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Abstract Inductive Logic Programming (ILP) is a field of study focusing developing machine learning

algorithms using logic programming to describe examples and hypotheses. This makes ILP techniques

capable to deal with relational data, i.e. non-vector data. To learn from ILP data, an algorithm must

be able to handle non-linear data. Hypotheses generated from ILP techniques are in form of Horn

clauses, which can be interpreted by human. This is a benefit over conventional learning algorithms that

generate black-box hypotheses or classification models. Nevertheless, learning algorithms used by ILP

techniques are based on covering algorithms. It requires high computational power to generate appropriate

hypotheses from a set of examples. We propose a distance metric for ILP datasets. Incorporating distances

between examples in the hypothesis generation helps improve the performance of an ILP system. We

also propose distance-based kernel functions for ILP datasets based on the distance metric. The kernel

functions allow us to improve a hypothesis construction algorithm for ILP systems. To evaluate our

proposed technique, we conduct experiments on real-world ILP datasets. The results show that the

proposed technique outperforms the existing techniques.
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1. Introduction

Logic programming provides means for representing knowledge and multi-relational
data by using First-Order Logic (FOL). It has advantages over propositional data repre-
sentation, i.e. data in the vector form, in term of information expressiveness. It allows
us to represent datasets composing of multiple data types as well as relationships among
them. For example, structures of chemical compounds cannot be represented in form
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of vectors without losing information since relationships among atoms that forms each
compound cannot be effectively represented using a vector. But, they can be represented
by logic programming using two predicate symbols, i.e. atom to denote an atom in a
compound with its properties and bond to denote a bond connecting two atoms including
its properties. Other predicates can be introduced to denote substructures of a compound
such as an aromatic ring.

Inductive Logic Programming (ILP) [11] is a subfield of machine learning focusing
on developing learning techniques using logic programming as the data representation
and generating classification models in form of Horn clauses. Therefore, the constructed
hypotheses can be comprehended by human. This is a benefit over existing conventional
learning techniques that generate typically black-box classification models. Until now, a
number of ILP systems have been developed and applied to various application domains.
However, the algorithms used in most ILP systems are based on searching and covering
algorithms. Advanced optimization techniques developed for the propositional learning
cannot applied due to the difference in data representation. This therefore limits the
predictive performance of the hypotheses constructed by ILP systems.

In this paper, we propose a novel distance function for ILP datasets called the ‘four-
layer (4L) distance’. We prove that the proposed 4L distance is a metric. We then propose
distance-based kernel functions for ILP datasets from the 4L distance. We can then apply
learning techniques developed for the propositional learning, i.e. k-Nearest Neighbors (k-
NN) and Support Vector Machines (SVM) on ILP datasets. This yields highly accurate
classification models that outperforms models constructed by existing ILP systems.

Definition 1.1. A positive real-valued function d : X × X → [0,∞) is a metric if it
satisfies the following properties:

(1) d(x, y) = 0 if and only if x = y (Coincidence axiom)
(2) d(x, y) = d(y, x) (Symmetry)
(3) d(x, z) + d(z, y) ≥ d(x, y),∀z ∈ X (Triangular Inequality)

2. Related Works

Bisson [2] proposes a similarity function for FOL objects that is a weighted sum of
similarities between predicates and their arguments. This function is therefore defined
recursively since an argument of a predicate can refer to an FOL object. Bisson has shown
that calculating a similarity based on the function is equivalent to solving a system of
linear equations. However, the similarity is defined as a product of value-based similarities.
This may cause a similarity to be 0 when one of similarities is 0. It therefore causes a
loss of information.

RIBL [4] is a variant of the non-metric similarity function proposed by Bisson. Since
RIBL is not a recursive function, a similarity can be computed without iterations. Thus,
it improves computation time.

Ramon and Bruynooghe [14] propose a distance function for FOL objects called ‘RB
distance’. They also shows that the RB distance function satisfies the metric properties.
The RB distance considers each FOL object as a set of predicates. However, it does not
take into account the multi-level structure of the FOL objects.

Tobudic and Widmer [16] propose a distance function called ‘DISTALL’. It extends
RIBL to support multi-level structure in FOL objects. The distance is computed as the
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solution of the maximum flow, minimum weight problems on sets of predicates where a
weight is set to be a Manhattan distance between two predicates. This concept allows
DISTALL to capture structural and semantic information of FOL objects. However,
DISTALL does not satisfy the metric properties.

Gärtner et al. [7] propose a kernel function for structured data which includes FOL
objects. It can be used to compute a similarity between two FOL objects. However, the
function does not satisfy the coincidence axiom.

De Raedt and Ramon [13] propose a distance metric based on the generality ordering
between objects. Therefore, a generality ordering need to be defined for FOL objects
before we can apply this distance function. However, it is not trivial to define an ordering
based on the semantics of the objects..

