 6].

6. Conclusion

We present the proof of existence and stability of solutions for fractional order hybrid
diffrential equations with varible order Caputo fractional derivative α(t). The existence
result is proved by using Krasnoselskii fixed point theorem under Caratheodory and Lips-
chitz conditions for nonlinear terms. The result extends the class of fractional differential
equations to the one with variable order which is illustrated by an example.
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