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1. Introduction

The Equilibrium problem (EP) was early introduced by Fan [11] which is also known as
the Fan’s inequality and extensively developed by Blum and Oettli[3]. It plays a very
important role in many fields such as variational inequalities, game theory, mathematical
economics, optimization theory, and fixed point theory (see, for example [10, 20, 23, 27, 36]
and the references). Let Ω be a nonempty closed convex subset of a real Hilbert space H.
Let S : Ω×Ω → R be a bifunction, called equilibrium bifunction if and only if S(x, x) = 0,
for all x ∈ Ω. The equilibrium problem is to find x∗ ∈ Ω such that

S(x∗, y) ≥ 0, ∀y ∈ Ω. (1.1)

A point x∗ solving this problem is said to be an equilibrium point (called equilibria as
well). There are many methods have been extensively studied for approximating solutions
of the problem (1.1), for instance; the proximal point algorithm [26], the proximal-like
algorithm (the extragradient algorithm) [15, 34], the subgradient algorithm [4, 14] and
auxiliary problem principle [25].

One of the most popular of studied methods on approximate the equilibrium points is
the proximal point method. The method was firstly introduced by Martinet [24] for
convex minimization and further generalized by Rockafellar [30]. Later author studied
on approximate zero point for a monotone operator in Hilbert spaces and shown the
classical version. In 1999, Moudafi [26] extended the proximal point method to equilibrium
problems for monotone bifunctions. Afterward, Konnov [19] proposed another kind of
proximal point method with weaker conditions. The proximal point method is normally
imposed to monotone equilibrium problems, i.e., the bifunction of an equilibrium problem
has to be monotone. Then, each regularized subproblem becomes strongly monotone, and
its solution exists and is unique. This property cannot be guaranteed if the equilibrium
bifunction more generally monotone, for example, pseudomonotone.

On the other hand, another well known is the auxiliary problem principle is to develop a
new problem which is equivalent and usually easier to work out than the original problem.
This principle was initially introduced by Cohen [6] for optimization problems and then,
utilized to variational inequality problems [7]. Mastroeni[25] further extended the auxil-
iary problem principle to equilibrium problems related to strongly monotone bifunctions.

Another one method based on the auxiliary problem principle was presented early by Fl̊am
and Antipin [13] which was called proximal-like algorithm. The convergence results of this
method was further extended and investigated the convergence of it under assumptions
that the bifunctions are pseudomonotone and satisfy the Lipschitz-type condition [25],
i.e., there exists two positive constants γ1, γ2 such that

S(x, y) + S(y, z)+ ≥ S(x, z)− γ1∥x− y∥2 − γ2∥y − z∥2,

for all x, y, x ∈ Ω. The methods in [13, 25] are also called extragradient algorithms due to
the work of Korpelevich [21]. The extragradient algorithm is described as follows: from
an initial point x0 ∈ Ω, compute xk, yk, for each k ∈ N by

yk = argmin
t∈Ω

{λS(xk, t) +G(xk, t)},

xk+1 = argmin
t∈Ω

{λS(yk, t) +G(xk, t)},
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where λ is a suitable fixed parameter and G(x, y) is the Bregman distance function.
The advantages of extragradient algorithm are that it can be applied to the class of
psuedomontone bifunctions and two optimizations problems may be computed easily than
the proximal point method.

Very recently, Hieu [16] has presented the extragradient algorithms for solving equilibrium
problems where the bifunctions are strongly pseudomonotone and satisfy the Lipschitz-
type condition which described as follows: from an initial point x0 ∈ Ω, compute xk, yk,
for each k ∈ N by

yk = argmin
t∈Ω

{λkS(x
k, t) + 1

2∥x
k − t∥2},

xk+1 = argmin
t∈Ω

{λkS(t, y
k) + 1

2∥x
k − t∥2},

where {λk} is is a non-increasing sequence satisfying the following conditions:

(C1) lim
k→∞

λk = 0, (C2)

∞∑
k=0

λk = +∞.

The authors, deduce that any sequences generated by the proposed algorithm strongly
converge to solutions of the equilibrium problems in Hilbert spaces without the prior
knowledge of Lipschitz-type constants and any hybrid method. In [15], Hieu also consid-
ered the extragradient algorithms which a stepsize sequence is non-increasing, diminishing
and non-summable for solving strongly pseudomnontone equilibrium problems in Hilbert
spaces. Precisely, this algorithm is described as follows: from an initial point x0, y0 ∈ Ω,
compute xk, yk, for each x ≥ 1 by

xk+1 = argmin
t∈Ω

{λkS(y
k, t) + 1

2∥x
k − t∥2},

yk+1 = argmin
t∈Ω

{λk+1S(y
k, t) + 1

2∥x
k+1 − t∥2},

where {λk} is is a non-increasing sequence satisfying conditions (C1) and (C2).

During the last decade, there are many issues in nonlinear analysis such as fixed point
theory, convex analysis, variational inequality, equilibrium theory, and optimization the-
ory have been magnified from linear setting, namely, Banach space or Hilbert space, etc.,
to nonlinear system because the problems cannot be posted in the linear space and re-
quire a manifold structure (not necessary with linear structure). The main advantages of
these extensions are that non-convex problems in the general sense transform into convex
problems, and constrained optimization problems also transform into unconstrained opti-
mization problems. Eigenvalue optimization problems [32] and geometric models for the
human spine [1] are typical examples of the situation. Therefore, many authors have fo-
cused on extension and development of nonlinear problems techniques on the Riemannian
manifold, see for examples [8, 12, 22, 33] and the reference therein.