A number of functions have been proposed to measure a distance between two predi-
cates [5, 12, 15] based on vector-based distance functions, e.g. Manhattan and Euclidean
distances. Since an FOL object is a set of predicates, these functions cannot be directly
applied to measure a distance between two objects.

A distance between two FOL objects can be computed by first transforming the two
FOL objects into their equavalent vectors and applying existing distance functions for the
distance computation. Propositionalization is a technique to transform an FOL object
into a vector. A number of propositionalization techniques have been proposed, e.g.
Linus [10] and RRC [1]. However, the obtained vectors cannot represent all information
provided by FOL objects. It is therefore not possible to perform a propositionalization
process without information loss.

3. Main Results

The proposed 4L distance function is inspired by the Euclidean distance. Each predi-
cate symbol is regarded as a dimension. The 4L distance of two objects is computed by
combining distances from 4 layers, i.e. (1) distance between arguments in the same rank
of two predicates, (2) distance between two predicates, (3) distance between two pred-
icate symbols, and (4) distance between two FOL objects. To avoid a loop in distance
calculation, the structure of FOL objects must be directed acyclic.

Definition 3.1. Suppose X and Y are two FOL objects whose properties are represented
in a multi-level structure database C. The objects X and Y are sets of FOL predicates.
The 4L distance is defined as follows:

Layer 1:: The Four-layer Distance between two FOL objects: The dis-
tance between X and Y is defined as

D(X,Y ) =

√√√√√
∑
r∈Ω

(Dr(X,Y ))
2

|Ω|
,

where Ω is the set of predicate symbols of predicates in C, and Dr(·, ·) is the
distance between two FOL objects with respect to a predicate r, is defined below.
Layer 2:: Distance between two FOL objects with respect to a predi-

cate symbol r: Suppose there are p predicates in X with the predicate symbol
r, and q predicates in Y with the predicate symbol r, then the r-distance between
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a set X and a set Y is

Dr(X,Y ) =



max{
maxpk=1 minqj=1 dr(X

rk , Y rj ),

maxqj=1 minpk=1 dr(X
rk , Y rj )

}, if p, q ̸= 0

1, if p ̸= 0, q = 0,

or p = 0, q ̸= 0

0, if p = q = 0

where dr(·, ·), the distance of predicates with respect to a predicate symbol r,
is defined below.This distance function preserves the symmetry and triangle in-
equality properties. This layer of distance calculation is a modified Hausdorff
distance.
Layer 3:: Distance of predicates with respect to a predicate symbol

r: Suppose Xr = r(x1, x2, · · · , xn) ∈ X and Y r = r(y1, y2, · · · , yn) ∈ Y are
two predicates with the same predicate symbol r. The distance function of two
predicates with the same predicate symbol r is defined as

dr(X
r, Y r) =

√√√√√ n∑
i=1

(δr,i(xi, yi))
2

n
,

where δr,i(·, ·), the distance of arguments with respect to a predicate symbol r
and rank i, is defined below.
Layer 4:: Distance of arguments with respect to a predicate symbol r

and rank i: SupposeXr = r(x1, x2, · · · , xn) ∈ X and Y r = r(y1, y2, · · · , yn) ∈ Y
are two predicates with the same predicate symbol r. The distance between xi

and yi is defined as

δr,i(xi, yi) =


0 if xi = yi,
1 if xi ̸= yi, and xi /∈ R or yi /∈ R,
|xi − yi|
max(r, i)

if xi ̸= yi and xi, yi ∈ R.

D(xi, yi) if xi ̸= yi and xi, yi are FOL sets.

where max(r, i) is the maximum difference of all pairs of arguments in the rank
i of predicates with the predicate symbol r, ranging over C, and D(xi, yi) is the
four-layer distance between sets xi and yi as defined in Layer 1 with Ω(r,i), the
set of all predicate symbols that contains in set arguments in rank i of predicate
symbol r.

We first prove that the 4L distance function, defined in 3.1, is a metric in a single-level
structure where all arguments are treated as strings or numbers. Let

∆r,i(xi, yi) =


0 if xi = yi,
1 if xi ̸= yi, and xi /∈ R or yi /∈ R,
|xi − yi|
max(r, i)

if xi ̸= yi and xi, yi ∈ R.

This means that ∆r,i(xi, yi) = δr,i(xi, yi) in the setting where arguments are not sets.
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Proposition 3.2. The function ∆r,i is a metric.

Proof. Notice that max(r, i) ≥ |xi−yi|,∀xi, yi, by its definition. Thus it can be seen that
0 ≤ ∆r,i(xi, yi) ≤ 1.

Directly from its definition, ∆r,i satisfies property 1 and 2 of being a metric. Remaining
to prove is the triangular inequality property. Let zi be an argument in rank i of an
predicate with the predicate symbol r.

