
ISSN 1686-0209

Thai Journal of Mathematics
Vol. 18, No. 1 (2020),

Pages 384 - 393

A SPHERICALLY VICINAL MAPPING ON GEODESIC

SPACES WITH CURVATURE BOUNDED ABOVE

Takuto Kajimura1, Yasunori Kimura2,∗
1Department of Information Science, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
E-mail: 6518004k@st.toho-u.ac.jp
2Department of Information Science, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
E-mail: yasunori@is.sci.toho-u.ac.jp

Abstract In 2018, vicinal mappings and firmly vicinal mappings were proposed by Kohsaka. He showed

fundamental properties of firmly vicinal mappings and a fixed point theorem for those mappings. In

this paper, we propose spherically vicinal mappings and firmly spherically vicinal mappings whose classes

contain those of vicinal mappings and firmly vicinal mappings, respectively. We also show some examples

of its mapping and prove fundamental properties and an approximation theorem to a fixed point.
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1. Introduction

In 2018, Kohsaka [8] proposed vicinal mappings and firmly vicinal mappings. In an
admissible CAT(1) space X, a mapping T from X into itself is said to be

• vicinal if

(C2
x(1 + C2

y) + C2
y(1 + C2

x)) cos d(Tx, Ty)

≧ C2
x(1 + C2

y) cos d(Tx, y) + C2
y(1 + C2

x) cos d(x, Ty)

for all x, y ∈ X;
• firmly vicinal if

(C2
x(1 + C2

y)Cy + C2
y(1 + C2

x)Cx) cos d(Tx, Ty)

≧ C2
x(1 + C2

y) cos d(Tx, y) + C2
y(1 + C2

x) cos d(x, Ty)

for all x, y ∈ X,

where Cz = cos d(Tz, z) for all z ∈ X. Since X is an admissible CAT(1) space, it is clear
that every firmly vicinal mapping is vicinal mapping.
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In an admissible complete CAT(1) space X, two kinds of resolvents for a proper lower
semicontinuous convex function f were proposed recently. In 2016, first one was proposed
by Kimura and Kohsaka [5] as follows:

Rfx = argmin
y∈X

{f(y) + tan d(y, x) sin d(y, x)} (1.1)

for each x ∈ X. They proved that it is well-defined as a single-valued mapping, and the
following inequality which directly implies the firm vicinality of Rf holds:((

1 +
1

C2
x

)
Cx +

(
1 +

1

C2
y

)
Cy

)
cos d(Rfx,Rfy)

≧
(
1 +

1

C2
y

)
cos d(Rfx, y)

(
1 +

1

C2
x

)
cos d(x,Rfy)

for all x, y ∈ X.
In 2019, the authors [2] proposed the second one as follows:

Qfx = argmin
y∈X

{f(y)− log(cos d(y, x))} (1.2)

for each x ∈ X. They showed that it is well-defined as a single-valued mapping, and the
following inquality holds by using the same technique as the proof of the previous result:

2 cos d(Qfx,Qfy) ≧
1

Cy
cos d(Qfx, y) +

1

Cx
cos d(x,Qfy)

for all x, y ∈ X. Since X is an admissible CAT(1) space, it is obvious that this inequality
implies the spherical nonspreadingness of sum-type, that is,

2 cos d(Qfx,Qfy) ≧ cos d(Qfx, y) + cos d(x,Qfy)

for all x, y ∈ X. However, it does not imply the firm vicinality.
In this paper, we propose new notions of spherically vicinal mappings and firmly spher-

ically vicinal mappings whose classes contain those of original ones and show that both
resolvents mentioned above are spherically firmly vicinal in the new sense. We also show
fundamental properties and an approximation theorem to a fixed point for those map-
pings.

2. Preliminaries

In this paper, we use the notations that R is the set of all real numbers, X is a metric
space with metric d, F(T ) is the set of all fixed points of a mapping T from X into itself,
and argminx∈Xf(x) is the set of all minimizers of a function f from X into ]−∞,∞].