In recent years, many researchers [5, 8, 18, 28, 29] extended the concepts and techniques
of the equilibrium theory from linear spaces to Riemannian context. Especially, Colao
et al. [8] was firstly introduced the equilibrium problems on Riemannian setting. Let
M be an Hadamard manifold, C a nonempty closed geodesic convex subset of M , and
S : Ω × Ω → R a bifunction satisfying S(x, x) = 0, for all x ∈ Ω. Then the equilibrium
problem on the Hadamard manifold is to find x∗ ∈ Ω such that

S(x∗, y) ≥ 0, ∀y ∈ Ω. (EP)



AN EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE . . . 353

We denote by EP (S,Ω) the set solution of problem (EP), we also suppose that the set
EP (S,Ω) is nonempty. Moreover, they proved the existence of an equilibrium point for a
biunction under suitable conditions and applied their results to solve variational inequal-
ity, fixed point and Nash equilibrium problems. Chaipunya and Kumam [5] considered
the nonself of KKM lemma on Hadamard manifolds and applied their result to equilib-
rium problems. Jana and Nahak [18] extended concept of a mixed equilibrium problem
to Hadamrad manifolfs and introduced an implicit and explicit method to solving the
problem. Recently, Cruz Neto et al. [29] presented an extragradient algorithm to solving
equilibrium problems on Hadamard manifolds. The extragradient algorithm is described
as follows: from an initial point x0 ∈ Ω, compute xk, yk, for each k ∈ N by

yk = argmin
t∈Ω

{S(xk, t) + 1
2λk

d2(xk, t)},

xk+1 = argmin
t∈Ω

{S(t, yk) + 1
2λk

d2(xk, t)},

where {λk} ⊂ (0,+∞). The authors also proved that the proposed algorithm converges to
a solution of equilibrium problems involving the bifunctions does not satisfy pseudomono-
tone.

Motivation mentioned above, and the works due to [15, 16, 29], the propose of the paper is
to introduce two extragradient algorithms for solving the equilibrium problem (EP) regard
to strongly pseudomonotone bifunctions and the Lipschitz-type condition on Hadamard
manifolds. The convergence of the resulting algorithms is established under suitable
conditions.

The paper is organized as follows : Section 2, we give some basic concept and funda-
mental results of Riemannian manifolds and some useful results for further use. Section
3, deals with proposing of two extragradient algorithms involving strongly pseudomono-
tone bifunctions and analysing the convergence results of the proposed algorithms on
Hadamard manifolds. Section 4, we give numerical experiments to illustrate the compu-
tational performance on a test problem. In the last Section, contains conclusion of the
main results.

2. Preliminaries

In this section, we recall some fundamental definitions, properties, useful results, and
notations of Riemannian geometry. Readers refer to some textbooks [9, 31, 35] for more
details.

Let M be a connected finite-dimensional manifold. For p ∈ M , we denote TpM the
tangent space of M at p which is a vector space of the same dimension as M , and by
TM =

∪
p∈M TpM the tangent bundle of M . We always suppose that M can be endowed

with a Riemannian metric ⟨·, ·⟩p, with corresponding norm denoted by ∥ · ∥p, to become
a Riemannian manifold. The angle ∠p(u, v) between u, v ∈ TpM (u, v ̸= 0) is set by

cos∠p(u, v) =
⟨u, v⟩p
∥u∥∥v∥

. If there is no confusion, we denote ⟨·, ·⟩ := ⟨·, ·⟩p, ∥ · ∥ := ∥ · ∥p and

∠(u, v) := ∠p(u, v). Let γ : [a, b] → M be a piecewise smooth curve joining γ(a) = p to
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γ(b) = q, we define the length of the curve γ by using the metric as

L(γ) =

∫ b

a

∥γ
′
(t)∥dt,

minimizing the length function over the set of all such curves, we obtain a Riemannian
distance d(p, q) which induces the original topology on M .

Let ∇ be a Levi-Civita connection associated to (M, ⟨·, ·⟩). Given γ a smooth curve, a

smooth vector field X along γ is said to be parallel if ∇γ′X = 0. If γ
′
itself is parallel,

we say that γ is a geodesic, and in this case ∥γ′∥ is a constant. When ∥γ′∥ = 1, then γ is
said to be normalized. A geodesic joining p to q in M is said to be a minimal geodesic if
its length equals to d(p, q).

A Riemannian manifold is complete if for any p ∈ M all geodesic emanating from p are
defined for all t ∈ R. From the Hopf-Rinow theorem we know that if M is complete
then any pair of points in M can be joined by a minimal geodesic. Moreover, (M,d) is a
complete metric space and every bounded closed subsets are compact.

Let M be a complete Riemannian manifold and p ∈ M . The exponential map expp :
TpM → M is defined as expp v = γv(1, x), where γ(·) = γv(·, x) is the geodesic starting

at p with velocity v (i.e., γv(0, p) = p and γ
′

v(0, p) = v). Then, for any value of t,
we have expp tv = γv(t, p) and expp 0 = γv(0, p) = p. Note that the exponential expp
is differentiable on TpM for all p ∈ M . It well known that the derivative D expp(0) of
expp(0) is equal to the identity vector of TpM. Therefore, by the inverse mapping theorem,

there exists an inverse exponential map exp−1 : M → TpM . Moreover, for any p, q ∈ M ,
we have d(p, q) = ∥ exp−1

p q∥.