Case 1 xi, yi /∈ R:: ,
If: zi ∈ R, then ∆r,i(xi, zi) + ∆r,i(zi, yi) = 2 > 1 ≥ ∆r,i(xi, yi)
If: zi /∈ R, then ∆r,i is the discrete metric which satisfies the triangular

inequality.
Case 2 xi, yi ∈ R:: ,

If: zi ∈ R, then ∆r,i(xi, zi) =
|xi − yi|
max(r, i)

is a metric in R because max(r, i)

is a fixed constant. Hence the triangular inequality is satisfied.
If: zi /∈ R, ∆r,i(xi, zi) + ∆r,i(zi, yi) = 2 > 1 ≥ ∆r,i(xi, yi)

Case 3 xi /∈ R, yi ∈ R:: ,
If: zi ∈ R, ∆r,i(xi, zi) + ∆r,i(zi, yi) = 1 +∆r,i(zi, yi) ≥ 1 = ∆r,i(xi, yi)
If: zi /∈ R, ∆r,i(xi, zi) + ∆r,i(zi, yi) = ∆r,i(xi, zi) + 1 ≥ 1 = ∆r,i(xi, yi)

Proposition 3.3. The function d′r, defined below, is a metric.

d′r(X
r, Y r) =

√√√√√ n∑
i=1

(∆r,i(xi, yi))
2

n
,

Proof. : We have,

0 ≤ ∆r,i(xi, yi) ≤ 1⇒≤ (∆r,i(xi, yi))
2 ≤ 1

⇒
n∑

i=1

(∆r,i(xi, yi))
2 ≤ n

⇒ 0 ≤ dr(X
r, Y ) ≤ 1.

From Proposition 3.2, the distance ∆r,i is a metric. It can be seen that dr satisfies the
symmetry property. Yet again, the triangular inequality property must be proven in this
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case. Notice that:√√√√ n∑
i=1

(∆r,i(xi, zi))
2
+

√√√√ n∑
i=1

(∆r,i(zi, yi))
2

2

=

n∑
i=1

(∆r,i(xi, zi))
2
+

n∑
i=1

(∆r,i(zi, yi))
2
+

2

√√√√( n∑
i=1

(∆r,i(xi, zi))
2

)(
n∑

i=1

(∆r,i(zi, yi))
2

)

≥
n∑

i=1

(∆r,i(xi, zi))
2
+

n∑
i=1

(∆r,i(zi, yi))
2
+

2

√√√√( n∑
i=1

∆r,i(xi, zi)∆r,i(zi, yi)

)2

(3.1)

=

n∑
i=1

(∆r,i(xi, zi))
2
+

n∑
i=1

(∆r,i(zi, yi))
2
+

2

(
n∑

i=1

∆r,i(xi, zi)∆r,i(zi, yi)

)

=

n∑
i=1

(
(∆r,i(xi, zi))

2
+ (∆r,i(zi, yi))

2
+ 2∆r,i(xi, zi)∆r,i(zi, yi)

)
=

n∑
i=1

(∆r,i(xi, zi) + ∆r,i(zi, yi))
2

≥
n∑

i=1

(∆r,i(xi, yi))
2

(3.2)

Note that (3.1) comes from the Cauchy-Schwarz inequality, and (3.2) comes from Propo-
sition 3.2. Hence, d′r(X

r, Zr) + d′r(Z
r, Y r) ≥ d′r(X

r, Y r) as desired.

Proposition 3.4. The function D′
r, defined below, is a metric.

D′
r(X,Y ) =



max{
maxpk=1 minqj=1 d

′
r(X

rk , Y rj ),

maxqj=1 minpk=1 d
′
r(X

rk , Y rj )

}, if p, q ̸= 0

1, if p ̸= 0, q = 0,

or p = 0, q ̸= 0

0, if p = q = 0

Proof. From Proposition 3.3, it is easy to see that 0 ≤ D′
r(X,Y ) ≤ 1.
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It suffices to only show that D′
r(X,Y ) satisfies the triangular inequality since the

symmetry property is easily derived from its definition.
Let Z be an object. Thus Z is a set of FOL predicates. Suppose that there are m

predicates in Z with predicate symbol r.

If: p, q,m ̸= 0, then D′
r is simply the Hausdorff metric.

If: p, q ̸= 0,m = 0, then D′
r(X,Z) +D′

r(Z, Y ) = 2 ≥ D′
r(X,Y ).

If: p ̸= 0, q = m = 0, then D′
r(X,Z) +D′

r(Z, Y ) = 1 + 0 = 1 = D′
r(X,Y ).

If: p, q,m = 0, then D′
r(X,Z) +D′

r(Z, Y ) = 0 = D′
r(X,Y ).

Theorem 3.5. The function D′, defined below, is a metric.