For each x, y ∈ X, a mapping γxy from X into [0, ℓ] is called a geodesic joining x and
y if γxy satisfies γxy(0) = x, γxy(ℓ) = y, and d(γxy(s), γxy(t)) = |s− t| for all s, t ∈ [0, ℓ],
where ℓ = d(x, y). A metric space X is called a geodesic space if for each x, y ∈ X, there
exists a geodesic γxy. In general, a geodesic is not always unique. In this paper, we assume
that it is unique. LetX be a geodesic space. For each x, y ∈ X and t ∈ [0, 1], there exists a
unique point z ∈ X such that d(x, z) = (1−t)d(x, y) and d(z, y) = td(x, y), and we denote
it by z = tx⊕ (1− t)y, which is called a convex combination between x and y. We define
a triangle on X by the set Imγxy ∪ Imγyz ∪ Imγzx and denote it by △(x, y, z). For each
△(x, y, z) ⊂ X satisfying d(x, y) + d(y, z) + d(z, x) < 2π, its comparison triangle on S2 is
defined by the set Imγx̄ȳ ∪ Imγȳz̄ ∪ Imγz̄x̄ satisfying d(x, y) = d(x̄, ȳ), d(y, z) = d(ȳ, z̄) and
d(z, x) = d(z̄, x̄), and denoted by △(x̄, ȳ, z̄), where S2 is the two-dimensional unit sphere
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in R3. For each p ∈ △(x, y, z) ⊂ X, a point p̄ ∈ △(x̄, ȳ, z̄) ⊂ S2 is called a comparison
point of p if the following conditions hold:

• if p ∈ γxy, then p̄ ∈ γx̄ȳ and d(x, p) = d(x̄, p̄);
• if p ∈ γyz, then p̄ ∈ γȳz̄ and d(y, p) = d(ȳ, p̄);
• if p ∈ γzx, then p̄ ∈ γz̄x̄ and d(z, p) = d(z̄, p̄).

A geodesic space X is called a CAT(1) space if for any △(x, y, z) satisfying d(x, y) +
d(y, z) + d(z, x) < 2π, it holds that d(p, q) ≦ d(p̄, q̄) whenever p and q are elements of
△(x, y, z), and p̄ and q̄ are comparison points of p and q, respectively. A CAT(1) space X
is said to be admissible if d(x, y) < π/2 for all x, y ∈ X. In CAT(1) spaces, the following
inequality which is called the CN-inequality is well known.

Lemma 2.1 (Kimura and Satô [4]). Let X be a CAT(1) space, x, y, z ∈ X satisfying
d(x, y) + d(y, z) + d(z, x) < 2π, and t ∈ [0, 1]. Then

cos d(tx⊕ (1− t)y, z) sin d(x, y)

≧ cos d(x, z) sin(td(x, y)) + cos d(y, z) sin((1− t)d(x, y)).

Let X be a metric space and {xn} a sequence of X. An asymptotic center of {xn} is
defined by the set{

u ∈ X

∣∣∣∣ lim sup
n→∞

d(u, xn) = inf
y∈X

lim sup
n→∞

d(y, xn)

}
,

and we denote it by A({xn}). A sequence {xn} is ∆-convergent to x0 ∈ X if the asymp-

totic center of each subsequence of {xn} is {x0}, and we denote it by xn
∆
⇀ x0. Such x0

is called a ∆-limit of {xn}. The following lemmas are well known.

Lemma 2.2 (Esṕınola and Fernández-León [1]). Let X be an admissible complete CAT(1)
space and {xn} a sequence of X. If

inf
y∈X

lim sup
n→∞

d(xn, y) <
π

2
,

then the following properties hold:

• A({xn}) consists of one point;
• {xn} has a ∆-convergent subsequence.

Lemma 2.3 (Kimura, Seajung, and Yotkaew [7]). Let X be an admissible complete
CAT(1) space and {xn} a sequence of X satisfying

inf
y∈X

lim sup
n→∞

d(xn, y) <
π

2
.

