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1. Introduction

Fractional partial differential equations obtained from standard partial differential
equations by replacing the ordinary order derivative by a fractional derivative of order
α > 0, are used to model many mathematical and physical problems, such as fluid flow,
finance, physical, hydrology, biological processes and systems and so on [7, 8, 10–13].

The most frequent used methods for investigating fractional partial differential equa-
tions are: Adomian decomposition method (ADM) [14] fractional variational iteration
method (FVIM) [15], fractional difference method (FDM) [12], generalized differential
transform method (GDTM) [1], homotopy analysis method (HAM) [2], homotopy pertur-
bation method (HPM) [4], fractional residual power series method (FPSM) [6], modified
generalized Taylor fractional series method (MGTFSM) [7].
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The main objective of this article is to present a new modified method called fractional
Elzaki projected differential transform method (FEPDTM) for finding the solutions of
nonlinear time-fractional wave-like equations with variable coefficients of the form

Dα
t u =

n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xk
i ∂x

m
j

F2ij(uxi
, uxj

)

+

n∑
i=1

G1i(X, t, u)
∂p

∂xp
i

G2i(uxi
) +H(X, t, u) + S(X, t), (1.1)

with the initial conditions

u(X, 0) = a0(X), ut(X, 0) = a1(X), (1.2)

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2.

Here X = (x1, x2, ..., xn) ∈ Rn, F1ij , G1i i, j ∈ {1, 2, ..., n} are nonlinear functions of
X, t and u, F2ij , G2i i, j ∈ {1, 2, ..., n} , are nonlinear functions of derivatives of u with
respect to xi and xj i, j ∈ {1, 2, ..., n} , respectively. Also H,S are nonlinear functions
and k,m, p are integers.

For α = 2, these types of equations are of considerable significance in various fields
of applied sciences, mathematical physics, nonlinear hydrodynamics, engineering physics,
biophysics, human movement sciences, astrophysics and plasma physics. These equa-
tions describe the evolution of erratic motions of small particles that are immersed in
fluids, fluctuations of the intensity of laser light, velocity distributions of fluid particles
in turbulent flows.

This article is organized as follows. In Section 2, we present some fundamental defini-
tions of fractional calculus and Elzaki transform. In Section 3, we introduce the method-
ology of the fractional Elzaki projected differential transform method (FEPDTM) for
solving nonlinear time-fractional wave-like equations with variable coefficients (1.1) with
the initial conditions (1.2). In Section 4, we have proposed three examples to solve in
order to show the validity and effectiveness of this approach. Finally, we present our
obtained results (Graphs and Tables), comparing them with their exact associated forms.
These results were verified with Matlab.

2. Definition and preliminaries

In this section, we give some definitions and important properties of the fractional
calculus theory and Elzaki transform which shall be used in this paper.

2.1. Fractional calculus

Definition 2.1. [8] A real function f(t), t > 0, is considered to be in the space Cµ, µ ∈
R if there exists a real number p > µ, so that f(t) = tph(t), where h(t) ∈ C ([0,∞[), and
it is said to be in the space Cn

µ if f (n) ∈ Cµ, n ∈ N.

Definition 2.2. [8] The Riemann-Liouville fractional integral operator Iα of order α ≥ 0
for a function f ∈ Cµ, µ ≥ −1 is defined as

Iαf(t) =
1

Γ(α)

t∫
0

(t− ξ)α−1f(ξ)dξ, t > 0. (2.1)
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Definition 2.3. [8] The Caputo fractional derivative operator of order n − 1 < α ≤ n
for a function f ∈ Cn

−1 is defined as

Dαf(t) = In−αDnf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n)(ξ)dξ, t > 0. (2.2)

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we have
the following relation

IαDαf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, t > 0. (2.3)

Definition 2.4. [8] The Mittag-Leffler function is defined as follows

Eα (z) =

∞∑
n=0

zn

Γ(nα+ 1)
, α ∈ C, Re(α) > 0. (2.4)

A further generalization of Eq. (2.4) is given in the form

Eα,β (z) =

∞∑
n=0

zn

Γ(nα+ β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0. (2.5)

For α = 1, Eα (z) reduces to ez.

2.2. Elzaki transform

Recently, Tarig Elzaki [3] introduced a new integral transform, called Elzaki transform,
which is applied to solve an ordinary and partial differential equations.