D′(X,Y ) =

√√√√√
∑
r∈Ω

(D′
r(X,Y ))

2

|Ω|
,

where Ω is the set of predicate symbols of predicates

Proof. Because of its definition, along with Proposition 3.4, one can see that 0 ≤ D′
r(X,Y ) ≤

1.
We will now prove all three properties of a metric for D′(X,Y )

(1) Coincidence axiom:
(⇐) Suppose that X = Y . This means that X and Y are the same set. Therefore
all predicates in both sets are the same which means that D′

r(X,Y ) = 0 for all
r ∈ Ω. Hence D′(X,Y ) = 0
(⇒) Suppose that D′(X,Y ) = 0. Let Xr = r(x1, · · · , xn) ∈ X and Y r =
r(y1, · · · , yn) ∈ Y . Proof by contradiction, suppose also that X ̸= Y

X ̸= Y ⇒ ∃Xr ∈ X, ∀Y r ∈ Y : Xr ̸= Y r, for some r ∈ Ω

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : xi ̸= yi, for some rank i

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : ∆(xi, yi) > 0, for some rank i

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : d′r(X
r, Y r) > 0, for some r ∈ Ω

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : D′
r(X

r, Y r) > 0, for some r ∈ Ω

⇒ D′(X,Y ) > 0,

which leads to a contradiction.
(2) Symmetry:

D′(X,Y ) =

√√√√√
∑
r∈Ω

(D′
r(X,Y ))

2

|Ω|
=

√√√√√
∑
r∈Ω

(D′
r(Y,X))

2

|Ω|
= D′(Y,X).
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(3) Triangular Inequality: Suppose that Z is another set. The following proof is
similar to that of Proposition 3.3. First notice that√∑

r∈Ω

(D′
r(X,Z))

2
+

√∑
r∈Ω

(D′
r(Y, Z))

2

2

=
∑
r∈Ω

(D′
r(X,Z))

2
+
∑
r∈Ω

(D′
r(Y, Z))

2
+

2

√√√√(∑
r∈Ω

(D′
r(X,Z))

2

)(∑
r∈Ω

(D′
r(Y, Z))

2

)

≥
∑
r∈Ω

(D′
r(X,Z))

2
+
∑
r∈Ω

(D′
r(Y, Z))

2
+

2

√√√√(∑
r∈Ω

D′
r(X,Z)D′

r(Y, Z)

)2

(3.3)

=
∑
r∈Ω

[
(D′

r(X,Z))
2
+ (D′

r(Y, Z))
2
+ 2D′

r(X,Z)D′
r(Y, Z)

]
=
∑
r∈Ω

[D′
r(X,Z) +D′

r(Y, Z)]
2

≥
∑
r∈Ω

[D′
r(X,Y )]

2
(3.4)

Note that (3.3) comes from the Cauchy-Schwarz inequality and (3.4) comes from
Proposition 3.4. Hence, D′(X,Z) +D′(Z, Y ) ≥ D′(X,Y ) as desired.

Theorem 3.6. The four-layer distance function is a metric on a directed acyclic FOL
dataset.

Proof. Proof by induction: We prove that the four-layer distance function is a metric for
a multi-level structure.
Base Case: The base case is a single-level structure, which is proved in Theorem 3.5.
Inductive Step: Induction Hypothesis: Assume that the 4L distance function is a met-
ric for up to an n-level structure.

It remains to prove that D is a metric for an (n+ 1)-level structure which means that
we have to prove that D is also a metric when one more level is added to the calculation.

Notice that

δr,i(xi, yi) =

{
∆r,i(xi, yi) if xi, yi are not both sets
D(xi, yi) if xi, yi are both sets.

where ∆r,i is the same function as in Proposition 3.2.

(1) Coincidence axiom:
(⇐) Suppose that X = Y . This means that X and Y are the same set. Therefore
all predicates in both sets are the same which means that Dr(X,Y ) = 0 for all
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r ∈ Ω. Hence, D(X,Y ) = 0
(⇒) Suppose that D(X,Y ) = 0. Let Xr = r(x1, · · · , xn) ∈ X and Y r =
r(y1, · · · , yn) ∈ Y . Proof by contradiction: suppose also that X ̸= Y

X ̸= Y ⇒ ∃Xr ∈ X, ∀Y r ∈ Y : Xr ̸= Y r, for some r ∈ Ω

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : xi ̸= yi, for some rank i

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : D(xi, yi) > 0, if xi, yi are both sets, or, (3.5)

∃Xr ∈ X, ∀Y r ∈ Y : ∆r,i(xi, yi) > 0, if xi, yi are not both sets.

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : δ(xi, yi) > 0, for some rank i

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : dr(X
r, Y r) > 0, for some r ∈ Ω

⇒ ∃Xr ∈ X, ∀Y r ∈ Y : Dr(X
r, Y r) > 0, for some r ∈ Ω

⇒ D(X,Y ) > 0,

which leads to a contradiction. Note that the line (3.5) is by the Induction
Hypothesis.