If {d(xn, z)} is convergent for each ∆-limit z of subsequence {xni
} of {xn}, then {xn} is

∆-convergent to an element of X.

A function f from X into ]−∞,∞] is said to be proper if f(x) < ∞ for some x ∈ X,
and f is said to be lower semicontinuous if f(x0) ≦ lim infn→∞ f(xn) whenever {xn} is
convergent to x0 ∈ X. It is well known that f is lower semicontinuous if and only if the
set {x ∈ X | f(x) ≦ a} is closed for all a ∈ R. Let X be a geodesic space. A function f
is said to be convex if f(tx⊕ (1− t)y) ≦ tf(x) + (1− t)f(y) for all x, y ∈ X and t ∈]0, 1].
A subset C of X is said to be convex if tx⊕ (1− t)y ∈ C for all x, y ∈ C and t ∈]0, 1].
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3. Spherically vicinal mappings and firmly spherically vicinal

mappings

In this section, we propose spherically vicinal mappings and firmly spherically vicinal
mappings, and we introduce some examples of those mappings. Throughout this paper,
for a mapping T from X into itself, we use the notation that Cz = cos d(Tz, z) for all
z ∈ X.

Let X be an admissible CAT(1) space, T a mapping from X into itself and φ a function
from ]0, 1] into [0,∞[ satisfying the following conditions:

• φ is differentiable;
• φ′(t) < 0 for all t ∈ ]0, 1];
• φ′ is continuous at 1.

Then T is said to be

• spherically vicinal with φ if

(φ′(Cx) + φ′(Cy)) cos d(Tx, Ty)

≦ φ′(Cy) cos d(Tx, y) + φ′(Cx) cos d(Ty, x)

for all x, y ∈ X;
• firmly spherically vicinal with φ if

(φ′(Cx)Cx + φ′(Cy)Cy) cos d(Tx, Ty)

≦ φ′(Cy) cos d(Tx, y) + φ′(Cx) cos d(Ty, x)

for all x, y ∈ X.

Since X is an admissible CAT(1) space, every firmly spherically vicinal mapping with φ
is spherically vicinal with φ.

First we show a theorem which plays an important role for finding some examples of
firmly spherically vicinal mappings with φ.

Theorem 3.1. Let X be an admissible CAT(1) space, f a convex function from X into
]−∞,∞] and φ : ]0, 1] → [0,∞[ a function with decreasing and differentiable. If

Tx = argmin
y∈X

{f(x) + φ(cos d(y, x))}

is a single-valued mapping, then

(φ′(Cx)Cx + φ′(Cy)Cy) cos d(Tx, Ty)

≦ φ′(Cy) cos d(Tx, y) + φ′(Cx) cos d(Ty, x)

for all x, y ∈ X.

Proof. Let x, y ∈ X satisfying Tx ̸= Ty and put zt = tTx ⊕ (1 − t)Ty for all t ∈ ]0, 1[.
By the definition of T and convexity of f , we have

f(Ty) + φ(Cy) ≦ f(zt) + φ(cos d(zt, y))

≦ tf(Tx) + (1− t)f(Ty) + φ(cos d(zt, y))

and hence

t(f(Ty)− f(Tx)) ≦ φ(cos d(zt, y))− φ(Cy).
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Putting D = d(Tx, Ty) and multiplying (sinD)/t, we get

(f(Ty)− f(Tx)) sinD ≦ φ(Cy +∆(t))− φ(Cy)

∆(t)
× ∆(t) sinD

t
,

where ∆(t) = cos d(zt, y) − Cy. It is clear that ∆(t) → 0 as t ↓ 0. On the other hand,
using CN-inequality, we have

∆(t) sinD = cos d(zt, y) sinD − Cy sinD

≧ cos d(Tx, y) sin(tD) + Cy sin((1− t)D)− Cy sinD

= cos d(Tx, y) sin(tD) + Cy(sin((1− t)D)− sinD).

Since φ is decreasing, we know that

φ(Cy +∆(t))− φ(Cy)

∆(t)
< 0.