Definition 2.5. [3] The Elzaki transform is defined over the set of functions

A =

{
f(t)/∃M,k1, k2 > 0, |f(t)| < Me

|t|
kj , if t ∈ (−1)j × [0,∞)

}
, (2.6)

by the following integral

E [f(t)] = T (v) = v

∫ ∞

0

f(t)e−
t
v dt, t > 0, (2.7)

where v is the factor of variable t.

Some basic properties of the Elzaki transform are given as follows
Property 1: The Elzaki transform is a linear operator. That is, if λ and µ are non-zero

constants, then

E [λf(t)± µg(t)] = λE [f(t)]± µE [g(t)] . (2.8)

Property 2: If f (n)(t) is the n−th derivative of the function f(t) ∈ A with respect to
”t” then its Elzaki transform is given by

E
[
f (n)(t)

]
=

1

vn
T (v)−

n−1∑
k=0

v2−n+kf (k)(0). (2.9)
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Property 3: (Convolution property) Suppose T (v) and G(v) are the Elzaki transforms
of f(t) and g(t), respectively, both defined in the set A. Then the Elzaki transform of
their convolution is given by

E [(f ∗ g) (t)] = 1

v
T (v)G(v), (2.10)

where the convolution of two functions is defined by

(f ∗ g) (t) =
t∫

0

f(ξ)g(t− ξ)dξ =

t∫
0

f(t− ξ)g(ξ)dξ. (2.11)

Property 4: Some special Elzaki transforms:

E(1) = v2, E(t) = v3, E(tn) = n!vn+2, n = 0, 1, 2, ... (2.12)

Property 5: The Elzaki transform of tα is given by

E [tα] = vα+2Γ (α+ 1) . (2.13)

2.3. Elzaki transform for fractional derivative

Theorem 2.6. If T (v) is the Elzaki transform of f(t), then the Elzaki transform of the
Riemann-Liouville fractional integral for the function f(t) of order α, is given by

E [Iαf(t)] = vαT (v). (2.14)

Proof. The Riemann-Liouville fractional integral for the function f(t), as in Eq. (2.1),
can be expressed as the convolution

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t). (2.15)

Applying the Elzaki transform in the Eq. (2.15) and using the Properties 3 and 5, we
have

E [Iαf(t)] = E
[

1

Γ(α)
tα−1 ∗ f(t)

]
= vE

[
tα−1

Γ(α)

]
E [f(t)] =

1

v
vα+1T (v) = vαT (v). (2.16)

The proof is complete.

Theorem 2.7. Let n ∈ N∗ and α > 0 be such that n− 1 < α ≤ n and T (v) be the Elzaki
transform of the function f(t), then the Elzaki transform denoted by Tα(v) of the Caputo
fractional derivative of f(t) of order α, is given by

E [Dαf(t)] = Tα(v) =
1

vα
T (v)−

n−1∑
k=0

v2−α+kf (k)(0). (2.17)

Proof. Let

g(t) = f (n)(t), (2.18)
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then by the Definition of the Caputo fractional derivative 2.3, we obtain

Dαf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n)(ξ)dξ

=
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1g(ξ)dξ

= In−αg(t). (2.19)

Applying the Elzaki transform on both sides of Eq. (2.19) and using the Theorem 2.6,
we get

E [Dαf(t)] = E
[
In−αg(t)

]
= vn−αG(v). (2.20)

Also, we have from the Property 2

E [g(t)] = E
[
f (n)(t)

]
, (2.21)

G(v) =
1

vn
T (v)−

n−1∑
k=0

v2−n+kf (k)(0). (2.22)

Hence, (2.20) becomes

E [Dαf(t)] = vn−α

(
1

vn
T (v)−

n−1∑
k=0

v2−n+kf (k)(0)

)

=
1

vα
T (v)−

n−1∑
k=0

v2−α+kf (k)(0) = Tα(v). (2.23)

The proof is complete.

3. FEPDTM for nonlinear time-fractional wave-like equations

Theorem 3.1. Consider the following nonlinear time-fractional wave-like equations (1.1)
with the initial conditions (1.2). Then, by FEPDTM the solution of Eqs. (1.1) and (1.2)
is given in the form of infinite series which converges rapidly to the exact solution as
follows

u(X, t) =

∞∑
k=0

U(X, k), (3.1)

where U(X, k) is the projected differential transformed function.