A complete simply connected Riemannian manifold of non-positive sectional curvature is
said to be an Hadamard manifold. Throughout the remainder of the paper, we always
assume that M is a finite-dimensional Hadamard manifold. The following proposition is
well-known and will be useful.

Proposition 2.1. [31] Let p ∈ M . The expp : TpM → M is a diffeomorphism, and for
any two points p, q ∈ M there exists a unique normalized geodesic joining p to q, which
is can be expressed by the formula

γ(t) = expp t exp
−1
p q, ∀t ∈ [0, 1].

This proposition yields that M is diffeomorphic to the Euclidean space Rn. Then, M
has same topology and differential structure as Rn. Moreover, Hadamard manifolds and
Euclidean spaces have some similar geometrical properties. One of the most important
proprieties is illustrated in the following propositions.

A geodesic triangle △(p1, p2, p3) of a Riemannian manifold M is a set consisting of
three points p1, p2 and p3, and three minimal geodesic γi joining pi to pi+1 where
i = 1, 2, 3 (mod3).

Proposition 2.2. [31] Let △(p1, p2, p3) be a geodesic triangle in M . For each i =
1, 2, 3 (mod3), given γi : [0, li] → M the geodesic joining pi to pi+1 and set li := L(γi),

αi : ∠(γ
′

i(0),−γ
′

i−1(li−1)). Then

α1 + α2 + α3 ≤ π; (2.1)
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l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1. (2.2)

In the terms of the distance and the exponential map, the inequality (2.2) can be rewritten
as

d2(pi, pi+1) + d2(pi+1, pi+2)− 2⟨exp−1
pi+1

pi, exp
−1
pi+1

pi+2⟩ ≤ d2(pi−1, pi), (2.3)

where ⟨exp−1
pi+1

pi, exp
−1
pi+1

pi+2⟩ = d(pi, pi+1)d(pi+1, pi+2) cosαi+1.

Definition 2.3. A subset Ω is called geodesic convex if for every two points p and q in
Ω, the geodesic joining p to q is contained in Ω, that is, if γ : [a, b] → M is a geodesic
such that p = γ(a) and q = γ(b), then γ((1− t)a+ tb) ∈ Ω for all t ∈ [0, 1].

Definition 2.4. A real function f defined on M is called geodesic convex if for any
geodesic γ of M , the composition function f ◦ γ : [a, b] → R is convex, that is,

(f ◦ γ)(ta+ (1− t)b) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b),
where a, b ∈ R, and t ∈ [0, 1].

Definition 2.5. Let f : M → R be a geodesic convex and p ∈ M . A vector s ∈ TpM is
called a subgradient of f at p if and only if

f(q) ≥ f(p) + ⟨s, exp−1
p q⟩, ∀q ∈ M. (2.4)

The set of all subgradients of f , denoted by ∂f(p) is called the subdifferential of f at p,
which is closed geodesic convex (possibly empty) set. Let D(∂f) denote the domain of
∂f defined by D(∂f) = {p ∈ M | ∂f(p) ̸= ∅}. The following proposition is guaranteed
the existence of subgradients for geodesic convex functions.

Proposition 2.6. [12] Let M be a Hadamard manifolds and f : [a, b] → R be a geodesic
convex. Then, for all p ∈ M , the subdifferential ∂f(p) of f at p is nonempty. That is,
D(∂f) = M .

Let f : M → R be a geodesic convex, proper, and lower semicontinuous. The proximal
point algorithm generates, for a initial point p0 ∈ M , a sequence {pk} ⊂ M is defined by
the following:

pk+1 = argmin
t∈M

{
f(t) +

λk

2
d2(pk, t)

}
, (2.5)

where {λk} ⊂ (0,+∞).

Theorem 2.7. [12] Let f : M → R be a geodesic convex, proper, and lower semicon-
tinuous. Then the sequence {pk} generated by (2.5) is well defined, and characterized
by

λk(exp
−1
pk+1 p

k) ∈ ∂f(pk+1).

The distance function of a point p ∈ M to a nonempty, closed and geodesic convex set
Ω ⊂ M is define by

dΩ(p) := inf{d(p, q) : ∀q ∈ Ω}.

Remark 2.8. [31] It is important to mention that for all q ∈ M,p 7→ d(p, q) is continuous
and geodesic convex function.
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Next, we recall some concepts of monotonicity of a bifunction (see [3, 27] for further
details).

Definition 2.9. A bifunction S : Ω× Ω → R is said to be

(1) monotone if and only if S(p, q) + S(q, p) ≤ 0 for all (p, q) ∈ Ω× Ω;

(2) pseudomonotone if and only if for all (p, q) ∈ Ω× Ω,

S(p, q) ≥ 0 =⇒ S(q, p) ≤ 0;

(3) strongly monotone if and only if there exists a positive constant ρ such that

S(p, q) + S(q, p) ≤ −ρd2(p, q) for all (p, q) ∈ Ω× Ω;

(4) strongly pseudomonotone if and only if there exists a positive constant ρ such that

S(p, q) ≥ 0 =⇒ S(q, p) ≤ −ρd2(p, q) for all (p, q) ∈ Ω× Ω.