(2) Symmetry: First, we prove the symmetry property of dr(X
r, Y r):

Without loss of generality, suppose that xi and yi are sets. For all 1 ≤ i ≤ k ≤ n,
at most one of xj , yj is a set for k + 1 ≤ j ≤ n. This means that

dr(X
r, Y r) =

√√√√√ n∑
i=1

(δr,i(xi, yi))
2

n

=

√√√√√√
k∑

i=1

(D(xi, yi))
2
+

n∑
j=k+1

(∆r,i(xj , yj))
2

n
,

=

√√√√√√
k∑

i=1

(D(yi, xi))
2
+

n∑
j=k+1

(∆r,i(yj , xj))
2

n

=

√√√√√ n∑
i=1

(δr,i(yi, xi))
2

n
= dr(Y

r, Xr). (3.6)

Hence, similar to the proof of Proposition 3.4 and Theorem 3.5,

D(X,Y ) =

√√√√√
∑
r∈Ω

(Dr(X,Y ))
2

|Ω|
=

√√√√√
∑
r∈Ω

(Dr(Y,X))
2

|Ω|
= D(Y,X).

(3) Triangular inequality property: First, we prove the triangular inequality prop-
erty of dr(X

r, Y r):
Without loss of generality, suppose that xi and yi are sets. For all 1 ≤ i ≤ k ≤ n,
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at most one of xj , yj is a set for k + 1 ≤ j ≤ n. This means that

dr(X
r, Y r) =

√√√√√ n∑
i=1

(δr,i(xi, yi))
2

n

=

√√√√√√
k∑

i=1

(D(xi, yi))
2
+

n∑
j=k+1

(∆r,i(xj , yj))
2

n
,

dr(X
r, Zr) =

√√√√√ n∑
i=1

(δr,i(xi, zi))
2

n

=

√√√√√√
k∑

i=1

(D(xi, zi))
2
+

n∑
j=k+1

(∆r,i(xj , zj))
2

n
,

dr(Z
r, Y r) =

√√√√√ n∑
i=1

(δr,i(zi, yi))
2

n

=

√√√√√√
k∑

i=1

(D(zi, yi))
2
+

n∑
j=k+1

(∆r,i(zj , yj))
2

n
.

Notice that,√√√√ n∑
i=1

(δr,i(xi, zi))
2
+

√√√√ n∑
i=1

(δr,i(zi, yi))
2

2

=

√√√√ k∑
i=1

(D(xi, zi))
2
+

n∑
j=k+1

(∆r,i(xj , zj))
2
+

√√√√ k∑
i=1

(D(zi, yi))
2
+

n∑
j=k+1

(∆r,i(zj , yj))
2

2

=

 k∑
i=1

(D(xi, zi))
2
+

n∑
j=k+1

(∆r,i(xj , zj))
2

 +

 k∑
i=1

(D(zi, yi))
2
+

n∑
j=k+1

(∆r,i(zj , yj))
2


+ 2

√√√√( k∑
i=1

(D(xi, zi))
2 +

n∑
j=k+1

(∆r,i(xj , zj))
2
)( k∑

i=1

(D(zi, yi))
2 +

n∑
j=k+1

(∆r,i(zj , yj))
2
)

≥
( k∑

i=1

(D(xi, zi))
2
+

n∑
j=k+1

(∆r,i(xj , zj))
2
)
+

( k∑
i=1

(D(zi, yi))
2
+

n∑
j=k+1

(∆r,i(zj , yj))
2
)

+ 2

√√√√√
 k∑

i=1

D(xi, zi)D(zi, yi) +
n∑

j=k+1

∆r,i(xj , zj)∆r,i(zj , yj)

2

(3.7)
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=
( k∑

i=1

(D(xi, zi))
2
+

n∑
j=k+1

(∆r,i(xj , zj))
2
)
+

( k∑
i=1

(D(zi, yi))
2
+

n∑
j=k+1

(∆r,i(zj , yj))
2
)

+ 2

 k∑
i=1

D(xi, zi)D(zi, yi) +
n∑

j=k+1

∆r,i(xj , zj)∆r,i(zj , yj)


=

k∑
i=1

(
(D(xi, zi))

2
+ (D(zi, yi))

2
+ 2D(xi, zi)D(zi, yi)

)

+
n∑

j=k+1

(
(∆r,i(xj , zj))

2
+ (∆r,i(zj , yj))

2
+ 2∆r,i(xj , zj)∆r,i(zj , yj)

)

=

k∑
i=1

(D(xi, zi) + D(zi, yi))
2
+

n∑
j=k+1

(∆r,i(xj , zj) + ∆r,i(zj , yj))
2

≥
k∑

i=1

(D(xi, yi))
2
+

n∑
j=k+1

(∆r,i(xj , yj))
2

(3.8)

=
n∑

i=1

(∆r,i(xi, yi))
2

Note that (3.7) comes from the Cauchy-Schwarz inequality and (3.8) is valid
because of the induction hypothesis and Proposition 3.2. Hence

dr(X
r, Zr) + dr(Z

r, Y r) ≥ dr(X
r, Y r).

