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1. Introduction

Approximation of a common fixed point of a family of nonlinear mappings is one of
the central topics in fixed point theory and a number of researchers have been dealing
with this problem. They have been studying several different methods for generating an
approximate sequence, and one of the most popular scheme is so called a Mann type [8]
iterative method. Namely, for a given initial point x1, define a sequence {xn} by

xn+1 = αnxn + (1− αn)Txn

for n ∈ N. Reich [10] proved that this sequence converges weakly to a fixed point of a
nonexpansive mapping T defined on a closed convex subset of Banach space under certain
assumptions. Since then, this scheme has been studied intensively and a great variety of
generalized results have been proved. In particular, we focus on its generalization to a
complete CAT(κ) space given by He, Fang, Lopez, and Li [6].

Theorem 1.1 (He, Fang, Lopez, and Li [6]). Let X be a complete CAT(κ) space. Let
T : X → X be a nonexpansive mapping such that the set FixT of fixed points of T is
nonempty. Let x1 ∈ X be such that d(x1,FixT ) < Dκ/4, where Dκ = ∞ if κ ≤ 0 and
Dκ = π/

√
κ if κ > 0. For a sequence of positive real numbers {αn} ⊂ ]0, 1[ satisfying∑∞

n=1 αn(1− αn) = ∞, define a sequence {xn} by

xn+1 = αnxn ⊕ (1− αn)Txn
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for n ∈ N. Then, {xn} is ∆-convergent to some point in FixT .

Recently, a ∆-convergence theorem for a finite family of nonexpansive mappings, which
is analogous result to the theorem above, was proved by Hasegawa and Kimura [5]. They
considered the mappings defined on a Hadamard space, a complete CAT(0) space, and
used the notion of balanced mapping to generate an iterative sequence.

On the other hand, Xu and Ori [12] proposed another kind of iterative scheme con-
verging weakly to a common fixed point of a finite family of nonexpansive mappings in
the setting of a Hilbert space, which is called an implicit iterative method.

Theorem 1.2 (Xu and Ori [12]). Let C be a closed convex subset of a Hilbert space and

Tk : C → C a nonexpansive mapping for k = 1, 2, . . . , N with
∩N

k=1 FixTk ̸= ∅. For a
positive real sequence {αn} ⊂ ]0, 1[ converging to 0 and for given x1 ∈ C, generate {xn}
by the following implicit iterative formula:

xn+1 = αnxn + (1− αn)T(n mod N)+1xn+1

for n ∈ N. Then {xn} is well defined and convergent weakly to some point in
∩N

k=1 FixTk.

In this paper, we consider these two kinds of iterative methods for a finite family of
nonexpansive mappings defined on a Hadamard space. We use the notion of balanced
mapping to generate iterative sequences, and obtain their ∆-convergence to a common
fixed point of mappings. We note that the iterative method we propose is different from
that in [5]; we do not use any convex combination to generate sequences, and instead of
it, we only use the notion of balanced mappings.

2. Preliminaries

Let X be a metric space with a metric d. For x, y ∈ X and l ≥ 0, a mapping
c : [0, l] → X is called a geodesic with endpoints x, y ∈ X if it satisfies that c(0) = x,
c(l) = y, and d(c(t), c(s)) = |t− s| for every t, s ∈ [0, l]. If a geodesic with endpoints x
and y exists for all x, y ∈ X, we say X to be a geodesic metric space. In what follows, we
assume that X has a unique geodesic for every x, y ∈ X. Then, we denote the image of
the geodesic with endpoints x, y ∈ X by [x, y], which is well defined.

A geodesic triangle △(x, y, z) with vertices x, y, z ∈ X is defined as the union of
three segments [x, y], [y, z], and [z, x]. Its comparison triangle △(x, y, z) is defined as the
triangle in the 2-dimensional Euclidean space R2 whose length of each corresponding edge
is identical with that of the original triangle;

d(y, z) = ∥y − z∥ , d(z, x) = ∥z − x∥ , d(x, y) = ∥x− y∥ ,

where ∥·∥ is the Euclidean norm on R2. A point p ∈ [x, y] is called a comparison point
for p ∈ [x, y] if d(x, p) = ∥x− p∥. If for any p, q ∈ △(x, y, z) and their comparison points
p, q ∈ △(x, y, z), the inequality

d(p, q) ≤ ∥p− q∥

holds for all triangles in X, then we call X a CAT(0) space. A Hadamard space is defined
as a complete CAT(0) space.