Remark 2.10. From Definition 2.9, it easy to see that the following implications hold
the following:

(3) =⇒ (1) =⇒ (2) and (1) =⇒ (4) =⇒ (3)

The converse does not hold even in a linear context.

A Lipschitz-type condition is often use in construct the convergence of extragradient
methods for equilibrium problems which is introduced by Mastroeni [25].

Definition 2.11. [25] A bifunction S : Ω× Ω → R is said to be Lipschitz-type condition
on Ω if there exist two positive constants γ1 and γ2 such that

S(p, q) + S(q, r) ≥ S(p, r)− γ1d
2(p, q)− γ2d

2(q, r),

for all p, q, r ∈ Ω.

3. Extragradient Algorithm for Equilibrium Problem

In this section, we present two extragradient algorithms involving strongly pseudomono-
tone for equilibrium problems (EP) on Hadamard manifolds.

From now on Ω ⊂ M denote a nonempty closed geodesic convex set, unless explicitly
stated otherwise. Let S : Ω × Ω → R be a bifunction satisfying S(x, x) = 0, for all
x ∈ Ω. For solving the problem (EP), we consider the following hypothesises regrading
the bifunction;

(H1) For all x ∈ Ω, S(x, x) ≥ 0;

(H2) For every x ∈ Ω, y 7→ S(x, y) are geodesic convex and lower semicontinuous;

(H3) S satisfies the Lipschitz-type condition;

(H4) S is strongly pseudomonotone.

The following algorithm is the first extragradient algorithm for finding the solution of the
problem (EP).

The following remark gives us a stopping criterion of Algorithm 1.
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Algorithm 1

Initialization: Choose x0, y0 ∈ Ω and nonincreasing sequence {λk} ⊂ (0,+∞) satis-
fying the following hypotheses:

(A1) : lim
k→∞

λk = 0, (A2) :

∞∑
k=0

λk = +∞.

Iterative Steps: Given xk, yk ∈ Ω, calculate xk+1 and yk+1 as follows:
Step 1. Compute

xk+1 = argmin
t∈Ω

{
S(yk, t) +

1

2λk
d2(xk, t)

}
.

If xk+1 = yk = xk then stop and xk is the solution of problem (EP). Otherwise,
Step 2. Compute

yk+1 = argmin
t∈Ω

{
S(yk, t) +

1

2λk+1
d2(xk+1, t)

}
.

Set k =: k + 1 and go back to Step 1.

Remark 3.1. Under hypotheses (H1), (H2) and if xk+1 = yk = xk then xk is a solution
of (EP) on Ω. From definition of yk+1, y 7→ S(x, y) is geodesic convex and Theorem 2.7,
we obtain

S(yk, y) ≥ S(yk, xk+1) +
1

λk
⟨exp−1

xk+1 x
k, exp−1

xk+1 y⟩

≥ 0, ∀y ∈ Ω.

Hence, xk ∈ EP (S,Ω). A similar stopping criterion of Algorithm 1 is that if yk+1 = yk =
xk+1, then xk+1 is a solution of the problem (EP).

Proposition 3.2. The sequence generated by the Algorithm 1 is well defined.

Thank to Remark 3.1, if Algorithm 1 terminates then we can found a solution of (EP)
on Ω. On the other hand, if Algorithm 1 does not stop, we have the following results.

Lemma 3.3. From Algorithm 1 we have the following use inequality.

S(yk, y) ≥ S(yk, xk+1) +
1

2λk
[d2(xk, xk+1) + d2(xk+1, y)− d2(xk, y)], ∀y ∈ Ω.

(3.1)

Proof. From definition of xk+1, y 7→ S(x, y) is geodesic convex and Theorem 2.7, we get

S(yk, y) ≥ S(yk, xk+1) +
1

λk
⟨exp−1

xk+1 x
k, exp−1

xk+1 y⟩, ∀y ∈ Ω. (3.2)

Let △(xk, xk+1, y) ⊆ M be the geodesic triangle and using (2.3), we obtain

2⟨exp−1
xk+1 x

k, exp−1
xk+1 y⟩ ≥ d2(xk, xk+1) + d2(xk+1, y)− d2(xk, y). (3.3)

Combining (3.2) into (3.3), we have

S(yk, y) ≥ S(yk, xk+1) +
1

2λk
[d2(xk, xk+1) + d2(xk+1, y)− d2(xk, y)], ∀y ∈ Ω.
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Lemma 3.4. From Algorithm 1 we have the following use inequality.

S(yk−1, y) ≥ S(yk−1, yk)+
1

2λk
[d2(xk, yk)+d2(yk, y)−d2(xk, y)], ∀y ∈ Ω. (3.4)

Proof. From definition of yk, y 7→ S(x, y) is geodesic convex and Theorem 2.7, we get

S(yk−1, y) ≥ S(yk−1, yk) +
1

λk
⟨exp−1

yk xk, exp−1
yk y⟩, ∀y ∈ Ω. (3.5)

Let △(xk, yk, y) ⊆ M be the geodesic triangle and using (2.3), we obtain

2⟨exp−1
yk xk, exp−1

yk y⟩ ≥ d2(xk, yk) + d2(yk, y)− d2(xk, y). (3.6)

Combining (3.5) into (3.6), we have

S(yk−1, y) ≥ S(yk−1, yk) +
1

2λk
[d2(xk, yk) + d2(yk, y)− d2(xk, y)], ∀y ∈ Ω.