Proof. In order to achieve our goal, we consider the following nonlinear time-fractional
wave-like equations (1.1) with the initial conditions (1.2).
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Applying the Elzaki transform on both sides of Eq. (1.1) and using the Theorem 2.7,
we get

E [u(X, t)] = vα
n−1∑
k=0

v2−α+k
[
Dku(X, t)

]
t=0

+ vαE [S(X, t)]

+vαE

 n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xk
i ∂x

m
j

F2ij(uxi , uxj )

+

n∑
i=1

G1i(X, t, u)
∂p

∂xp
i

G2i(uxi) +H(X, t, u)

]
. (3.2)

Taking the inverse Elzaki transform on both sides of Eq. (3.2), we have

u(X, t) = L(X, t) + E−1

vαE

 n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xk
i ∂x

m
j

F2ij(uxi
, uxj

)

+

n∑
i=1

G1i(X, t, u)
∂p

∂xp
i

G2i(uxi
) +H(X, t, u)

])
, (3.3)

where L(X, t) is a term arising from the source term and the prescribed initial conditions.
Now, we apply the projected differential transform method (PDTM) [9] to Eq. (3.3),

we get

U(X, 0) = L(X, t),

U(X, k + 1) = E−1 (vαE [A(X, k) +B(X, k) + C(X, k)]) , k ≥ 0, (3.4)

where A(X, k), B(X, k) and C(X, k) are transformed form of the nonlinear terms,
n∑

i,j=1

F1ij(X, t, u)
∂k+m

∂xk
i ∂x

m
j

F2ij(uxi
, uxj

),
n∑

i=1

G1i(X, t, u)
∂p

∂xp
i

G2i(uxi
) andH(X, t, u), rerspec-

tively.
From Eq. (3.4) we have

U(X, 0) = L(X, t),

U(X, 1) = E−1 (vαE [A(X, 0) +B(X, 0) + C(X, 0)]) ,

U(X, 2) = E−1 (vαE [A(X, 1) +B(X, 1) + C(X, 1)]) ,

U(X, 3) = E−1 (vαE [A(X, 2) +B(X, 2) + C(X, 2)]) ,

...

and so on.
Then, the solution of Eqs. (1.1) and (1.2) is given in the form of infinite series as

follows

u(X, t) =

∞∑
k=0

U(X, k). (3.5)

The proof is complete.
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4. Applications

In this section, we apply the FEPDTM to solve three numerical examples of nonlinear
time-fractional wave-like equations with variable coefficients.

Example 4.1. Let’s consider the following two dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t u =

∂2

∂x∂y
(uxxuyy)−

∂2

∂x∂y
(xyuxuy)− u, 1 < α ≤ 2, (4.1)

with the initial conditions

u(x, y, 0) = exy, ut(x, y, 0) = exy, x, y ∈ R× R. (4.2)

By applying the steps involved in the FEPDTM as presented in Section 3 to Eqs. (4.1)
and (4.2), we have

u(x, y, t) = exy + texy + E−1

[
vαE

[
∂2

∂x∂y
(uxxuyy)−

∂2

∂x∂y
(xyuxuy)− u

]]
. (4.3)

According to the PDTM, we can construct the following iteration formula

U(x, y, 0) = exy + texy, (4.4)

U(x, y, k + 1) = E−1

(
vαE

[
∂2

∂x∂y
A(x, y, k)− ∂2

∂x∂y
B(x, y, k)− U(x, y, k)

])
, k ≥ 0,

where A(x, y, k) and B(x, y, k) are transformed form of the nonlinear terms, uxxuyy and
xyuxuy, rerspectively, having the value

A(x, y, k) =

k∑
r=0

∂2U(x, y, r)

∂x2

∂2U(x, y, k − r)

∂y2
, (4.5)

B(x, y, k) = xy

k∑
r=0

∂U(x, y, r)

∂x

∂U(x, y, k − r)

∂y
. (4.6)

The components of A(x, y, k) and B(x, y, k) can be calculated by using (4.5) and (4.6),
respectively.

From the relationship in (4.4), we obtain

u(x, y, 0) = (1 + t)exy,

u(x, y, 1) = −
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

u(x, y, 2) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy,

...

Then, the approximate series solution of Eqs. (4.1) and (4.2) can be expressed by

u(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
− ...

)
exy

= (Eα(−tα) + tEα,2(−tα)) exy, (4.7)
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where Eα(−tα) and Eα,2(−tα) are the Mittag-Leffler functions defined by Eqs. (2.4) and
(2.5).

