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1. INTRODUCTION

Nowadays, neutral-type system is popularly in discussed because it can be applied
in many fields which composed delays both in its derivatives and state variables [, 2].
In practical applications, this delays can be noticed in various fields such as mechanics,
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vibrating masses attached to population ecology, distributed networks, heat exchangers,
robots in contact with rigid environments, automatic control, [3, 4] and so on. Besides,
in terms of applications is able to modelled by systems with distributed delay which
appeared in [5, 6].

Recently, the issue of delay-dependent stability on uncertain neutral-type systems with
time-varying delays has been studied in [7-9], and the considered system has interval time-
varying delays and uncertainties in [10, 1 1]. In addition, several authors have designed the
topic of stability for systems with time-varying delays, and nonlinear perturbations such as
[12-14], and have presented some stability conditions for uncertain neutral-type systems
with interval time-varying delays, and nonlinear perturbations which appeared in [15—

]. In [14], Cheng et al. have expanded the novel criteria on uncertain delay-differential
systems for neutral-type and nonlinear uncertainties, which the variation interval of time
delay was divided into two subintervals by introducing the central point. Mohajerpoor,
et al. [16] have taken advantage of descriptor transformation and utilizing triple integral
terms, Which improved above system. Furthermore, the stability condition for neutral-
type systems with mixed time delays and distributed delay have been studied in [18-21].
Pinjai and Mukdasai [18] have considered the issue of a class of delayed neutral-type
systems with mixed time-varying delays, and nonlinear uncertain by using decomposition
technique of coefficient matrix and the combination of descriptor model transfomation.
The relationships between discrete delay, neutral delay and distributed delay for uncertain
nutral-type systems has been studied in [20].

On the other hand, the exponential stability of various systems has also been received
a lot of attention from researcher as well (for examples, see [18, 22-20]). Ali.[23] has
used generalized eigenvalue problem approach for presented a novel exponential stability
criterion for the neutral-type differential system with nonlinear uncertainties. Maharajan
et al. have discussed the problem of exponential stability for BAM-type neural networks
with non-fragile state estimator by fabricating a suitable LyapunovKrasovskii functional
and enrolling some analysis techniques in [24].

As far as we can tell, there have proposed few results in the literature interesting the
problem of delay-interval-dependent robust exponential stability of the uncertain neutral-
type systems with time-varying delays, and nonlinear uncertainties. The exponential
stability is important toward an analyzing stability because it can identify the rates
convergence of system states to equilibrium point, so we have established the robustness
of the exponential stability in Euclidean spaces. Besides, the characteristic of interval
time-varying delay shows the ability of time delay on varying in an interval in which the
lower bound of delay is not limited to zero.

In this paper, the delay-interval-dependent robust exponential stability criterion was
designed for uncertain neutral-type system with distributed and discrete time-varying de-
lays, and nonlinear perturbations. we concentrated on norm-bounded uncertainties and
nonlinear time-varying parameter perturbations. First, the problem of delay-interval-
dependent exponential stability criterion was desined for neutral-type system with dis-
tributed and discrete time-varying delays, and nonlinear perturbations. By using the
Leibniz-Newton formula, utilization of zero equation, mixed model transformation, Peng-
Park’s integral inequality, Wirtinger-based integral inequality, and proper Lyapunov-
Krasovskii functional, new delay-interval-dependent robust exponential stability criterion
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was received and formulated in the form of LMIs. Then, the problem of delay-inteval-
dependent robust exponential stability criterion was suggested for uncertain neutral sys-
tem with mixed time-varying delays, and nonlinear perturbations. Finally, we represented
the numerical examples to indicate the advantage of the new results, which are superior
to the containing results.

2. PRELIMINARIES

Notations: R denotes the set of all real non-negative numbers; R™ and R™*" denotes
the n-dimensional Euclidean space and the set of all n x r real matrices, respectively ; A7
denotes the transpose of the matrix A; A is symmetric if A = AT; A(A) denotes the set of
all eigenvalues of A; Apax(A) = max{Re A : A € A(A)}; Amin(4) = min{Re A : X € A(A)};
C([—46,0], R™) denotes the space of all continuous vector functions mapping [—4, 0] into R"
where § = max{ny,dv,gv}, nv,0v,9v € RY; 2y = 2(t + 5), s € [-6,0]; dyr = oy — du;
nuL = Nu — Mu; guL = gu — gu; * represents the elements below the main diagonal of a
symmetric matrix.