The rest of the proof of the triangular inequality of D is similar to the proof of
D′ in Theorem 3.5.

Thus, D is also a metric when one level is added to the calculation. This means that the
case n+ 1 is also valid. Therefore, by induction, D is a metric for all n-level deep.

Algorithm 1 shows how to calculate a 4L distance between two FOL objects.

Definition 3.7. A kernel k : C × C → R is a real-valued function taking a cartesian
product of elements in C and returns a real value. If k is positive definite, there exists a
map ϕ that isometically embeds C into a Hilbert space H such that

⟨ϕ(X), ϕ(Y )⟩ = k(X,Y )

The positive definite property of a kernel is required by SVM learning algorithm in
order to secure the maximal margin in the Hilbert space H.

Definition 3.8. A distance-based kernel is a kernel created from a distance metric d,
such that

d(X,Y ) = ∥ϕ(X)− ϕ(Y )∥H

From definition 3.8, we define a kernel function as:

k(X,Y ) = kO(X,Y )

=
1

2

(
D(X,Y )2 −D(X,O)2 −D(Y,O)2

)
(3.9)

where D(X,Y ) is the 4L distance, and O is a fixed object in a dataset C.
Notice that
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Algorithm 1 Four-Layer Distance

1: Input: a set of predicates C, and a set of FOL objects (sets) I
2:

3: S ← empty stack
4: function D(X,Y, r, i)
5: Ω← PredicateSymbols(C, r, i)
6: if X = Y then
7: return 0
8: else
9: Push(S, ⟨X,Y ⟩)

10: s←
√(∑

r∈Ω(D(r,X, Y )2)
)
/|Ω|

11: Pop(S)
12: return s
13: end if
14: end function
15:

16: function Dr(r,X, Y )
17: P ← FindPredicatesBySet(X, r)
18: Q← FindPredicatesBySet(Y, r)
19: if |P | = |Q| = 0 then
20: return 0
21: else if (|P | ̸= 0 ∧ |Q| = 0) ∨ (|P | = 0 ∧ |Q| ̸= 0) then
22: return 1
23: else
24: return Hausdorff(dr, P,Q)
25: end if
26: end function
27:

28: function d(r, (X,x1, x2, . . . , xn), (Y, y1, y2, . . . , yn))

29: return
√(∑n

i=1 δr,i(xi, yi)2
)
/n

30: end function

∥ϕ(X)− ϕ(Y )∥2H = ⟨ϕ(X)− ϕ(Y )⟩⟨ϕ(X)− ϕ(Y )⟩
= ⟨ϕ(X), ϕ(X)⟩ − 2⟨ϕ(X), ϕ(Y ) + ⟨ϕ(Y ), ϕ(Y )⟩

=

(
1

2

(
D(X,X)2 −D(X,O)2 −D(X,O)2

))
−

2

(
1

2

(
D(X,Y )2 −D(X,O)2 −D(Y,O)2

))
+(

1

2

(
D(Y, Y )2 −D(Y,O)2 −D(Y,O)2

))
= D(X,Y )2.
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31: function δ(r, i, x, y)
32: if x = y then
33: return 0
34: else if either x or y is a Set then
35: return ∆(r, i, x, y)
36: else if both x and y is a Set then
37: return D(x, y, r, i)
38: end if
39: end function
40:

41: function ∆(r, i, x, y)
42: if x = y then
43: return 0
44: else if x ̸= y ∧ (x ̸∈ R ∨ y ̸∈ R) then
45: return 1
46: else
47: return |x− y|/max(r, i)
48: end if
49: end function

Haasdonk and Bahlmann [8] present a variant of kernel functions that can be con-
structed from a distance function. Following the presented kernel functions, we create
the following kernel functions from the 4L distance:

(1) The 4L distance-based simple linear kernel:

klin4L (X,Y ) =
1

2

(
D(X,Y )2 −D(X,O)2 −D(Y,O)2

)
where O is a fixed object in a dataset C.

(2) The 4L distance-based negative-distance kernel:

knd4L(X,Y ) = −
(
D(X,Y )2

)
.

(3) The 4L distance based polynomial kernel:

kpol4L (X,Y ) =
(
1 + γ

(
D(X,Y )2 −D(X,O)2 −D(Y,O)2

))p
where γ ∈ R+ and p ∈ N.

(4) The 4L distance-based Gaussian kernel:

kgs4L(X,Y ) = e−γD(X,Y )2

where γ ∈ R+.

