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1. Introduction

We are interested in solving the split feasibility problem (SFP) of the following
form:

x∗ ∈ C such that Ax∗ ∈ Q (1.1)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is a bounded linear operator. This problem was proposed
by Censor and Elfving [1].

In recent years, problem (1.1) draws many rearchers’ attention due to its wide range
applications, such as matrix completion [2], image processing and compressed sensing [3–
5]. The solution set of this problem will be denoted by S. Many effective methods have
been proposed to solve problem (1.1). An iterative scheme for solving the split feasibility
problem (SFP) is CQ algorithm which was introduced by Byrne [6, 7], whose recursive
formula is

xn+1 = PC(xn − τnA
∗(I − PQ)Axn) (1.2)

where the stepsize τn ∈ (0, 2/∥A∥2), A∗ is the adjoint operator of A, PC and PQ are the
metric projections onto C and Q, respectively.

Recently, Yang [8] introduced the following iteration:

xn+1 = PCn
(xn − τnA

∗(I − PQn
)Axn) (1.3)
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where the stepsize τn and A∗ are similarly to that of Byrne [6, 7]. Here PC and PQ are
replaced by PCn

and PQn
, respectively, where Cn and Qn are two half-spaces. This is

noted that the closed forms of PCn
and PQn

are easily calculated.
The stepsize of the iteration (1.3) is established under the assumptions that compute

the operator norm of A is easily to be computed. In 2012, López et al. [9] provided the
stepsize which do not depend on the operator norm:

τn =
ρn∥(I − PQn

)Ax∥2

2∥A∗(I − PQn)Ax∥2
(1.4)

where {ρn} is a sequence in (0, 4) such that infn∈N ρn(4−ρn) > 0. They have shown that
the sequence {xn} generated by iteration (1.3) converges weakly to a solution of SFP.
Also, they proved strongly convergence by using the Halpern-type algorithm.

In 2017, Gibali et al. [10] introduced iterative scheme with Armijo linesearches as
follows:

yn = PCn
(xn − τnA

∗(I − PQn
)Axn)

xn+1 = PCn
(xn − τnA

∗(I − PQn
)Ayn) (1.5)

where the stepsize τn = γℓmn and mn is the smallest nonnegative integer, and γ > 0,
ℓ ∈ (0, 1) and µ ∈ (0, 1) such that

τn∥A∗(I − PQn
)xn −A∗(I − PQn

)yn∥ ≤ µ∥xn − yn∥. (1.6)

They proved that {xn} weakly converges to the solution of SFP.
In 2019, Kesornprom et al. [11] studied the relaxed CQ algorithm with the stepsize

defined by López et al [9] in Hilbert spaces as follows:

yn = xn − τnA
∗(I − PQn)Axn

xn+1 = PCn(yn − φnA
∗(I − PQn)yn), (1.7)

where τn =
ρn∥(I−PQn )Axn∥2

2∥A∗(I−PQn )Axn∥2+βn
and φ =

ρn∥(I−PQn )Ayn∥2

2∥A∗(I−PQn )Ayn∥2+βn
. Also, to obtain the

strong convergence, they introduced the following algorithm:

yn = xn − τnA
∗(I − PQn

)Axn

xn+1 = αnu+ (1− αn)PCn
(yn − φnA

∗(I − PQn
)yn) (1.8)

where {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.
In this work, using idea of Nesterov [12] and Alvarez and Attouch [13], we introduce

a new algorithm for solving the SFP in Hilbert spaces. We prove the convergence of
the sequence generated by the proposed algorithms. Finally, we apply to compressed
sensing in signal recovery and compare with algorithms of Yang [8], Gibali et al. [10] and
Kesornprom et al. [11].

2. Preliminaries

In this section, we give some preliminaries and lemmas which will be used in the
sequel. Let H1 and H2 be real Hilbert spaces. Recall that a mapping T : H1 → H1 is
said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H1. (2.1)

A mapping T : H1 → H1 is said to be firmly nonexpansive if, for all x, y ∈ H1,

∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩. (2.2)
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Recall that a function f : H1 → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1),∀x, y ∈ H1. (2.3)

In a real Hilbert space H, we have the following equality:

⟨x, y⟩ = 1

2
∥x∥2 + 1

2
∥y∥2 − 1

2
∥x− y∥2. (2.4)

A differentiable function f is convex if and only if there holds the inequality:

f(z) ≥ f(x) + ⟨∇f(x), z − x⟩, ∀z ∈ H1. (2.5)

Recall that an element g ∈ H1 is said to be a subgradient of f : H1 → R at x if

f(z) ≥ f(x) + ⟨g, z − x⟩, ∀z ∈ H1. (2.6)

This relation is called the subdifferentiable inequality.
A function f : H1 → R is said to be subdifferentiable at x, if it has at least one

subgradient at x. The set of subgradients of f at the point x is called the subdifferentiable
of f at x, and it is denoted by ∂f(x). A function f is called subdifferentiable, if it is
subdifferentiable at all x ∈ H1. If a function f is differentiable and convex, then its
gradient and subgradient coincide.