Lemma 3.5. Suppose that the hypotheses (H1)–(H4). Then, for all p ∈ EP (S,Ω), we
have

d2(xk+1, p) ≤ d2(xk, p) + 4λkγ1d
2(yk−1, xk)− (1− 4λkγ1)d

2(xk, yk)

−(1− 2λkγ2)d
2(yk, xk+1)− 2ρλkd

2(yk, p) (3.7)

Proof. It follows from the Lemma 3.3, and letting y = p ∈ Ω into (3.1), we obtain

S(yk, p) ≥ S(yk, xk+1) +
1

2λk
[d2(xk, xk+1) + d2(xk+1, p)− d2(xk, p)]. (3.8)

Further, letting y = xk+1 ∈ Ω into (3.4), in Lemma 3.4, we obtain

S(yk−1, xk+1) ≥ S(yk−1, yk)+
1

2λk
[d2(xk, yk)+d2(yk, xk+1)−d2(xk, xk+1)]. (3.9)

Combining (3.8) and (3.9), we get

S(yk, p) + S(yk−1, xk+1) ≥ S(yk, xk+1) + S(yk−1, yk)

+
1

2λk
[d2(xk+1, p)− d2(xk, p) + d2(xk, yk) + d2(yk, xk+1)].

Following above inequality, we obtain

d2(xk+1, p) ≤ 2λk[S(y
k, p) + S(yk−1, xk+1)− S(yk, xk+1)− S(yk−1, yk)]

+d2(xk, p)− d2(xk, yk)− d2(yk, xk+1). (3.10)

Since S satisfies Lipschitz-type condition, we get

S(yk, xk+1) + S(yk−1, yk) ≥ S(yk−1, xk+1)− γ1d
2(yk−1, yk)− γ2d

2(yk, xk+1).

(3.11)

Recall p ∈ EP (S,Ω) then S(p, yk) ≥ 0. From S is strongly pseudomonotone, then there
exists ρ > 0 such that

S(yk, p) ≤ −ρd2(yk, p). (3.12)
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Substitution (3.11) and (3.12) into (3.10), we get

d2(xk+1, p) ≤ 2λk[−ρd2(yk, p) + γ1d
2(yk−1, yk) + γ2d

2(yk, xk+1)]

+d2(xk, p)− d2(xk, yk)− d2(yk, xk+1)

≤ 2λk[−ρd2(yk, p) + 2γ1d
2(yk−1, xk) + 2γ1d

2(xk, yk) + γ2d
2(yk, xk+1)]

+d2(xk, p)− d2(xk, yk)− d2(yk, xk+1)

= d2(xk, p) + 4λkγ1d
2(yk−1, xk)− (1− 4λkγ1)d

2(xk, yk)

−(1− 2λkγ2)d
2(yk, xk+1)− 2λkρd

2(yk, p).

Theorem 3.6. Let p ∈ EP (S,Ω) and S : Ω × Ω → R be a bifunction satisfying all
hypotheses (H1)–(H4). Then, the sequences {xk} and {yk} generated by Algorithm 1
converge to p.

Proof. From Lemma 3.5, adding 4λk+1γ1d
2(yk, xk+1) into (3.7), we have

d2(xk+1, p) + 4λk+1γ1d
2(yk, xk+1) ≤ d2(xk, p) + 4λkγ1d

2(yk−1, xk)

−(1− 4λkγ1)d
2(xk, yk)

−(1− 4λk+1γ1 − 2λkγ2)d
2(yk, xk+1)

−2ρλkd
2(yk, p),

which implies that

ak+1 ≤ ak − bk − λkck, (3.13)

where

ak = d2(xk, p) + 4λkγ1d
2(yk−1, xk)

bk = (1− 4λkγ1)d
2(xk, yk) + (1− 4λk+1γ1 − 2λkγ2)d

2(yk, xk+1)

ck = 2ρd2(yk, p).

We have ak ≥ 0 and ck ≥ 0 for all k ≥ 0. Given ξ be fixed in (0, 1). Since limk→∞ λk = 0,
there exists k0 ≥ 0 such that for all k ≥ k0,

0 < ξ ≤ 1− 4λkγ1 < 1 and 0 < ξ ≤ 1− 4λk+1γ1 − 2λkγ2 < 1, (3.14)

which, together with the definition of bk, yields that bk ≥ 0 for all k ≥ k0. Thus, from
(3.13), we get

0 ≤ ak+1 ≤ ak,

for all k ≥ k0. This implies that limk→∞ ak exists in R. Hence, from the definition of
ak, the sequence {d2(xk, p)} is bounded, and thus, {xk} is also bounded. Moreover, from
(3.13), we obtain

bk + λkck ≤ ak − ak+1, (3.15)

for all k ≥ k0. Let K > k0 be fixed. Summing up (3.15) for k = k0, . . . ,K, we get

K∑
k=k0

bk +

K∑
k=k0

λkck ≤ ak0
− aK+1 ≤ ak0

.
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Thus, letting K → ∞, we obtain
∑∞

k=k0
bk +

∑∞
k=k0

λkck < +∞. This implies that

(S1) :

∞∑
k=k0

bk < +∞, and (S2) :

∞∑
k=k0

λkck < +∞.