We consider uncertain neutral-type delayed systems and nonlinear perturbations

£(t) = A(D2(t) + B(t)=(t - 6(1)) + C(1):(t — n()) + D(1) [}, 2(s)ds
+9a(t, 2(1) + go(t, 2(t = 6(8))) + ge(t, 2(t — (1)), t =0, (2.1)

2(t) = (1), i(t)=U(t), Vte[-0,0]

where z(t) € R™ is the state variable. d(t), n(t) and g(t) are discrete, neutral and
distributed interval time-varying delays, respectively, satisfying

0< 4L <6(t) <oy, d(t) <da, (2.2)
0<np <nt) <nu, 5t)<n, (2.3)
0<gr <g(t) <y, (2.4)

where 61, du, da, ML, MU, Nd, 9 and gy are given nonnegative real constants. ®(t) and
U(t) are the initial functions that are continuously differentiable on C([—d,0], R™) with
the norm ||®|| = SUPse[—5,0] 1@(s)], |P] = SUDPse[—5,0] ||¥(s)||. The uncertainties g;(-),
i = a,b,c, satisfying ¢;(0,-) =0, and

ga (t,2(t)galt, 2(t)) < 22" (t)2(t), (2.5)
gy (t,z2(t = 6(6)gs(t, 2(t = 6(1)) < apz"(t—6(t))=(t — 6(t)), (2.6)
ge (t, 2(t = (1) ge(t, 2(t — (1)) < o227 (t —n(t)2(t — n(t)), (2.7)

where «a,, ap and «a,. are nonnegative real constants. A(t) = A+ AA(t), B(t) = B +
AB(t), C(t) = C + AC(t), D(t) = D + AD(t), where A, B, C, D € R"*"™ are real
constant matrices, and AA(t), AB(t), AC(t), AD(t) are uncertainties matrices, which
the form is according to
[AA(t) AB(t) AC(t) AD(t)] =LA®)[Ga Gy G. G4,

where L, G4, Gy, G. and G4 are real constant matrices with appropriate dimensions. The
uncertainty matrix A(t) is satisfying

AW = F()IT - TF@) ™, (2.8)
is said to be admissible where J is an unknown matrix satisfying

I-JJ'>o0. (2.9)
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The uncertainty matrix F(t) is satisfying
FOTFE(t) > 0. (2.10)

Definition 2.1. The system (2.1) is robustly exponentially stable if there exist real
constants a > 0, k > 0 such that, the solution z(¢, ®, ¥) of the system (2.1) satisfies

I2(t, @, ©)|| < kmax{[| @[, |||}, t=0.

Lemma 2.2. (Jensen's inequality) Let Q € R™*", Q = QT > 0 be any constant matriz,

Oy be positive real constant and % : [0y, 0] — R™ be vector-valued function. Then,
t t T t
faU/ ST (s)Qz(s)ds < 7(/ z(s)ds) Q(/ z(s)ds).
t—0y t—oy t—oy
Lemma 2.3. [27](Sun et al.) Let Q € R™*", Q = QT > 0 be any constant matriz, oy,

and Oy be positive real constants. Then,
t

o | T(5)Qx(sds < L, #e) el

7§U 76U

=) [T r
5 /5[] /t+sz (u)Qz(u)duds

< —(/: /t;z(u)duds)TQ(/: /; z(u)duds).

Lemma 2.4. [17] Let Q € R™", Q = QT > 0 be any positive constant matriz, §(t) be
discrete time-varying delays with (2.2), z : [-0y,0] = R™ be a vector function. Then,

t

z(s)ds),

t—0or, t—0r

t—or
7[5UL]/t 2T(5)Qz(s)ds < 7/ 2T (s)dsQ z(s)ds

—ou t—4(t) t—0(t)
t—5(¢) t—5(t)
—/ 2T (5)dsQ z(s)ds.
t—ou t—0u
Lemma 2.5. [17] Let Q1,Q2,Q3 € R™*™ be any costant matrices which Q1 > 0,Q3 > 0,

{C’il 82} > 0, §(t) be time-varying delays with (2.2), Z : [=6y,0] — R™ be vector
3

function. Then,

oo L) [ @ [ e

—Qs Q3 0 —Q3 0
*  —Q3-QF Q3 QF -QF
<wi | = * Qs 0 Q3 | w,
* * * -1 0
* * * * -1
T t—dL, t—3(t)
where wi = |z(t — 1), z(t — 4(¢)), 2(t — dv), t—6() z(s)ds, ftdu z(s)ds] .
Lemma 2.6. [17] Let x, M; € R"*™ i=1,2,...,5 be any constant matrices and §(t) be
X My M

time-varying delays with (2.2), z(t) € R™ be a vector-valued function, if |+ Ms My| >
* X M5
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0 and wi = [2(t — L), 2(t — 8(t)), 2(t — 6u)], then
t—5r,
—/t 3T (s)x2(s)ds