For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that d(x, z) =
(1 − t)d(x, y) and d(z, y) = td(x, y). We denote it by tx ⊕ (1 − t)y. A subset C of X is
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said to be convex if tx ⊕ (1 − t)y ∈ C for every x, y ∈ C and t ∈ [0, 1]. In a Hadamard
space X, the following important inequalities holds:

d(z, tx⊕ (1− t)y)2 ≤ td(z, x)2 + (1− t)d(z, y)2 − t(1− t)d(x, y)2

for every x, y, z ∈ X and t ∈ [0, 1];

d(x, u)2 + d(y, v)2 − d(x, y)2 − d(u, v)2 ≤ 2d(x, v)d(y, u)

for every u, v, x, y ∈ X. For the basic properties of Hadamard spaces, see [1, 2].
A mapping T : X → X is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y) for every

x, y ∈ X. We know that the set FixT = {z ∈ X : z = Tz} of all fixed points of
nonexpansive mapping T is closed and convex.

For a bounded sequence {xn} in X, let r(x, {xn}) = lim supn→∞ d(x, xn) for x ∈ X,
and define the asymptotic radius r({xn}) of {xn} by

r({xn}) = inf
x∈X

r(x, {xn}).

The asymptotic center of {xn} is a set of point p ∈ X satisfying that r(p, {xn}) = r({xn}).
Denoting the set of all minimizers of a function f : X → R∪{∞} by argminx∈X f(x), we
can say that the set of all asymptotic centers of {xn} is argminx∈X r(x, {xn}). We know
that an asymptotic center of {xn} consists of exactly one point [3]. We say that {xn}
is ∆-convergent to x0 ∈ X if x0 is the unique asymptotic center of any subsequence of
{xn}. We know that every bounded sequence in a Hadamard space has a ∆-convergent
subsequence; see [4, 7].

The following theorem [5] shows the definition and fundamental properties of the gen-
eralized convex combination of a finite family of nonexpansive mappings, which is also
called a balanced mapping.

Theorem 2.1 (Hasegawa and Kimura [5]). Let X be a Hadamard space and Tk : X → X a
nonexpansive mapping for k = 0, 1, 2, . . . , N . Suppose that a finite family {α0, α1, α2, . . . , αN}
of positive real numbers satisfies

∑N
k=0 αk = 1. For each x ∈ X, define a subset

U(x) = argmin
y∈X

N∑
k=0

αkd(Tkx, y)
2

of X. Then the following holds:

(i) U(x) consists of one point for every x ∈ X and thus U : X → X can be defined
as a single-valued mapping.

(ii) U is nonexpansive;

(iii) if
∩N

k=1 FixTk is nonempty, then it coincides with FixU .

3. Explicit and implicit iterative schemes

In this section, we prove two ∆-convergence theorems to a common fixed point of a
finite family of nonexpansive mappings. The first one is an iterative scheme defined by
an explicit form of recurrence formula.

Theorem 3.1. Let X be a Hadamard space. Let Tk : X → X be a nonexpansive mapping

for k = 1, 2, . . . , N and suppose that
∩N

k=1 FixTk ̸= ∅. Let {αk
n} be real sequences for

k = 0, 1, 2, . . . , N and a, b ∈ R satisfying the following conditions:

(i) 0 < a ≤ αk
n ≤ b < 1 for all k = 0, 1, 2, . . . , N and n ∈ N;
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(ii)
∑N

k=0 α
k
n = 1 for all n ∈ N.

For given x1 ∈ X, generate a sequence {xn} ⊂ X by

xn+1 = argmin
y∈X

(
α0
nd(xn, y)

2 +

N∑
k=1

αk
nd(Tkxn, y)

2

)

for n ∈ N. Then, {xn} is ∆-convergent to some x0 ∈
∩N

k=1 FixTk.

Proof. For each n ∈ N, define a mapping Un : X → X by

Unx = argmin
y∈X

(
α0
nd(x, y)

2 +

N∑
k=1

αk
nd(Tkx, y)

2

)
for x ∈ X. Since the identity mapping is also nonexpansive and the set of its fixed points

is the whole space, by Theorem 2.1, we get Un is nonexpansive and FixUn =
∩N

k=1 FixTk.