From the definition of bk, (3.14) and (S1), we deduce that

lim
k→∞

d2(xk, yk) = lim
k→∞

d2(yk, xk+1) = 0. (3.16)

From the boundedness of {xk}, implies that {yk} is bounded. Hence, from the definition
of ak, limk→∞ λk = 0 and limk→∞ ak ∈ R, we have

lim
k→∞

d2(xk, p) ∈ R. (3.17)

From (S2) and
∑∞

k=k0
λk = +∞, we obtain lim infk→∞ ck = 0. Thus from definition

of ck and ρ > 0, we also have that lim infk→∞ d2(yk, p) = 0. Using (3.16) implies that
lim infk→∞ d2(xk, p) = 0. From (3.17), we get limk→∞ d2(xk, p) = 0. Furthermore, the
sequence {yk} also converges to p via (3.16). Therefore, the proof is completed.

The following algorithm is the second extragradient algorithm for finding the solution of
the problem (EP).

Algorithm 2

Initialization: Choose x0 ∈ Ω and nonincreasing sequence {λk} ⊂ (0,+∞) satisfying
the following hypothesis

(A1) : lim
k→∞

λk = 0, (A2) :

∞∑
k=0

λk = +∞.

Iterative Steps: Given xk ∈ Ω, calculate yk and xk+1 as follows:
Step 1. Compute

yk = argmin
t∈Ω

{
S(xk, t) +

1

2λk
d2(xk, t)

}
.

If yk = xk then stop and xk is the solution of problem (EP). Otherwise,
Step 2.Compute

xk+1 = argmin
t∈Ω

{
S(yk, t) +

1

2λk
d2(xk, t)

}
.

Set k =: k + 1 and go back to Step 1.

The following remark gives us a stopping criterion of Algorithm 2.

Remark 3.7. Under hypotheses (H1), (H2) and if yk = xk then xk is a solution of EP
on Ω. From definition of yk, y 7→ S(x, y) is geodesic convex and Theorem 2.7, we obtain

S(xk, y) ≥ S(xk, yk) +
1

λk
⟨exp−1

yk xk, exp−1
yk y⟩

≥ 0, y ∈ Ω.

Hence, xk ∈ EP (S,Ω).

Proposition 3.8. The sequence generated by the Algorithm 2 is well defined.
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Thank to Remark 3.7, if Algorithm 2 terminates then we can found a solution of (EP)
on Ω. On the other hand, if Algorithm 2 does not stop, we have the following results.

Lemma 3.9. From Algorithm 2 we have the following use inequality.

S(yk, y) ≥ S(yk, xk+1) +
1

2λk
[d2(xk, xk+1) + d2(xk+1, y)− d2(xk, y)], ∀y ∈ Ω.

(3.18)

Proof. Follow the same step as in the proof of Lemma 3.3

Lemma 3.10. From Algorithm 2 we have the following use inequality.

S(xk, y) ≥ S(xk, yk) +
1

2λk
[d2(xk, yk) + d2(yk, y)− d2(xk, y)], ∀y ∈ Ω. (3.19)

Proof. Follow the same step as in the proof of Lemma 3.3

Lemma 3.11. Suppose that the hypotheses (H1)–(H4). Then, for all p ∈ EP (S,Ω), we
have

d2(xk+1, p) ≤ d2(xk, p)− (1− 2λkγ1)d
2(xk, yk)− (1− 2λkγ2)d

2(xk+1, yk)

−2ρλkd
2(yk, p) (3.20)

Proof. It follows from the Lemma 3.9, and letting y = p ∈ Ω into (3.18), we obtain

S(yk, p) ≥ S(yk, xk+1) +
1

2λk
[d2(xk, xk+1) + d2(xk+1, p)− d2(xk, p)]. (3.21)

Further, letting y = xk+1 ∈ Ω into (3.19), in Lemma 3.10, we obtain

S(xk, xk+1) ≥ S(xk, yk) +
1

2λk
[d2(xk, yk) + d2(yk, xk+1)− d2(xk, xk+1)]. (3.22)

Combining (3.21) and (3.22), we get

S(yk, p) + S(xk, xk+1) ≥ S(yk, xk+1) + S(xk, yk)

+
1

2λk
[d2(xk+1, p)− d2(xk, p) + d2(xk, yk) + d2(yk, xk+1)].

It follows from above inequality, we obtain

d2(xk+1, p) ≤ 2λk[S(y
k, p) + S(xk, xk+1)− S(yk, xk+1)− S(xk, yk)]

+d2(xk, p)− d2(xk, yk)− d2(yk, xk+1). (3.23)

Since S satisfies Lipschitz-type condition, we get

S(xk, yk) + S(yk, xk+1) ≥ S(xk, xk+1)− γ1d
2(xk, yk)− γ2d

2(yk, xk+1). (3.24)

Recall p ∈ EP (S,Ω) then S(p, yk) ≥ 0. From S is strongly pseudomonotone, then there
exists ρ > 0 such that

S(yk, p) ≤ −ρd2(yk, p). (3.25)
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Taking (3.24) and (3.25) into (3.23), we get

d2(xk+1, p) ≤ 2λk[−ρd2(yk, p) + γ1d
2(xk, yk) + γ2d

2(yk, xk+1)] + d2(xk, p)− d2(xk, yk)

−d2(yk, xk+1)

= d2(xk, p)− (1− 2λkγ1)d
2(xk, yk)− (1− 2λkγ2)d

2(xk+1, yk)

−2λkρd
2(yk, p).