—8u
My + M{ —M{ + M, 0
<wf * My 4+ ML — My — MJ  —MT + My | wy
* * —Msy — MQT
M; My 0
+(6UL)Wg * Mz + Ms My| ws.
* * M

Lemma 2.7. [28] (Wirtinger — based integral inequality) Let Q € R™*", Q = QT >0
be any constant matrix, 1,0y be nonnegative real constants and % : [y, —dr] — R™ be
a vector-valued function. Then,

t—or1 —-4Q -2Q  6Q
—(5UL)/ T(8)Qi(s)ds <wl |+ —4Q  6Q | ws,

—éu * * —-12Q
where w3 = [2(t — 1), 2(t — 6v), 5= ;- tt__;; z(s)ds].
Lemma 2.8. [29, 30] (Peng — Park’s integral inequality) Let Q, S € R™ "™ be any
costant matrices which Q > 0, g g} >0, §(t) be time-varying delay with 0 < §(t) <
du, 2 :[—dy,0] = R™ be a vector-valued function. Then,

t —-Q Q-9 S

—5U/ T(5)Qs(s)ds <wl | +  —2Q+S+ST Q-S| wa,

t—6u * * —-Q
where wi = [2(t),z(t — 8(t)), 2(t — ov)].
Lemma 2.9. [31] For any real constant matrices of appropriate dimensions M, S and

N with M = MT, and A(t) is given constant by (2.8)-(2.10), then
M + SA(t)N + NTA@)ST <o,

holds if and only if
M S ABNT
x —BI pJT| <0,
* * —pI

where any positive real constant 3.

3. MAIN RESULTS

First, the exponential stability criterion will be offered for the following system

A = As(t) + Ba(t—n(t)) + C(t — 1 +D/ (s)ds + ga(t, ()
+au(t, 2(t — (1)) + ge(t, 2(t —n(t))), t >0, (3.1)
2(t) = o), 2(t)=¢(t), Vte[-60].
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Then, the new criterion of system (3.1) will be introduced via LMIs approach, which we
present the following notations for later use.

A= [Ai’j]mxm ) (32)

for A; ; = A7, where
Ay = PiA;r + AT P +20Q7 +2QF + Qg A1 + AT Qo + 2a(Py + P2) + Q134
+AT Q13 + Py + Py + 65 (Ps + Ps) + (0ur)*>(Wa + W) + €20 (M + My ™)
102672900 My — 4729V Py — 7200 Py 4 §Z Ry — e 2%V Ry + (0u1)? Ry
—6Fe 4V Py — (8p1)%e U Wy + g Pio + (gu1)*Wio + vea’i I + Ni Ay
+AT Ny, Ao =Pi(B+A42) — Q7 +Q2— QF + Qs + Qg (B+ Az) + A Q1o
+QT (B + Ag) + dye 220 (=M + My) + 646720 My + e 72290 (Py — S)
+e 2V Ry + NI (B + Ag) + AT Ny, Ay 3= —2e 29U Py 4 ¢72000 g,
Ag=Qs+ Qs —Qf + Al Qua+ 0( Ry + (dur)Rs — N{ + A] N3,
Ais = (P + QY +QL)C + NI C+ AT Ny, Ay g = —e 2V RY + sye=1% Py,
A1y = dpe ™V Pio + (Sun)e Vv Wy, A1g = 6e 2V Py, Ao = Q7 +Qs
—QF + Q7+ AT Qui + (P + Q5 + Q13) A2, Ao = Pi+ Qg + Qi3 + N{ + A[N;
A =P +QF +Qfy + N + AT Ng, Ay 1o =Py +Qf + Qi3 + N{ + AT Ny,
Mg = (Bup)e ™ We, A1z = Py + ATQua — QT5, A1go = (PL+QF +QT5)D
+NTD + ATNg, Ago = —2QF — 2QT + Q% (B + As) + (BT + AD)Quo
—e7 200U Py 4 4Py + Sye” 2% (M + ML — My — MT) + 63e729%0 (M + M)
—2¢720%0 (Py — § — ST) 4 (6p1,)e 2%V (Mg + MT — My — MT) + (6yp)%e 2%
x (Mg + M) — e 2*U (R3 + RT) — e 72V (R + REY) + vpal + NI (B + As)
+(BT + AD)Ny, Mgz = —6pe 290 (ML — My) + 62,e 29U My + =290 (Py — §)
—(5UL)672Q5U (MGT — M7)+ (5UL)26720£5UM9 + e 20U Ry 4 o720 Ry
Aoy =—-Qs— Qs — Qg+ (B + A3)Q12 — NJ + (BT + AJ)N3,
Aoy = QIO+ NJC + BTNy + AT Ny, Ao = e 2*UR],
Aoy =—e2¥RE e 200U RT Nyg=-QF —Q3— Qs — Q7+ BTQu,
+A3Q11, Ao = Qg+ Ni + (BT + A)Ns, As11=Qio+ Ny + (BT
+AD)Ng, Ao1z = Qio+ NJ + (BT + AT)N7, Mgz = —(dur)e 2>V (Mg
—M7) + (6pr)?e 2V M + e U Rg,  Aoqa=e 2*URL Aoyir = QT
x(B+ Ag), Agso = QoD+ NI D+ (B” + AT)Ng, Az3 = —e VW,