We also have xn+1 = Unxn for n ∈ N. Then, for p ∈
∩N

k=1 FixTk, we have

d(xn+1, p) = d(Unxn, p) ≤ d(xn, p)

for all n ∈ N. It follows that a nonnegative real sequence {d(xn, p)} is nonincreasing and
thus it is convergent to some cp ∈ R as n → ∞. We also have {xn} is bounded. On the

other hand, for p ∈
∩N

k=1 FixTk, we have

α0
nd(xn, Unxn)

2 +

N∑
k=1

αk
nd(Tkxn, Unxn)

2

≤ α0
nd(xn, tUnxn ⊕ (1− t)p)2 +

N∑
k=1

αk
nd(Tkxn, tUnxn ⊕ (1− t)p)2

≤ α0
n

(
td(xn, Unxn)

2 + (1− t)d(xn, p)
2 − t(1− t)d(Unxn, p)

2
)

+

N∑
k=1

αk
n

(
td(Tkxn, Unxn)

2 + (1− t)d(Tkxn, p)
2 − t(1− t)d(Unxn, p)

2
)

≤ α0
n

(
td(xn, Unxn)

2 + (1− t)d(xn, p)
2 − t(1− t)d(xn+1, p)

2
)

+

N∑
k=1

αk
n

(
td(Tkxn, Unxn)

2 + (1− t)d(xn, p)
2 − t(1− t)d(xn+1, p)

2
)

≤ t

(
α0
nd(xn, Unxn)

2 +

N∑
k=1

αk
nd(Tkxn, Unxn)

2

)
+ (1− t)d(xn, p)

2 − t(1− t)d(xn+1, p)
2,

and thus

(1− t)

(
α0
nd(xn, Unxn)

2 +

N∑
k=1

αk
nd(Tkxn, Unxn)

2

)
≤ (1 − t)d(xn, p)

2 − t(1 − t)d(xn+1, p)
2.
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Dividing both sides by 1− t and tending t → 1, we get

α0
nd(xn, Unxn)

2 +

N∑
k=1

αk
nd(Tkxn, Unxn)

2 ≤ d(xn, p)
2 − d(xn+1, p)

2.

It follows that

ad(xn, Unxn)
2 ≤ α0

nd(xn, Unxn)
2 ≤ d(xn, p)

2 − d(xn+1, p)
2 → c2p − c2p = 0.

Thus we have d(xn, Unxn) → 0 as n → ∞. In the same fashion, we get

(1− b)ad(Tkxn, Unxn)
2 ≤ αk

nd(Tkxn, Unxn)
2

≤ d(xn, p)
2 − d(xn+1, p)

2

→ c2p − c2p = 0

for k = 1, 2, . . . , N and we have d(Tkxn, Unxn) → 0 as n → ∞. From these facts, we
obtain

d(xn, Tkxn) ≤ d(xn, Unxn) + d(Unxn, Tkxn) → 0

as n → ∞ for every k = 1, 2, . . . , N . Let x0 ∈ X be a unique asymptotic center of
a bounded sequence {xn} and we will show that an asymptotic center u ∈ X of any

subsequence {xni
} of {xn} is identical to x0. We know that u belongs to

∩N
k=1 FixTk.

Indeed, since {d(xni , Tkxni)} converges to 0, from the definition of asymptotic center we
have

r({xni
}) = lim sup

i→∞
d(xni

, u)

≤ lim sup
i→∞

d(xni , Tku)

≤ lim sup
i→∞

(d(xni
, Tkxni

) + d(Tkxni
, Tku))

= lim sup
i→∞

d(Tkxni , Tku)

≤ lim sup
i→∞

d(xni
, u) = r({xni

})

for all k = 1, 2, . . . , N . This implies that Tku is an asymptotic center of {xni
}, and from

the uniqueness of an asymptotic center, we get u = Tku for k = 1, 2, . . . , N , that is,

u ∈
∩N

k=1 FixTk. It follows that {d(xn, u)} is convergent to cu. Therefore, we have

r({xn}) = lim sup
n→∞

d(xn, x0)

≤ lim sup
n→∞

d(xn, u) = cu = lim
i→∞

d(xni
, u)

≤ lim sup
i→∞

d(xni
, x0)

≤ lim sup
n→∞

d(xn, x0) = r({xn}).