The 4L kernels are not necessarily positive definite functions because the 4L distance
function is not conditionally positive definite on some datasets. However, a positive
semidefinite kernel matrix is necessary for the SVM learning algorithm. Wu et al. [17]
propose shift spectrum transformation that transforms a indefinite kernel matrix into a
positive semidefinite one. The transformation is done by
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Table 1. The datasets used in the experiments

Name #Examples #Predicates
Mutagenesis 188 14,147
Alz amine 686 987
Alz toxic 886 1,187
Alz acetyl 1,326 1,627
Alz memory 642 943
NCI GI50 BT549 2,778 134,578
DSSTox NCTRER 232 9,285
DSSTox CPDBAS 788 23,366

K̃ = U Λ̃UT = U(Λ + ηI)UT = K + ηI

where K is an indefinite kernel matrix. Wu et al. also show that if η is greater than |λN |,
where λ ≥ λN for all eigenvalues λ of K, then K̃ is positive semidefinite.

4. Experiments

We conduct experiments to evaluate the proposed 4L distance and 4L kernels using
real-world ILP datasets, i.e. Mutegenesis [3], Alzheimer [9], NCI GI50 BT549, EPA’s
DSSTox NCTRER [6] and EPA’s DSSTox CPDBAS. Table 1 shows the number of FOL
objects and predicates in each dataset.

We compare the performance of our proposed 4L distance function using k-NN. The
performances of the 4L-kernels are evaluated by SVM. We compare the results with the
existing distance and kernel functions for FOL objects, i.e. structured data kernel (SK),
RB distance (RB), DISTALL (DT), and RIBL.

The experiments are conducted using the nested cross validation technique using 10-
fold cross validation in both inner and outer loop. We conduct the grid search in order
to find the best combination of hyperparameter values. Table 2 shows the values of the
hyperparameters used in the experiments. For each dataset and a kernel function, if the
Gram matrix is indefinite, we apply the shift spectrum transformation with η = |λN |
where λN is the minimum eigenvalue.

Table 2. Ranges of hyperparameter values using the grid search

Alg. Hyperparameter Values
k-NN The number of neighbors (k) 1 . . . 30
SVM Types of kernel functions linear, gaussian, polynomial, negative

Penalty of errors (C) 10−2, 10−1, 1, 101, 102, 103, 104, 105,
106

Degree of the polynomial kernel 2, 3, 4, 5, 6
Kernel coefficient (γ) for polynomial &
Gaussian kernels)

10−3, 10−2, 10−1, 1, 101, 102, 103

Table 3 shows the experimental results. Our proposed 4L distance and kernels outper-
forms the existing techniques when used the same way. The k-NN using the 4L distance
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performs the best on Mutagenesis and BT549 datasets. SVM with non-linear kernels
yield the highest accuracy for all Alz subdatasets, NCTRER, and CPDBAS datasets.

Table 3. Experimental results

Alg. Dist. Mutag Alz
amine

Alz
choline

Alz
schopo

Alz toxic BT549 NCT
RER

CPD
BAS

kNN 4L 87.34% 92.86% 88.46% 86.92% 93.79% 63.03% 63.77% 63.96%

RB 82.98% 87.19%† 83.86%† 75.08%† 89.73%† 49.43%† 43.88%† 51.66%†

DK 66.61%† 81.21%† 83.26%† 77.41%† 88.71%† 47.63%† 59.93% 52.80%†

DT 24.42%† 73.18%† 81.22%† 66.81%† 78.44%† 49.46%† 41.70%† 51.52%†

RIBL 43.77%† 32.07%† 39.30%† 54.19%† 39.96%† 49.82%† 37.05%† 46.84%†

SVM 4L 85.23% 96.80% 96.15% 92.05% 98.65% 61.95% 68.12% 65.86%

RB 86.20% 93.74%† 85.90%† 80.53%† 95.26%† 60.40% 60.81% 57.36%†

DK 63.30%† 93.31%† 94.42%† 87.07%† 97.40%† 58.89%† 60.78%† 57.11%†

DT 66.61%† 75.08%† 84.16%† 65.11%† 72.81%† 61.01% 59.98% 50.77%†

RIBL 66.61%† 45.04%† 60.11%† 51.07%† 44.25%† 61.77% 50.89%† 57.36%†

Note: † indicates that the result is significantly different from the best result with p = 0.05.

In Alz subdatasets, 4L kernels outperform other techniques significantly since each Alz
subdataset contains 21 predicate symbols. In datasets with lower numbers of predicate
symbols such as BT549, or Mutagenesis, the proposed 4L techniques still outperform
others, but not as significantly as in higher dimension datasets. These results show that
proposed 4L kernels perform better with datasets with high numbers of predicate symbols.
This validates the concept of “dimension”, which the proposed 4L distance function is
based on. Existing techniques are based on measuring differences between all predicates,
regardless of their predicate symbols. Since 4L techniques perform significantly better in
datasets with more predicate symbols than the rest, the results suggests that differences
among predicates with the same predicate symbols (dimensions) reveal more distinctions
between two FOL objects than measuring all predicates without considering dimensions.