e 2% Py — Sye 2 (MY + M) + e > M5 — 4e™ >V Py — e >*U P

Sur)e > (Mg + M) + (u)?e >V Myg — 4e™>*U W5 — eV Ry

76720{6UR6, A377 = eizaéURg + 672Q5UR5, Ag’g = 6672&6UP8,
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Mgz = =2 2UW;, Agq5 = 6e >*UWs, Ayg=—2Q1, + 6% (Pr + Py

54
+Py) + (6pp)?e ™20 (Wy + Wi + We) + 05 Rz + (6un)? R + ZUPm

52 _52 2
%W} + Puy + (6uL)*Ws + Wy — 2N +2N{y, Ays = Q1,C

+N5C = Na, Aag = —Qf —QF — Qu + Qir Az + Ni' Ay — No,

Ag10=Qly + Ny — N5, Ay11 = Qf, + N§ — Ng, Ay1z2 = Q5+ N§ — Ny,
Agar = =N+ Ni1, Asoo = QD+ Ny D — Ny, A5 5 =—e 2Py
4naPi1 + vea I + NI C + CTNy, Asg = CTQu1 + NP Ay + CT Ny,
Asi0=N{ +CTNs, As11=N{ +CTNg, As12 =N +CT Ny,
Asar=CTQly, Asp0=N{D+C"Ng, Agg=—e >V Ps—e >Ry

—e 1 Py, Ao =—e U Py, Arp = —e PV P — e PV — e PV Ry
—e 2WUR, U p _ ededy Wq, A7 s = 6740‘5UW7, Agg = —5[2]67204(%
X Ps — 12¢72% Py Ag g = —2Q% — 2QF + N{ Ay + AT Ny, Ag 10 = QT
+ATNT + NE, Agn1 = QT + ATNT + NT, Agro = QT + ATNT + NT,
Ag oo = Ny D+ QYD+ AL Ng, Ao = —val +2N7, Ajg11 = NI + N,
Aio12 = NI + N7, Avo17 = Qua, A1o20 = NI D+ Ng, A111 = —1

+2N&, A110 = N + Ny, A1ar = Qua, Ai120 = N&D + N,

A2z = vl +2NF | Ajo 17 = Quay Moo = N7 D+ Ng, Ajz 13 = e 22%F
XWi 4 (6pL)e ™29 (Mg + MT) + (6y1)2e 29V My — de™ 2000 5 — e~ 2%
xRg, Aiz1a=—e 2*YRE, Aig15 = 6e 2" UWs5, Agqq = —e 222 TWs

—e 20U R, _ emddupy, Ai515 = —(6UL)26_2“5U Wy — 12e 290U /g,

Aga6 = —€ YU W5, Aipar = —2QT, — 2N, Airpo = QLD

Mig1s = (nu — no)e 2 Wy — e YWy, Mg 19 = —(qup)e > Wy,
Asg 00 = —€ 729V Py + N¢ D + DT Ng, Agi 01 = —e 2*9V Wy,

and others are equal to zero.

+

Theorem 3.1. For ||C| + a. < 1, a > 0, if there exist positive definite symmetric
matrices Py, W;,i=1,2,...,12, 7 = 1,2,...,10, any appropriate dimensional matrices
S, Qr, My, N, Ry, k=1,2,...,14,1=1,2,...,10,m=1,2,...,11, n = 1,2, ...,6, and
positive Teal constants ag, Vs, s = a, b, ¢, satisfying the following LMIs

P My M,

* Mg M4 Z O, (33)
* *  Ms
Wy Mg My ]

* Mg Mg Z O, (34)
* * MlO
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R R,
L Ro| > 0, (3.5)
Ry R
[* Re) > 0, (3.6)
[1:9 5 > 0, (3.7)
9_
A < 0, (3.8)

then the system (3.1) is exponentially stable.