Thus u is identical to x0. Hence, by definition, {xn} is ∆-convergent to x0 ∈
∩N

k=1 FixTk,
which is the desired result.

We remark that the iterative scheme used in this theorem corresponds to the following
sequence in the case where the underlying space X is a closed convex subset of a Hilbert
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space: x1 ∈ X and xn+1 = α0
nxn +

∑N
k=1 α

k
nTkxn for n ∈ N. Indeed, if X is a closed

convex subset of a Hilbert space with a norm ∥·∥, we have

∥∥∥∥∥
N∑

k=0

αkuk

∥∥∥∥∥
2

=

N∑
k=0

αk ∥uk∥2 −
N−1∑
i=0

N∑
j=i+1

αiαj ∥ui − uj∥2

for any u0, u1, u2, . . . , uN ∈ H and α0, α1, α2, . . . , αN ∈ [0, 1] with
∑N

k=0 αk = 1. There-
fore, we have

α0
n ∥xn − y∥2 +

N∑
k=1

αk
n ∥Tkxn − y∥2

=

∥∥∥∥∥α0
nxn +

N∑
k=1

αk
nTkxn − y

∥∥∥∥∥
2

+

N∑
k=1

α0
nα

k
n ∥xn − Tkxn∥2 +

N−1∑
i=1

N∑
j=i+1

αi
nα

j
n ∥Tixn − Tjxn∥2 ,

and hence its unique minimizer is y = α0
nxn +

∑N
k=1 α

k
nTkxn.

The second result is a ∆-convergence theorem with an implicit iterative scheme for a
finite family of nonexpansive mappings.

Theorem 3.2. Let X be a Hadamard space. Let Tk : X → X be a nonexpansive mapping

for k = 1, 2, . . . , N and suppose that
∩N

k=1 FixTk ̸= ∅. Let {αk
n} be real sequences for

k = 0, 1, 2, . . . , N and a, b ∈ R satisfying the following conditions:

(i) 0 < a ≤ αk
n ≤ b < 1 for all k = 0, 1, 2, . . . , N and n ∈ N;

(ii)
∑N

k=0 α
k
n = 1 for all n ∈ N.

For given x1 ∈ X, generate a sequence {xn} ⊂ X as follows: For n ∈ N and given
xn ∈ X, let xn+1 be a unique point in X satisfying that

xn+1 = argmin
y∈X

(
α0
nd(xn, y)

2 +

N∑
k=1

αk
nd(Tkxn+1, y)

2

)
.

Then, {xn} is well-defined and ∆-convergent to some x0 ∈
∩N

k=1 FixTk.

Proof. We first show that {xn} is well-defined by induction. For n = 1, x1 is a given
point in X. Suppose xn ∈ N is defined. Then define a mapping Vn : X → X by

Vnx = argmin
y∈X

(
α0
nd(xn, y)

2 +

N∑
k=1

αk
nd(Tkx, y)

2

)
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for x ∈ X. Notice that Vn can be defined as a single-valued mapping. Then Vn is a
contraction. Indeed, for u, v ∈ X and t ∈ ]0, 1[, we have

α0
nd(xn, Vnu)

2 +

N∑
k=1

αk
nd(Tku, Vnu)

2

≤ α0
nd(xn, tVnu⊕ (1− t)Vnv)

2 +

N∑
k=1

αk
nd(Tku, tVnu⊕ (1− t)Vnv)

2

≤ α0
n

(
td(xn, Vnu)

2 + (1− t)d(xn, Vnv)
2 − t(1− t)d(Vnu, Vnv)

2
)

+

N∑
k=1

αk
n

(
td(Tku, Vnu)

2 + (1− t)d(Tku, Vnv)
2 − t(1− t)d(Vnu, Vnv)

2
)

≤ t

(
α0
nd(xn, Vnu)

2 +

N∑
k=1

αk
nd(Tku, Vnu)

2

)

+ (1− t)

(
α0
nd(xn, Vnv)

2 +

N∑
k=1

αk
nd(Tku, Vnv)

2

)
− t(1− t)d(Vnu, Vnv)

2,

and thus,

t(1− t)d(Vnu, Vnv)
2 ≤ (1− t)α0

n

(
d(xn, Vnv)

2 − d(xn, Vnu)
2
)

+ (1− t)

N∑
k=1

αk
n

(
d(Tku, Vnv)

2 − d(Tku, Vnu)
2
)
.