5. Conclusion

We create a novel distance function to measure the difference between FOL objects,
called the four-layer (4L) distance function. Each predicate symbol is viewed as a dimen-
sion of a space. The first three layers of distance calculations are performed to measure
the difference of two FOL objects with respect to a predicate symbol. These distances in
all dimensions (predicate symbols) are combined in the last layer to yield the distance be-
tween two objects. This also supports multi-level structure datasets. In the experiment,
we employ the 4L distance with the k-NN algorithm. We also create distance-based kernel
functions from the 4L distance for SVM. The proposed techniques outperform existing
techniques ([7], [14],[16], [4]) in datasets Mutagenesis [3], Alzheimer [9], NCI GI50 BT549,
EPA’s DSSTox NCTRER dataset [6], and EPA’s DSSTox CPDBAS dataset. The results
show that the techniques using 4L distance and kernels perform well for both linear and
non-linear datasets. Moreover, the proposed techniques operate well on datasets with
higher number of predicate symbols that endorse the concept of dimensions. Since the 4L
function is a metric, a directed acyclic FOL dataset with 4L metric can now be considered
as a metric space.



FOUR-LAYER DISTANCE METRIC AND DISTANCE-BASED KERNEL FUNCTIONS 409

Acknowledgements

This work was performed under the Cooperative Research Program of “Network Joint
Research Center for Materials and Devices: Dynamic Alliance for Open Innovation Bridg-
ing Human, Environment and Materials.”

References

[1] G. Anderson, B. Pfahringer, Clustering relational data based on randomized propo-
sitionalization. In ILP 2007, LNAI 4894 (2008) 39–48.

[2] G. Bisson, Learning in fol with a similarity measure. In AAAI-92 Proceedings (1992)
82–87.

[3] A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shusterman, C. Han-
sch, Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds, correlation with molecular orbital energies and hydrophobicity, J. Med.
Chem. 34(1991) 786–797.

[4] W. Emde, D. Wettschereck, Relational instance-based learning, In Proceedings of
the International Conference on Machine Learning (ICML) (1996) 122–130.

[5] V. Estruch, C. Ferri, J. Hernández-Orallo, M. José Ramı́rez-Quintana. An integrated
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[7] T. Gärtner, J.W. Lloyd, P.A. Flach, Kernels and distances for structured data, Ma-
chine Learning 57(2004) 205–232.

[8] B. Haasdonk, C. Bahlmann, Learning with distance substitution kernels, In CarlEd-
ward Rasmussen, HeinrichH. Blthoff, Bernhard Schlkopf, and MartinA. Giese, ed-
itors, Pattern Recognition, volume 3175 of Lecture Notes in Computer Science,
pages 220–227. Springer Berlin Heidelberg, 2004.

[9] R.D. King, M.J.E. Sternberg, A. Srinivasan, Relating chemical activity to structure:
An examination of ilp successes, New Generation Computing, 13(3-4)(1995) 411–
433.

[10] N. Lavrac, S. Dzeroski, Inductive Logic Programming: Techniques and Applications,
Ellis Horwood, 1994.

[11] S. Muggleton, L. de Raedt, Inductive logic programming: Theory and methods, The
Journal of Logic Programming (1994) 629–679.

[12] S.H. Nienhuys-Cheng, Distance between herbrand interpretations: A measure for
approximations to a target concept, In Proceedings of the 7th International Work-
shop on Inductive Logic Programming, Lecture Notes in Artificial Intelligence (1997)
213–22.

[13] L. De Raedt, J. Ramon, Deriving distance metrics from generality relations, Pattern
Recognition Letters 30(2009) 187–191.

[14] J. Ramon, M. Bruynooghe, A polynomial time computable metric between point
sets, Acta Informatica 37(10)(2001) 765–780.

[15] J. Ramon, M. Bruynooghe, W. Van Laer, Distance measures between atoms. In
CompulogNet Area Meeting on Computational Logic and Machine Learning (1998)
35–41.



410 Thai J. Math. Vol. 18, No. 1 (2020) / Khamsemanan and Nattee

[16] A. Tobudic, G. Widmer, Relational ibl in classical music, Machine Learning (2006)
64:5–24.

[17] G. Wu, E.Y. Chang, Z. Zhang, An analysis of transformation on non-positive semidef-
inite similarity matrix for kernel machines, In Proceedings of the 22nd International
Conference on Machine Learning (2005).


	Introduction
	Related Works
	Main Results
	Experiments
	Conclusion