Therefore we have

(f(Ty)− f(Tx)) sinD

≦ φ(Cy +∆(t))− φ(Cy)

∆(t)
× ∆(t) sinD

t

≦ φ(Cy +∆(t))− φ(Cy)

∆(t)

(
cos d(Tx, y)

sin(tD)

t
+ Cy

sin((1− t)D)− sinD

t

)
.

Taking the limit as t ↓ 0, we get

(f(Ty)− f(Tx)) sinD ≦ φ′(Cy)(cos d(Tx, y)− Cy cosD)D.

Similarly it follows that

(f(Tx)− f(Ty)) sinD ≦ φ′(Cx)(cos d(Ty, x)− Cx cosD)D.

Adding each side of these inequalities and dividing by D, we have

0 ≦ φ′(Cy)(cos d(Tx, y)− Cy cosD) + φ′(Cx)(cos d(Ty, x)− Cx cosD).

From this inequality, we directly get the conclusion. In the case that Tx = Ty, we clearly
obtain the conclusion.

Next we show the following examples by using Theorem 3.1.

Example 3.2. Let X be an admissible complete CAT(1) space, f a proper lower semi-
continuous convex function from X into ]−∞,∞] and Rf is the resolvent which is defined
by (1.1). Then Rf is firmly spherically vicinal with φ : t 7→ 1/t− t.

Proof. We define a function φ : ]0, 1] → [0,∞[ as follows:

φ(t) =
1

t
− t.

Since tan a sin a = 1/ cos a− cos a for all a ∈ [0, π/2[, we can express

Rfx = argmin
y∈X

{f(y) + φ(cos d(y, x))}

for each x ∈ X, and we know that Rf is a single-valued mapping. It is obvious that the
function φ is differentiable and

φ′(t) = − 1

t2
− 1 < 0
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for all t ∈ ]0, 1]. Therefore, using Theorem 3.1, we get

(φ′(Cx)Cx + φ′(Cy)Cy) cos d(Rfx,Rfy)

≦ φ′(Cy) cos d(Rfx, y) + φ′(Cx) cos d(Rfy, x)

for all x, y ∈ X. We also know that φ′ is continuous at 1. Thus Rf is firmly spherically
vicinal with φ : t 7→ 1/t− t.

Example 3.3. Let X be an admissible complete CAT(1) space, f a proper lower semi-
continuous convex function form X into ]−∞,∞] and Qf is the resolvent which is defined
by (1.2). Then Qf is firmly spherically vicinal with φ : t 7→ − log t.

Proof. We define a function φ : ]0, 1] → [0,∞[ as φ(t) = − log t. Then we know that φ is
differentiable and

φ′(t) = −1

t
< 0

for all t ∈ ]0, 1]. Since Qf is a single-valued mapping, we have

(φ′(Cx)Cx + φ′(Cy)Cy) cos d(Qfx,Qfy)

≦ φ′(Cy) cos d(Qfx, y) + φ′(Cx) cos d(Qfy, x)

for all x, y ∈ X by Theorem 3.1. We also know that φ′ is continuous at 1. Thus Qf is
firmly vicinal with φ : t 7→ − log t.

Remark 3.4. Every firmly vicinal mapping in the sense of Kohsaka [8] on admissible
CAT(1) spaces is firmly vicinal with φ : t 7→ 1/t − t. In fact, if T is firmly vicinal in the
sense of Kohsaka, then

(C2
x(1 + C2

y)Cy + C2
y(1 + C2

x)Cx) cos d(Tx, Ty)

≧ C2
x(1 + C2

y) cos d(Tx, y) + C2
y(1 + C2

x) cos d(x, Ty).

Dividing −C2
xC

2
y , we get((

− 1

C2
x

− 1

)
Cx +

(
− 1

C2
y

− 1

)
Cy

)
cos d(Tx, Ty)

≦
(
− 1

C2
y

− 1

)
cos d(Tx, y)

(
− 1

C2
x

− 1

)
cos d(x, Ty).