Taking α = 2 in Eq. (4.7), the approximate series solution of Eqs. (4.1) and (4.2) has
the general pattern form which is coinciding with the following exact solution in terms of
infinite series

u(x, y, t) =

(
1 + t− t2

2!
− t3

3!
+

t4

4!
+

t5

5!
− ...

)
exy. (4.8)

So, the exact solution of Eqs. (4.1) and (4.2) in a closed form of elementary function
will be

u(x, y, t) = (cos t+ sin t) exy. (4.9)

The above expressions is exactly same as those given by the FRPSM [6].

1
1

1.5

1

u

(a)

x

0.5

t

2

0.5
0 0

1
1

2

1

u

(b)

x

0.5

t

3

0.5
0 0

1
1

2

1

u

(c)

x

0.5

t

3

0.5
0 0

1
1

2

1

u

(d)

x

0.5

t

3

0.5
0 0

Figure 1. The surface graph of the 3−term approximate solutions and
exact solution for Example 4.1 when y = 0.5: (a) u when α = 1.5, (b) u
when α = 1.75, (c) u when α = 2, and (d) u exact.
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Figure 2. The behavior of the exact solution and 3−term approximate
solutions for different values of α for Example 4.1 when x = y = 0.5.
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t/x, y 0.1 0.3 0.5 0.7
0.1 1.4226× 10−9 1.5411× 10−9 1.8085× 10−9 2.2991× 10−9

0.3 1.0648× 10−6 1.1535× 10−6 1.3536× 10−6 1.7208× 10−6

0.5 2.3382× 10−5 2.5330× 10−5 2.9725× 10−5 3.7787× 10−5

0.7 1.8000× 10−4 1.9499× 10−4 2.2882× 10−4 2.9089× 10−4

0.9 8.2963× 10−4 8.9872× 10−4 1.0547× 10−3 1.3407× 10−3

Table 1. Comparison of the absolute errors for the obtained results and
exact solution for Example 4.1, when n = 3 and α = 2.

Example 4.2. Let’s consider the following one dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t u = u2 ∂2

∂x2
(uxuxxuxxx) + u2

x

∂2

∂x2
(u3

xx)− 18u5 + u, 1 < α ≤ 2, (4.10)

with the initial conditions

u(x, 0) = ex, ut(x, 0) = ex, x ∈ ]0, 1[ . (4.11)

By applying the steps involved in the FEPDTM as presented in Section 3 to Eqs.
(4.10) and (4.11), we have

u(x, t) = ex + tex + E−1

[
vαE

[
u2 ∂2

∂x2
(uxuxxuxxx) + u2

x

∂2

∂x2
(u3

xx)− 18u5 + u

]]
.

According to the PDTM, we can construct the following iteration formula

U(x, 0) = (1 + t) ex,

U(x, k + 1) = E−1 [vαE [A(x, k) +B(x, k)− 18C(x, k) + U(x, k)]] , k ≥ 0, (4.12)

where A(x, k), B(x, k) and C(x, k) are transformed form of the nonlinear terms,

u2 ∂2

∂x2
(uxuxxuxxx),u

2
x

∂2

∂x2
(u3

xx) and u5, rerspectively, having the value

A(x, k) =

k∑
r=0

r∑
s=0

s∑
m=0

m∑
n=0

U(x, n)U(x,m− n)

× ∂2

∂x2

[
∂U(x, s−m)

∂x

∂2U(x, r − s)

∂x2

∂3U(x, k − r)

∂x3

]
, (4.13)

B(x, k) =

k∑
r=0

r∑
s=0

s∑
m=0

m∑
n=0

∂U(x, n)

∂x

∂U(x,m− n)

∂x

× ∂2

∂x2

[
∂2U(x, s−m)

∂x2

∂2U(x, r − s)

∂x2

∂2U(x, k − r)

∂x2

]
, (4.14)

C(x, k) =

k∑
r=0

r∑
s=0

s∑
m=0

m∑
n=0

U(x, n)U(x,m− n)U(x, s−m)U(x, r − s)U(x, k − r). (4.15)

The components of A(x, k), B(x, k) and C(x, k) can be calculated by using (4.13),
(4.14) and (4.15), respectively.
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From the relationship in (4.12), we obtain

U(x, 0) = (1 + t)ex,

U(x, 1) =

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

U(x, 2) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex,

...