Proof. Firstly, we improve the bound of interval time-varying delays by using the decom-
position technique. Let constant matrix A as

A=A+ Ay, (39)

where Ay, As € R™ ™ are constant matrices. Ensure the exponential stability of the
system (3.1) by choosing to take advantage of the zero equation as follows
t

0==z(t) —z(t—4(t)) — / Z(s)ds. (3.10)
t—6(t)
By (3.9) and (3.10), the system (3.1) can be represented in the form of the descriptor
system

¢

(t) = Arz(t)+ (A2 + B)z(t —4(1)) + Az / 2(s)ds + Cz(t —n(t))
t—5(t)

+D e z(s)ds + gqo(t, 2(t)) + gu(t, 2(t — 5(2)))

gt 2(t = (1), (3.11)
Modify the system (3.11) in term of descriptor systems, which is the form as follows
2(t) = w(t), (3.12)
0 = —w(t) + Arz(t) + (As + B)z(t — 8(t)) + As / 5(s)ds
t—5(t)

+Ci(t—n(t)) + D o z(s)ds + ga(t, 2(1))

+gu(t, 2(t = 0(1))) + ge(t, 2(t = n(t))). (3.13)

Next, we consider Lyapunov-Krasovskii functional for a class of neutral-type delayed
systems (3.11), (3.12) and (3.13) as

9
V()= Vi(t), (3.14)
where }
) 171 00 0
z(t—19
Vl(t) = Zz (t)Plz(t): ftt(:t Z((zizis 8 8 8 8
0 000 0
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P, 0 0 0 2(t)
Q1 Q2 Q3 Qu 2(t —4(t))

Qs Qs Qr Qs | | [l (s)ds
Qo Qo Qu Q2 ()
3 RECIEIE R ED)
‘/Q(t) = ZT(t)PQZ(t) = [w(t)] [0 0:| |:Q123 Q14:| [w(t)} )
= t 2= T () Py 2(s)ds t 2= T ()P, 2(s)ds
we = @GPt [ (5)Piz(s)d

t—4or
+/ 20T ()W, 2(s)ds,
t—dou
0 t
Va(t) = du / / 2= T(9)[Ps + Ps]2(0)d0ds
oy Jt+s
—dr
+(duL) / / 2= T (0) [Wa + W3] 2(0)dods,
t+s
Vs(t) = 6y / / 20T (0)[Pr + Py + Py) 2(0)dbds
Sy Jt+s

-5z
+(0ur) / / 20T (0) [Wy + Wi + We) 2(0)dfds,
t+s

Vs(t) = du /_ N /HS 2=t [2(93] []il gj tggﬂ dds
s [ o [ [ ) o
Va(t) = i / ZU / ' /; 2 (0= T () Py o (u)dudfds

52 52 =0 0 pt
/ / / 20— 2T (Wi 2 (u)dudbds,
s t+60
nr

t—

Va(t) = / 2G0T (5 Py 2(s)ds + (nuL) / 2= 2T (Y Wy(s)ds
t—n(t)

t—nu

t
+/ 2a(9 t) ( )WgZ( )d
t—nL
0 t
Vo) = gu / / ¢2000-1) T () Py, 2 (0)d0ds
gu Jt+s
—gL t
+(g9uL) / / 0= T (0)W102(0)dbds.
—gu +s

The differential of V;(¢) along the trajectory of system (3.11), we obtian

Vi(t) = 2T (t)Piz(t)
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— 2T [Alz(t)+(A2+B)z(t—5(t))+A2 / L i(eds
t—5(t)

+Cz(t—n(t))+ D " z(8)ds + ga(t, z(t)) + gu(t, z(t — 6(t)))

et At n(tm} 2 [zT(t)QlT s -o0QE+ [ )
t—5(t)

ngds + z(t)Qﬂ [z(t) —z(t —6(t)) — /t

—4(t)

é(s)ds} +2 {zT(t)

<QF +7(t - 5(0)f + |

t—3(t)

<7 (5)QF ds + ()% || =00

t

(b= 6(1)) — /t o 73(5)d$} +2 [ZT(t)QgT + 2T — 6(1)QT,
+/ T(s)QT ds + z'(t)QlTQ} { — (t) 4+ Ay2(t) + (A + B)
t—8(t)
xz(t —6(t)) —|—A2/ 2(s)ds+ Cz(t —n(t)) + D z(s)ds
t—3(t) t—g(t)
+9a(t,2(t)) + go(t, 2(t = 6(1))) + ge(t, 2(t — n(t)))} + 202" (t) Pr2(t)
—2a Vi (t).