Therefore T is firmly spherically vicinal with φ : t 7→ 1/t− t.

4. Fundamental properties and an approximation theorem for

firmly spherically vicinal mappings

In this section, we show fundamental properties and an approximation theorem for
firmly spherically vicinal mappings with φ. We assume that φ is a function from ]0, 1]
into [0,∞[ satisfying that φ is differentiable, φ′(t) < 0 for all t ∈ ]0, 1] and φ′ is continuous
at 1.

Let X be a metric space and T a mapping from X into itself. Then T is said to be

• quasi-nonexpansive if F(T ) is nonempty and d(Tx, p) ≦ d(x, p) for all x ∈ X
and p ∈ F(T );
• ∆-demiclosed if p is a fixed point whenever a sequence {xn} of X satisfies

xn
∆
⇀ p ∈ X and d(Txn, xn) → 0 as n → ∞;
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• asymptotically regular if limn→∞ d(Tn+1x, Tnx) = 0 for all x ∈ X.

Theorem 4.1. Let X be an admissible CAT(1) space and T a spherically vicinal mapping
with φ from X into itself. Then T is quasi-nonexpansive.

Proof. Let x ∈ X and p ∈ F(T ). Then the spherical vicinality with φ implies that

(φ′(Cx) + φ′(1)) cos d(Tx, p) ≦ φ′(1) cos d(Tx, p) + φ′(Cx) cos d(x, p)

and hence

φ′(Cx) cos d(Tx, p) ≦ φ′(Cx) cos d(x, p).

Since φ′(Cx) < 0, it follows that

cos d(Tx, p) ≧ cos d(x, p).

Furthermore, since cos t is decreasing for all t ∈ [0, π/2[, we get d(Tx, p) ≦ d(x, p). Thus
we get the conclusion.

Theorem 4.2. Let X be an admissible CAT(1) space, T a spherically vicinal mapping
with φ from X into itself and p ∈ X. If a sequence {xn} of X satisfies A({xn}) = {p}
and limn→∞ d(Txn, xn) = 0, then p is a fixed point of T .

Proof. The spherical vicinality of T implies that

(φ′(Cxn
) + φ′(Cp)) cos d(Txn, Tp)

≦ φ′(Cp) cos d(Txn, p) + φ′(Cxn
) cos d(xn, Tp)

and hence

cos d(Txn, Tp)

≧ cos d(Txn, p) +
φ′(Cxn

)

φ′(Cp)
(cos d(xn, Tp)− cos d(Txn, Tp)).

Using the nonexpansiveness of the cosine function, we get

cos d(Txn, Tp) (4.1)

≦ cos d(Txn, p) +
φ′(Cxn

)

φ′(Cp)
(cos d(xn, Tp)− cos d(Txn, Tp))

≦ cos d(Txn, p) +
φ′(Cxn

)

φ′(Cp)
|d(xn, Tp)− d(Txn, Tp)| .

On the other hand, since limn→∞ d(Txn, xn) = 0, we know that

lim
n→∞

(d(xn, Tp)− d(Txn, Tp)) = 0.

Therefore, taking the lower limit of both sides of (4.1), we have

lim inf
n→∞

cos d(Txn, Tp)

≦ lim inf
n→∞

(
cos d(Txn, p) +

φ′(Cxn)

φ′(Cp)
|d(xn, Tp)− d(Txn, Tp)|

)
= lim inf

n→∞
cos d(Txn, p) +

φ′(1)

φ′(Cp)
× 0

= lim inf
n→∞

cos d(Txn, p).
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Since the cosine function is decreasing, we get

cos lim sup
n→∞

d(Txn, Tp) ≧ cos lim sup
n→∞

d(Txn, p)

and hence

lim sup
n→∞

d(Txn, Tp) ≦ lim sup
n→∞

d(Txn, p).

The assumption of {xn} implies that lim supn→∞ d(Txn, y) = lim supn→∞ d(xn, y) for all
y ∈ X. Therefore it follows that

lim sup
n→∞

d(xn, Tp) ≦ lim sup
n→∞

d(xn, p).