Theorem 3.12. Let p ∈ EP (S,Ω) and S : Ω × Ω → R be a bifunction satisfying all
hypotheses (H1)–(H4). Then, the sequence {xk} generated by Algorithm 2 converges to p.

Proof. From Lemma 3.11, we have

d2(xk+1, p) ≤ d2(xk, p)− (1− 2λkγ1)d
2(xk, yk)− (1− 2λkγ2)d

2(xk+1, yk)

−2ρλkd
2(yk, p). (3.26)

Since limk→∞ λk = 0, there exists k0 such that 1− 2λkγ2 ≥ 0, 1− 2λkγ1 ≥ 2ρλk ≥ 0 and
ρλk < 1 for all k ≥ k0. These together with (3.26) imply that, for all k ≥ k0, we obtain

d2(xk+1, p) ≤ d2(xk, p)− (1− 2λkγ1)d
2(xk, yk)− 2ρλkd

2(yk, p)

≤ d2(xk, p)− 2ρλkd
2(xk, yk)− 2ρλkd

2(yk, p)

= d2(xk, p)− 2ρλk[d
2(xk, yk) + d2(yk, p)]

≤ d2(xk, p)− ρλk[d(x
k, yk) + d(yk, p)]2 [2(a2 + b2) ≥ (a+ b)2,∀a, b ∈ R]

≤ d2(xk, p)− ρλkd
2(xk, p),

the last inequality is true from the triangle inequality. So, we have

d2(xk+1, p) ≤ d2(xk, p)− ρλkd
2(xk, p), ∀k ≥ k0. (3.27)

Furthermore, we fixed K ≥ k0 and consider (3.27) for k = k0, . . . ,K. Summing up them,
we obtain

d2(xK+1, p) ≤ d2(xk0 , p)− ρ

K∑
k=k0

λkd
2(xk, p).

Hence,

ρ

K∑
k=k0

λkd
2(xk, p) ≤ d2(xk0 , p)− d2(xK+1, p). (3.28)

From relation (3.27), we also have d2(xk+1, p) ≤ d2(xk, p) for all k = k0, . . . ,K. Thus,

d2(xK , p) ≤ d2(xk, p), ∀k = k0, . . . ,K, (3.29)

Form (3.28) and (3.29), imply that

ρ

(
K∑

k=k0

λk

)
d2(xK , p) = ρ

K∑
k=k0

(λkd
2(xK , p))

≤ ρ

K∑
k=k0

(λkd
2(xk, p))

≤ d2(xk0 , p)− d2(xK+1, p).
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This is true for all K ≥ k0. From condition (A2),
∑∞

k=0 λk = +∞, it follows from the
last inequality that

lim
K→∞

d2(xK , p) = 0.

Hence, the sequence {xk} converges to p in EP (S,Ω). Therefore, the proof is completed.

4. Computational experiments

In this section, we check out the performance of the proposed algorithms, we show some
numerical experiments involving the equilibrium problems (EP) relative to strongly pseu-
domonotone bifunction.

Following form [2, Example 1], let R++ = {x ∈ R : x > 0} and M = (R++, ⟨·, ·⟩) be the
Riemanian manifold with the metric ⟨x, y⟩ := xy. Then the sectional curvature of M is 0,
and the tangent space at x ∈ M , denoted by TxM , equals R. The Riemannian distance
d : M ×M → R+ is defined by

d(x, y) :=

∣∣∣∣ln(x

y

)∣∣∣∣ .
Thus M is a Hadamard manifold. Let γ : [0, 1] → M be a geodesic starting from x = γ(0)

with velocity v = γ
′
(0) ∈ TxM defined by

γ(t) := xe
vt
x .

Then

expx tv = xe
vt
x .

For all x, y ∈ M, we have

y = expx

(
d(x, y)

exp−1
x y

d(x, y)

)
= xe

(
exp−1

x y

xd(x,y)

)
d(x,y)

= xe
exp−1

x y

x ,

and therefore, the inverse of exponential map is

exp−1
x y = x ln

(y
x

)
.

For further details, see [9, 35].

Next, we consider an extension of a Nash-Cournot oligopolistic equilibrium model [10].
We suppose that there are n companies. Let x be a vector whose entry xi stands for the
quantity of the commodity produced by company i. Next, we assume that the price pi(s)

is a decreasing affine function of s =
n∑

i=1

xi such as pi(s) = αi − βis, where αi, βi ≥ 0.

Then the profit made by company i is given by Si(x) = pi(s)xi − ci(xi), where ci(xi) is
the tax and fee for generating xi. Assume that Ωi = [xi,min, xi,max] is the strategy set
of company i. Thus the strategy set of the model is Ω = Ω1 × · · · × Ωn. Actually, each
company seeks to maximize its profit. A commonly used approach to this model is based
upon the famous Nash equilibrium concept.

We recall that a point x∗ ∈ Ω = Ω1 × · · · × Ωn is an equilibrium point of the model if
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Si(x
∗) ≥ Si(x

∗[xi]), ∀xi ∈ Ωi, ∀i = 1, . . . , n,

where the vector x∗[xi] stands for the vector obtained from x∗ by replacing x∗
i with xi.