Calculating Va(t) in accordance with the solutions of the systems (3.12) and (3.13), we
get

o = s (28] [ ][]

= 22T () Pyw(t) + 227 () Q74 [ —w(t)+ A12(t) + (A2 + B)z(t — 6(t))

+As / 2(s)ds+ Cz(t —n(t)) + D z(s)ds + ga(t, 2(1))
t—38(t) t—g(t)

Faplt (0 = 80) + gt 20 = )] + 207 (OQL | = wlt) + Arz(0

t

+(As + B)(t — 5(t)) + Ay /M(t) S(s)ds + C2(t — (b))

+D [ a(ohds + galt o0+ an( 2 = 5(0) + gt 2 n(0)|
t—g(t)
+2azT (1) Pyz(t) — 2aV5(t).
The time derivative of V3(t) is calculated as

Va(t) < 2T(t)[Ps + Pylz(t) — e 290 2T (t — 6y) Pz (t — )
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—e2000 T (t — §(t)) Paz(t — 8(t)) + 8azT (t — 8()) Paz(t — 8(t))
+e*2a5LzT(t —0p)Wiz(t —0r) — e*QO“SUzT(t — oy)Wiz(t — ov)
—2aV3(t).

For any scalar s € [t — 0y, t], we obviously e 2% < e=209L < e20(s=t) < 1. Combine
with Lemma 2.2 and Lemma 2.4, we obtain V() as the follow

Vi) < (5U)2zT(t)[P5+P6}z(t)—eMU(;] /H zT(s)ds>(5U)2P5

(5 L, o) = [( [, moa)m
(Lo = (L, ) ([ sto)]
HavT O+ Walste) - o (5 [ téU )is
A IR ) ([ o)
><W3< /t :; z(s)ds) + ( /f ::t) (s )ds) Wg( / . z(t) z(s)ds)]

—2aVy(t).

By taking advantage of the Lemma 2.6 - Lemma 2.8, the differential of V5(¢) is calculated
as

SONN N
65T (t)[Pr + Py + Py)2(t) + dpe 22V < [z(t — 6(:5))]

Vi(t) <
Z(t — 6U)
My +M1T —M1T+M2 0 Z(t)
* * —My — MI| | 2(t - 6v)

Z(t) r Mg, M4 0 Z(t)

+oy [z(t - (5(t))] [ x  Ms+ Ms M4] [z(t - 5(t))] )
2(t — oy) * * Ms| | 2(t —dp)
2(1) "4, 2P, —6P 2(1)

—e2ady (t — 5u) [ * 4Py —6PFg z(t — ou) ]

5 i s 2 s 12P| (& [, #(s)ds

z(t) Py —Py+ S -5 z(t)

—e7 20 | o (t — 8(2)) ¥ 2P—-S—-8ST —Py+S {z(t - 5(15))]

| 2(t — o) * * Py z(t — ou)
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z(t —6r)
+(0uL)? 2" (8)[Wa + W + We2(t) + (6up)e > ( 2(t - 6(t))
2(t —
M6+Mg —Mg+M7 Z(t—(SL
X * M6+Mg—M7—M? _MG —|—M7 Z( 5
* * —M; — M7 2(t — 6U
2t—6)]" [Ms My — 1)
+(0uL) |=2(t = 6(t)) * Mg+ Mo M9 ( 5(t)) )
Z(t (5U) k * MlO ( 5U)
T
z(t—4r) AWs 2W5 —6W;
i z(t = du) x  AWs —6Ws
ﬁ ::;UL z(s)ds * *  12Ws
z(t —dr) t—3z t—or
X z(t — év) — g 200U (/ 2T(s)ds> Wg(/ 2(s)ds>
L (e
—2aV5(t).
According to Lemma 2.5 and calculating Vi(t), we obtain
20 1
T 2(t—=4(t))
o s aft 5 Bl | £
3 ft_%(t) 2(s)ds
t—d(t
t_(s[f ) z(s)ds
—Rs R 0 -—-RY 0O z(t)
* —R3—Rs Ry R} —RJ 2(t = 4(t))
x| = * —R; 0 RY tz(t —u)
* * 7R1 0 ft_(;(t) z(S)dS
* * * R tt_—(;‘:}(t) 2(s)ds
2t—0op) 1"
z(t—0(1))
2 [2(0]" [Ra Bs] [2(0] | 2050 | =(t - bv)
Cur)l il |+ Rel [200] T 5
ft_(s(t) 2(s)ds
t—hyt
oy ) (s)ds
—Rg Rg 0 —-RF 0 #(t—0r)
« —R¢—Rs; Rg RI —RT|| #(t=4()
x| ox —Rg 0 Rg tZ_(;L_ ou) —2aVg(t).
. o R0 || S ss)ds
* * * —Ry tt__;;(t) z(s)ds
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Now, applying Lamma 2.3, differenting lead to

Vr(t) < 53 () Proz(t) — e—4a5U(5Uz(t)_/i z(s)ds

t—4(t) T t t—6(t)
7/ z(s)ds> Py (5Uz(t) 7/ z(s)dsf/ z(s)ds>
t—6u t—5(t) t—du

b —07)° t—or
+wﬂ(t)w7z(t) — g dady ((5UL)z(t) —/t 2(s)ds

—8(t)

i c(opds) 3 ()= - [ 5:) +(5)ds)

_ /tté(t) z(s)ds) —2aV7(t).