Since A({xn}) = {p}, we get the conclusion.

Using Theorem 4.2, we can get the following result.

Corollary 4.3. Every spherically vicinal mapping with φ on an admissible CAT(1) space
is ∆-demiclosed.

Proof. Let {xn} be a sequence of an admissible CAT(1) space satisfying xn
∆
⇀ p and

d(Txn, xn) → 0. By the definition of ∆-convergence, we know that A({xn}) = {p}.
Therefore, by Theorem 4.2, p is a fixed point of T . Thus we get the conclusion.

Lemma 4.4. Let X be an admissible CAT(1) space and T a firmly spherically vicinal
mapping with φ from X into itsel. If F(T ) is nonempty, then

cos d(Tx, x) cos d(Tx, p) ≧ cos d(x, p)

for all x ∈ X and p ∈ F(T ).

Proof. Let x ∈ X and p ∈ F(T ). Since T is firmly spherically vicinal with φ, we have

(φ′(Cx)Cx + φ′(1)) cos d(Tx, p)

≦ φ′(1) cos d(Tx, p) + φ′(Cx) cos d(x, p).

Hence we obtain

φ′(Cx)Cx cos d(Tx, p) ≦ φ′(Cx) cos d(x, p).

Dividing by φ′(Cx), we get the conclusion.

Theorem 4.5. Let X be an admissible CAT(1) space and T a firmly spherically vicinal
mapping with φ from X into itself. If F(T ) is nonempty, then T is asymptotically regular.

Proof. Let x ∈ X and p ∈ F(T ). By Lemma 4.4, we know that

cos d(Tn+1, Tnx) ≧ cos d(Tnx, p)

cos d(Tn+1x, p)
. (4.2)

On the other hand, from Theorem 4.1, T is quasi-nonexpansive. Therefore we have

0 ≦ d(Tnx, p) ≦ d(Tn−1x, p) ≦ · · · ≦ d(x, p) <
π

2
.

Thus there exists d ∈ [0, π/2[ such that {d(Tnx, p)} is convergent to d. Hence, taking the
limit of both sids of (4.2), we get

1 ≧ lim
n→∞

cos d(Tn+1x, Tnx) ≧ lim
n→∞

cos d(Tnx, p)

cos d(Tn+1x, p)
= 1.

Therefore we have limn→∞ d(Tn+1x, Tnx) = 0.
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Theorem 4.6. Let X be an admissible complete CAT(1) space and T a firmly spherically
vicinal mapping with φ from X into itself. If F(T ) is nonempty, then {Tnx} is ∆-
convergent to an element of F(T ) for each x ∈ X.

Proof. Let x ∈ X. It follows from Theorem 4.1, we have

inf
y∈X

lim sup
n→∞

d(Tnx, y) ≦ inf
y∈F(T )

lim sup
n→∞

d(Tnx, y) ≦ inf
y∈F(T )

d(x, y) <
π

2
.

Therefore, by using Lemma 2.2, {Tnx} has a ∆-convergent subsequence. Let {Tnix} be

a subsequence of {Tnx} satisfying Tnix
∆
⇀ z. Using Theorem 4.5, we get

lim
n→∞

d(T (Tnx), Tnx) = lim
n→∞

d(Tn+1x, Tnx) = 0.

Thus Corollary 4.3 implies that z ∈ F(T ). It follows from Theorem 4.1 that

0 ≦ d(Tnx, z) ≦ d(Tn−1x, z) ≦ · · · ≦ d(x, y) <
π

2
.

Therefore {d(Tnx, z)} is convergent. Hence, by Lemma 2.3, {Tnx} is ∆-convergent to
an element of X. From Corollary 4.3 and Theorem 4.5, the ∆-limit of {Tnx} belongs to
F(T ).

We remark that this result is related to the proximal point algorithm in admissible
complete CAT(κ) spaces; for recent results, see [3, 6, 9–11].
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