Dividing both sides by 1− t and tending t → 1, we get

d(Vnu, Vnv)
2 ≤ α0

n

(
d(xn, Vnv)

2 − d(xn, Vnu)
2
)

+

N∑
k=1

αk
n

(
d(Tku, Vnu)

2 − d(Tku, Vnv)
2
)
.

In the same way, we have

d(Vnv, Vnu)
2 ≤ α0

n

(
d(xn, Vnu)

2 − d(xn, Vnv)
2
)

+

N∑
k=1

αk
n

(
d(Tkv, Vnv)

2 − d(Tkv, Vnu)
2
)
.
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From these inequalities, we get

2d(Vnu, Vnv)
2

≤
N∑

k=1

αk
n

(
d(Tku, Vnu)

2 + d(Tkv, Vnv)
2 − d(Tku, Vnv)

2 − d(Tkv, Vnu)
2
)

≤
N∑

k=1

2αk
nd(Tku, Tkv)d(Vnu, Vnv)

≤ 2

N∑
k=1

αk
nd(u, v)d(Vnu, Vnv)

≤ 2(1− α0
n)d(u, v)d(Vnu, Vnv),

and hence

d(Vnu, Vnv) ≤ (1− α0
n)d(u, v).

Since 0 < 1− α0
n < 1, Vn is a contraction and thus it has a unique fixed point xn+1 ∈ X.

That is, it satisfies that

xn+1 = Vnxn+1 = argmin
y∈X

(
α0
nd(xn, y)

2 +

N∑
k=1

αk
nd(Tkxn+1, y)

2

)
.

This implies that xn+1 satisfying this equation exists uniquely, and hence {xn} is well-
defined.

For p ∈
∩N

k=1 FixTk, we have

α0
nd(xn, xn+1)

2 +

N∑
k=1

αk
nd(Tkxn, xn+1)

2

= α0
nd(xn, Vnxn+1)

2 +

N∑
k=1

αk
nd(Tkxn, Vnxn+1)

2

≤ α0
nd(xn, txn+1 ⊕ (1− t)p)2 +

N∑
k=1

αk
nd(Tkxn, txn+1 ⊕ (1− t)p)2

≤ α0
n

(
td(xn, xn+1)

2 + (1− t)d(xn, p)
2 − t(1− t)d(xn+1, p)

2
)

+

N∑
k=1

αk
n

(
td(Tkxn, xn+1)

2 + (1− t)d(Tkxn, p)
2 − t(1− t)d(xn+1, p)

2
)

≤ α0
n

(
td(xn, xn+1)

2 + (1− t)d(xn, p)
2 − t(1− t)d(xn+1, p)

2
)

+

N∑
k=1

αk
n

(
td(Tkxn, xn+1)

2 + (1− t)d(xn, p)
2 − t(1− t)d(xn+1, p)

2
)

≤ t

(
α0
nd(xn, xn+1)

2 +

N∑
k=1

αk
nd(Tkxn, xn+1)

2

)
+ (1− t)d(xn, p)

2 − t(1− t)d(xn+1, p)
2,
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and hence

α0
nd(xn, xn+1)

2 +

N∑
k=1

αk
nd(Tkxn, xn+1)

2 ≤ d(xn, p)
2 − d(xn+1, p)

2.

It follows that the nonnegative real sequence {d(xn, p)
2} is nonincreasing and thus it has

a limit cp ∈ R. Then we get

α0
n lim

n→∞
d(xn, xn+1)

2 +

N∑
k=1

lim
n→∞

αk
nd(Tkxn, xn+1)

2 ≤ c2p − c2p = 0.

Since {α0
n} ⊂ [a, b] and {αk

n} ⊂ [a, b] for k = 1, 2, . . . , N , we have

lim
n→∞

d(xn, xn+1) = lim
n→∞

d(Tkxn, xn+1) = 0,

and hence

lim
n→∞

d(xn, Tkxn) = 0

for k = 1, 2, . . . , N .
The remainder of the proof is the same as that of Theorem 3.1 and we finally get {xn}

is ∆-convergent to x0 ∈
∩N

k=1 FixTk.
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