—ou

Besides, for any scalar s € [t — ny, ], we obtain e~ 20 < e=29mL < g2a(s—1) < 1. The
time derivative of Vg(t) is calculated as

Va(t) < 2T(t)(Pr+ Wo)2(t) — e 2 2T (¢ — (1)) Pra2(t — (1))
+naz" (t = n(t) Prz(t —n(t) + (nu —no)e” 2™
xZT(t = nL)Wei(t —nr) — (pu — nu)e > 37 (t —ny)
xWez(t —nu) — e 29 2T (t — Y Woz(t — np — 2aVi(t).

Further, for any scalar s € [t — gy,t], we have e 229V < (5=t < 1. Combine with
Lamma 2.2, we obtain Vy(¢) as follows

Consider (2.5)-(2.7), we inspected that the following inequalities hold:

va(agzT (t)z(t) - gq (. 2(t))ga(t, 2(1)))) 2 0, (3.15)
Vb(abz (t = 8(1))2(t = 6(t))gy (¢, 2(t — 6(1))gu(t, 2(t — 6(2)))) = 0, (3.16)
ve(a2zT(t —n(t)2(t —n(t)) — go (¢, 2(t — n(t)ge(t, 2(t = 0(t)))) = 0, (3.17)

where v,, v, V., are positive real constants.
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By the use zero equations, we obtain the following equations

) [z%wf 4= ST+ ETONT 1 T nO)N + galt, (O)NT

+lt (0~ SONNE + ez —nODNF + [ T asN

+ /t;(t) sT(8)dsNG | | — 2(t) + Ay2(t)) + (Ag + B)z(t — 6(t))

+A, /tm) T(s)ds +Cz(t —n —|—D/ (s)ds + ga(t, 2(1))

+gu(t, 2(t = 3(1))) + gelt, 2(t = n(1))| =0, (3.18)
2[5T (NG, + wTONE] [20) - w®)] =0, (3.19)

where any real matrices N,,,, m = 1,2, ..., 11 with appropriate dimensions. Due to the use
(3.15)-(3.19), it is apparently that

V(t) +2aV(t) < €Tt ) 6( ) (3.20)
WhereST() [2(), 2(t = 6(t)), 2(t —dv), 2(t), 2 s Jise) 2(9)ds,
o a(s)ds, = [ #(s)ds, [, Hs)ds, %uaw>%Uzw—&mx
gﬁza—<»>< >,t&) @,@mféL (s)ds, [\ ok 2(s)ds,
w(t), 2(t —nr), 2(t —nu), ftfg(t) S, :7;; z(s)ds | and A is defined in (3.2). By
condition (3.8), we obtain
V(t)+2aV(t) <0, VteRT, (3.21)
which gives
V(0) <V(0)e 2,  VieRT. (3.22)

It is readily visible that
Amin(PD)[[2(D)]* < V(#) < V(0)e ™ < N max{||®}, [ ¥[}?e~2*, vt e R,

and

[2(t, @, W)|| < max{[|®}, ||| }e™, vte RT, (3.23)

N
Amin (P1)
where

N = Anax(Pr + P2) + 00 Amax(Ps + Pa) 4+ (60L) Amax (W1) + 03 Amax (P
+Ps + Pr + P+ Py) + (0uL)* Amax(Wa + W3 + Wy + Wy + W)
Y L RS L R SWNES

52 _ 52
+%(6UL)3)\H13>((W7) + nU)‘max(Pll) —+ (nUL)2Amax(W8)

+77L)\Inax(W9) + gg')\max(P12) + (gUL)g)\max(WlO)-
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Therefore, if the LMIs conditions (3.3)-(3.8) hold, we conclude that the system (3.1) is
exponentially stable, This proof is complete. ]

Based on Theorem 3.1, we consider the new delay-interval-dependent robust exponen-
tial stability for uncertain neutral-type system with distributed and discrete time-varying
delays, and nonlinear perturbations for (2.1). Then, the corresponding result is summa-
rized in Theorem 3.2.

Theorem 3.2. For ||C(t)|| + ac < 1, a > 0, if there exist positive definite symmetric
matrices Py, Wy, 1 =1,2,...,12, j = 1,2,...,10, any appropriate dimensional matrices
S, Qu, My, Nop, Ry, k=1,2,...,14,1=1,2,...,10, m = 1,2,...,11, n = 1,2, ..., 6, and
positive real constants B as, vs, s = a, b, ¢, satisfying the following LMIs (3.3)-(3.7) and

A Ty Iy
x —BI BJT| < 0, (3.24)
* * -1

then the system (2.1) is robustly exponentially stable.