Given S(x, y) = ϕ(x, y) − ϕ(x, x), where ϕ(x, y) = −
n∑

i=1

Si(x[yi]) the problem of finding

a Nash equilibrium point of the model can be formulated as:

Find x∗ ∈ Ω such that S(x∗, x) ≥ 0, ∀x ∈ Ω.

Now, suppose that the tax-fee function ci(xi) is increasing and affine for every i. This
assumption means that both of tax and fee for producing a unit are increasing as the
quantity of the production gets larger. Herein, the bifunction S can be in the form

S(x, y) = ⟨Ax+By + q, y − x⟩,
where q ∈ Rn and A,B are two matrices of order n such that B is symmetric positive
semi-definite and B−A is symmetric negative semi-definite. We consider here that B−A
is symmetric negative definite. From the property of B −A, if S(x, y) ≥ 0, we have

S(y, x) ≤ S(y, x) + S(x, y)

= ⟨Ay +Bx+ q, x− y⟩+ ⟨Ax+By + q, y − x⟩
= ⟨(A−B)y + (B −A)x, x− y⟩
= (x− y)T (B −A)(x− y)

≤ −ρd2(x, y),

where ρ > 0. Thus S is strongly pseudomonotone or assumption (H4) holds for S.
Moreover, for verifying S satisfies the Lipschitz-type condition, see, e.g., [17, Lemma 6],
so (H3) is verified. Assumption (H1) and (H2) are automatically fulfilled and so Algorithm
1 and Algorithm 2 can be applied in this case.

For numerical experiment: we consider four companies, defined by

• First company, price p1(s) = 100 − 0.1s, tax c1(x1) = 20x1 and strategy set of
company Ω1 = [1000, 2000].

• Second company, price p2(s) = 110− 0.2s, tax c2(x2) = 15x2 + 100 and strategy
set of company Ω2 = [500, 2500].

• Third company, price p3(s) = 100− 0.15s, tax c3(x3) = 17x3 and strategy set of
company Ω3 = [800, 1500].

• Forth company, price p4(s) = 115 − 0.05s, tax c4(x4) = 20x4 + 75 and strategy
set of company Ω4 = [500, 3000].

We random x1 and y1. The starting points are x0 = y0 = (1000, 1000, 1000, 1000)T ∈ R4.
All the program are written in Matlab R2016b and computed on PC Intel(R) Core(TM)
i7 @1.80 GHz, Ram 8.00 GB.

Next, we will study the numerical behavior of Algorithm 1 and Algorithm 2. Four groups
of sequences λk used in the experiments are:

(I) λk = 1
(k+1)p , p ∈ {0.3, 0.5, 0.8, 1};

(II) λk = 1
logp(k+3) , p ∈ {0.6, 1, 3, 5};
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(III) λk = 1
(k+1) logp(k+3) , p ∈ {1, 3, 5, 7};

(IV) λk = logp(k+3)
(k+1) , p ∈ {1, 3, 5, 7};

It is emphasized that all these sequences of λk are to satisfy conditions (A1) and (A2).

Figure 1. The behaviour of step size sequences

From Algorithm 1, we see that if xk+1 = yk = xk, then xk is the solution of problem
(EP). Hence, since the solution of is unknown, we will use the sequence,

ϵk = d2(xk+1, yk) + d2(xk, yk), k = 0, 1, 2, . . .

to study the convergence of Algorithm 1. The covergence of ϵk to 0 implies that the
sequence {xk} converges to the solution of the problem. Next, figures 2, 3, 4 and 5
describe the behaviour of ϵk generated by Algorithm 1 for the four cases of {λk}, we have
performed experiments for both number of iterations (# iteration) and elapsed execution
time (Elapsed time [sec]). In these figures, the x-axes are for number of iterations or
elapsed execution time while the y-axes represent for value of ϵk.
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Figure 2. Algorithm 1 using step size class I

Figure 3. Algorithm 1 using step size class II

Figure 4. Algorithm 1 using step size class III
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Figure 5. Algorithm 1 using step size class IV

From Algorithm 2, we see that if yk = xk, then xk is the solution of problem (EP). Hence,
since the solution of is unknown, we will use the sequence,

ϵk = d(xk, yk), k = 0, 1, 2, . . .

to study the convergence of Algorithm 2. The convergence of ϵk to 0 implies that the
sequence {xk} converges to the solution of the problem. Next, figures 6, 7, 8 and 9
describe the behaviour of ϵk generated by Algorithm 2 for the four cases of {λk}, we also
performed experiments for both number of iterations (# iteration) and elapsed execution
time (Elapsed time [sec]).

Figure 6. Algorithm 2 using step size class I
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Figure 7. Algorithm 2 using step size class II

Figure 8. Algorithm 2 using step size class III

Figure 9. Algorithm 2 using step size class IV
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To summarize from figures 2, 3, 4, 5, 6, 7, 8 and 9, we observe that the rate of convergence
of {ϵk} generated by Algorithm 1 and Algorithm 2 don’t depend on the convergent rate
of step size sequence {λk}. For early iteration {ϵk} going to decrease quickly, but after
that, it is seen to be unstable.

5. Conclusions

In this paper, we have presented two extragradient algorithms for solving a class of
strongly pseudomontone and Lipschitz-type equilibrium problems in Hadamard manifolds.
Under appropriate conditions, we proved the any sequences generated by the proposed
algorithms converge to equilibrium points. The numerical behaviour of the extragradient
algorithms on a test problem with different given stepsize sequences is also disused in this
paper.
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