Then, the approximate series solution of Eqs. (4.10) and (4.11) can be expressed by

u(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
ex

= (Eα(t
α) + tEα,2(t

α)) ex, (4.16)

where Eα(t
α) and Eα,2(t

α) are the Mittag-Leffler functions, defined by Eqs. (2.4) and
(2.5).

Taking α = 2 in Eq. (4.16), the approximate series solution of Eqs. (4.10) and (4.11)
has the general pattern form which is coinciding with the following exact solution in terms
of infinite series

u(x, t) =

(
1 + t+

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ ...

)
ex. (4.17)

So, the exact solution of Eqs. (4.10) and (4.11) in a closed form of elementary function
will be

u(x, t) = ex+t. (4.18)

The above expressions is exactly same as those given by the FRPSM [6].
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Figure 3. The surface graph of the 3−term approximate solutions and
exact solution for Example 4.2: (a) u when α = 1.5, (b) u when α = 1.75,
(c) u when α = 2, and (d) u exact.
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Figure 4. The behavior of the exact solution and 3−term approximate
solutions for different values of α for Example 4.2 when x = 0.5.

t/x, y 0.1 0.3 0.5 0.7
0.1 1.5572× 10−9 1.9019× 10−9 2.3230× 10−9 2.8373× 10−9

0.3 1.1688× 10−6 1.4276× 10−6 1.7436× 10−6 2.1297× 10−6

0.5 2.5810× 10−5 3.1525× 10−5 3.8504× 10−5 4.7029× 10−5

0.7 2.0036× 10−4 2.4472× 10−4 2.9890× 10−4 3.6507× 10−4

0.9 9.3372× 10−4 1.1404× 10−3 1.3929× 10−3 1.7013× 10−3

Table 2. Comparison of the absolute errors for the obtained results and
exact solution for Example 4.2, when n = 3 and α = 2.

Example 4.3. Let’s consider the following one dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t u = x2 ∂

∂x
(uxuxx)− x2(u2

xx)− u, 1 < α ≤ 2, (4.19)

with the initial conditions

u(x, 0) = 0, ut(x, 0) = x2, x ∈ ]0, 1[ . (4.20)

By applying the steps involved in the FEPDTM as presented in Section 3 to Eqs.
(4.19) and (4.20), we have

u(x, t) = tx2 + E−1

[
vαE

[
x2 ∂

∂x
(uxuxx)− x2(u2

xx)− u

]]
. (4.21)

According to the PDTM, we can construct the following iteration formula

U(x, 0) = tx2,

U(x, k + 1) = E−1

[
vαE

[
x2 ∂

∂x
A(x, k)− x2B(x, k)− U(x, k)

]]
, k ≥ 0, (4.22)
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where A(x, k) and B(x, k) are transformed form of the nonlinear terms, uxuxx and u2
xx,

rerspectively, having the value

A(x, k) =

k∑
r=0

∂U(x, r)

∂x

∂2U(x, k − r)

∂x2
, (4.23)

B(x, k) =

k∑
r=0

∂2U(x, r)

∂x2

∂2U(x, k − r)

∂x2
, (4.24)

The components of A(x, k) and B(x, k) can be calculated by using (4.23) and (4.24),
respectively.

From the relationship in (4.22), we obtain

U(x, 0) = tx2,

U(x, 1) = − tα+1

Γ(α+ 2)
x2,

U(x, 2) =
t2α+1

Γ(2α+ 2)
x2,

...

Then, the approximate series solution of Eqs. (4.20) and (4.22) can be expressed by

u(x, t) = x2

(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− ...

)
= x2 (tEα,2(−tα)) , (4.25)

where Eα,2(−tα) is the Mittag-Leffler function, defined by Eq. (2.4).
Taking α = 2 in Eq. (4.25), the approximate series solution of Eqs. (4.19) and (4.20)

has the general pattern form which is coinciding with the following exact solution in terms
of infinite series

u(x, t) = x2

(
t− t3

3!
+

t5

5!
− ...