Proof. Result of the use the similar method in the proof of Theorem 3.1, and substitution
Ay, B, C and D in LMI (3.8) with A; + LA(t)G,, B + LA(t)Gy, C + LA(t)G. and
D+ LA(t)Gg4, respectively, we conclude that condition (3.8) for system (2.1) is equivalent
to following are required

A+ TiANTy +TEAT(HTT <0, (3.25)
where IT = [(P1 L QT + Q% + NIYL, (QF, + NI)L, 0, (Q%, + NI)L, NTL, 0, 0, 0,
(QF + N&)L, NIL, N L, NTL, 0,0, 0,0, QGL, 0,0, N{L, 0], Tz = [Ga, Gy, 0,0,

G, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0, Gq, O], and A is defined in (3.2). By using Lemma

2.9, condition (3.25) is equivalent to the condition (3.24). Thus, if the LMIs conditions
(3.3) - (3.7) and (3.24) hold, we conclude that the system (2.1) is robustly exponentially
stable. This proof is complete. [ ]

4. NUMERICAL EXAMPLES

In this section, we allow the numerical examples to show the performance of the systems
(2.1) and (3.1).

Example 4.1. Consider the uncertain neutral-type system with distributed and discrete
interval time-varying delays, and nonlinear perturbations (2.1), where

A = {—0.8 0 } Ay = {—0.1 0.2} B — [—1.1 —0.2} C = [—0.2 0 ]’

01 -08 0 —0.1 —0.1 -1.1 0.2  —0.1
012 —0.12
b= [—0.12 012 |' L=1 Ga=Gp=Ge=Gag=0.11,

a, = 0.1, ap = a, = 0.05.

We have found that the LMI (3.24) is feasible, which consider for n;, = ¢gr = 0.1,
ny = gu = 0.2, and ny = §4. In Table 1, we show the maximum allowable bound &y
for ensuring Theorem 3.2 of the system(2.1), which for the exponential convergence rate
a=0.5,1n3 =094 =0.1 and d; = 0.5, we obtain §y = 0.7487.
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TABLE 1. Upper bounds of time delay dy for various values of a and dp,.

bg=nqg 0, a=00 a=01 a=03 a=05 a=07 a=0.9

0.0 0.5 1.2526 1.0711 0.8731 0.7487 0.6250 0.5442
1.0 1.4990 1.3550 1.2069  1.0560 - -

0.1 0.5 1.2108 1.4010 0.8510 0.7340 0.6121  0.5346
1.0 1.4625 1.3352 1.1951 1.0507 - -

Example 4.2. Consider the uncertain neutral-type system with distributed and discrete
interval time-varying delays (2.1), where

A — {—0.8 0 } A, — {—0.1 0.2} B - [—1.1 —0.2} o [—0.2 0 ]

0.1 —0.8 0 -0.1 -0.1 -1.1 02 —0.1
-0.12 —0.12
D=1_012 0.12}’L—I» Go=Gp=G.=Gq=0.11,

ga(t; 2(t)) = go(t, 2(t = 6(¢))) = ge(t, 2(t —n(t))) = 0.
By appying Theorem 3.2, we show the upper bounds on distributed time delay gy for

different «, which apply the conditions in [19], [20] and [21], where n;, = 6 = g = 0,
nu = 6y = 0.1 and g = 64 = 0. It is clear that our result (Theorem 3.2) are better
than those results, which appeared in [19], [20] and [21]. Moreover, we show the ensuring

exponential stability of system (2.1).

TABLE 2. Upper bounds of time delay gy for various values of a.

Method a=00 a=01 a=02 a=03 a=0.5

Chen et al. [19]  6.67 - - _ -
Chen et al. [20]  6.67 - - - -
Zhuetal [21]  6.8925 -

Theorem 3.2 7.2682  4.4142  3.3197  2.6887  1.9472

5. CONCLUSIONS

The problem of delay-interval-dependent robust exponential stability criterion for un-
certain neutral-type system with distributed and discrete time-varying delays, and non-
linear perturbations was studied. We concentrated on norm-bounded uncertainties and
nonlinear time-varying parameter perturbations. New delay-interval-dependent robust
exponential stability criterion for uncertain neutral-type system with distributed and
discrete interval time-varying delays, and nonlinear perturbations was received and for-
mulated in terms of LMIs by using mixed model transformation, Peng-Park’s integral
inequality, Wirting-based integral inequality and proper Lyapunov-Krasovskii function.
Moreover, Exponential stability criterion for a neutral-type system with distributed and
discrete interval time-varying delays, and nonlinear perturbations was presented as well.
In the examples, we were presented some results that showed the potential of our results
surpass those results were previously seen.
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