)
. (4.26)

So, the exact solution of Eqs. (4.19) and (4.20) in a closed form of elementary function
will be

u(x, t) = x2 sin t. (4.27)

The above expressions is exactly same as those given by the FRPSM [6].

t/x 0.1 0.3 0.5 0.7
0.1 1.9839× 10−13 1.7855× 10−12 4.9596× 10−12 9.7209× 10−12

0.3 4.3339× 10−10 3.9005× 10−9 1.0835× 10−8 2.1236× 10−8

0.5 1.5447× 10−8 1.3903× 10−7 3.8618× 10−7 7.5692× 10−7

0.7 1.6229× 10−7 1.4606× 10−6 4.0574× 10−6 7.9524× 10−6

0.9 9.3840× 10−7 8.4456× 10−6 2.3460× 10−5 4.5982× 10−5

Table 3. Comparison of the absolute errors for the obtained results and
exact solution for Example 4.3, when n = 3 and α = 2.
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Figure 5. The surface graph of the 3−term approximate solutions and
exact solution for Example 4.3: (a) u when α = 1.5, (b) u when α = 1.75,
(c) u when α = 2, and (d) u exact.
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Figure 6. The behavior of the exact solution and 3−term approximate
solutions for different values of α for Example 4.3 when x = 0.5.

Remark 4.4. The numerical results (See Figures 1–6, and Tables 1–3), affirm that when
α approaches 2, our results obtained by the FEPDTM approach the exact solutions.

Remark 4.5. In this article, we only apply three terms to approximate the solutions,
if we apply more terms of the approximate solutions, the accuracy of the approximate
solutions will be greatly improved.

5. Conclusion

In this article, the fractional Elzaki projected differential transform method (FEPDTM)
has been successfully applied to study the solutions of nonlinear time-fractional wave-like
equations with variable coefficients .The results show that the FEPDTM is an efficient
and easy to use technique for finding approximate series solutions for these equations.
The obtained approximate series solutions using the suggested method is in excellent
agreement with the exact solution. This confirms our belief that the efficiency of our
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technique gives it much wider applicability for general classes of linear and nonlinear
fractional partial differential equations.

Acknowledgments

The authors are very grateful to the guest editors of this special issue and would like
to express their sincere thanks to the referees for the careful and noteworthy reading of
the paper and for their constructive comments and suggestions which are improved the
paper substantially.

References

[1] D. Das, R.K. Bera, Generalized Differential Transform Method for non-linear Inho-
mogeneous Time Fractional Partial differential Equation, International Journal of
Sciences & Applied Research 4(7)(2017) 71–77.

[2] S. Das, P.K. Gupta, Homotopy analysis method for solving fractional hyperbolic
partial differential equations, Int. J. Comput. Math. 88(3)(2011) 578–588.

[3] T. M. Elzaki, The New Integral Transform ”ELzaki Transform”, Global Journal of
Pure and Applied Mathematics 7(1)(2011) 57–64.

[4] M. Hamdi Cherif, K. Belghaba, D. Ziane, Homotopy Perturbation Method For Solv-
ing The Fractional Fisher’s Equation, International Journal of Analysis and Appli-
cations 10(1)(2016) 9–16.

[5] A. Khalouta, A. Kadem, A New Representation of Exact Solutions for Nonlinear
Time-Fractional Wave-Like Equations with Variable Coefficients, Nonlinear Dyn.
Syst. Theory 19(2)(2019) 319–330.

[6] A. Khalouta, A. Kadem, An efficient method for solving nonlinear time-fractional
wave-like equations with variable coefficients, Tbilisi Math. J. 12(4)(2019) 131–147.

[7] A. Khalouta, A. Kadem, A new numerical technique for solving Caputo time-
fractional biological population equation, AIMS Mathematics 4(5)(2019) 1307–1319.

[8] A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional Dif-
ferential equations, Elsevier, North-Holland, 2006.

[9] B. Jang, Solving linear and nonlinear initial value proplems by the projected differ-
ential transform method, Comput. Phys. Commun. 181(2010) 848–854.

[10] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional
Differential Equations, John Wiley and Sons, Inc, New York, 1993.

[11] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York,
1974.

[12] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[13] I. Podlubny, Geometric and physical interpretation of fractional integration and frac-

tional differentiation, Fractional Calculus and Applied Analysis 5(2002) 367–386.
[14] A.M. Shukur, Adomian Decomposition Method for Certain Space-Time Fractional

Partial Differential Equations, IOSR Journal of Mathematics, 11(1)(2015) 55–65.
[15] B.K. Singh, P. Kumar, Fractional Variational Iteration Method for Solving Frac-

tional Partial Differential Equations with Proportional Delay. International Journal
of Differential Equations (2017) 1–11.


	Introduction
	Definition and preliminaries
	Fractional calculus
	Elzaki transform
	Elzaki transform for fractional derivative

	FEPDTM for nonlinear time-fractional wave-like equations
	Applications
	Conclusion