A function f : H1 → R is said to be weakly lower semi-continuous (w-lsc) at x if
xn ⇀ x implies

f(x) ≤ lim inf
n→∞

f(xn). (2.7)

We know that the orthogonal projection of x onto C is defined as

PCx := argmin
y∈C

∥x− y∥2, x ∈ H1. (2.8)

By Lemma 2.2 (ii) below this is a firmly nonexpansive mapping.

Lemma 2.1. [7] Let C and Q be closed and convex subsets of real Hilbert spaces H1 and

H2, respectively and A : H1 → H2 a bounded linear operator. Let f(x) =
1

2
∥(I−PQ)Ax∥2

then ∇f is ∥A∥2-Lipschitz continuous.

Lemma 2.2. [14] Let C be a nonempty, closed and convex subset of a real Hilbert space
H1. Then for any x ∈ H1, the following assertions hold:

(i) ⟨x− PCx, z − PCx⟩ ≤ 0 for all z ∈ C;
(ii) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ for all x, y ∈ H1;
(iii) ∥PCx− z∥2 ≤ ∥x− z∥2 − ∥PCx− x∥2 for all z ∈ C.

From Lemma 2.2 (ii), the operator I−PC is also firmly nonexpansive, where I denotes
the identity operator, i.e., for any x, y ∈ H1,

∥(I − PC)x− (I − PC)y∥2 ≤ ⟨(I − PC)x− (I − PC)y, x− y⟩. (2.9)

Lemma 2.3. [15] Let S be a nonempty, closed and convex subset of a real Hilbert space
H1 and {xn} be a sequence in H1 that satisfies the following properties:

(i) lim
n→∞

∥xn − x∥ exists for each x ∈ S;

(ii) ωw(xn) ⊂ S, where ωw(xn) = {x|∃(xnk
) ⊂ (xn) such that xnk

⇀ x} denotes the
weak ω − limit set of (xn).

Then {xn} converges weakly to a point in S.
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Lemma 2.4. [16, 17] Let {an} and {cn} are sequences of nonnegative real numbers such
that

an+1 ≤ (1− δn)an + bn + cn, n ≥ 1, (2.10)

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume
∑∞

n=1 cn < ∞.
Then the following results hold:

(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.
(ii) If

∑∞
n=1 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.

Lemma 2.5. [18] Assume {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1− αn)sn + αnδn, n ≥ 1, (2.11)

sn+1 ≤ sn − λn + γn, n ≥ 1, (2.12)

where {αn} is a sequence in (0, 1), {λn} is a sequence of nonnegative real numbers and
{δn} and {γn} are two sequences in R such that

(i)

∞∑
n=1

αn = ∞;

(ii) lim
n→∞

γn = 0;

(iii) limk→∞ λnk
= 0 implies lim sup

k→∞
δnk

≤ 0 for any subsequence {nk} of {n}.

Then lim
n→∞

sn = 0.

Lemma 2.6. [19] Assume xn ∈ [0,∞) and δn ∈ [0,∞) satisfy:
(i) xn+1 − xn ≤ θn(xn − xn−1) + δn,

(ii)

+∞∑
n=1

δn < ∞,

(iii) {θn} ⊂ [0, θ], where θ ∈ [0, 1). Then the sequence {xn} is convergent with
+∞∑
n=1

[xn+1 − xn]+ < ∞, where [t]+ := max{t, 0} (for any t ∈ R).

3.Weak convergence theorem

In this section, we introduce a new algorithm by inertial technique and prove the
weak convergence theorem. In practical applications, the sets Cn and Qn are given by

Cn = {x ∈ H1 : c(xn) ≤ ⟨ξn, xn − x⟩}, (3.1)

where ξn ∈ ∂c(xn) and

Qn = {y ∈ H2 : q(Axn) ≤ ⟨ζn, Axn − y⟩}, (3.2)

where ζn ∈ ∂q(Axn). In what follows, define

fn(x) =
1

2
∥(I − PQn

)Ax∥2, n ≥ 1 (3.3)

where Qn is given as in (3.2). In this case, we then have

∇fn(x) = A∗(I − PQn)Ax. (3.4)
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Algorithm 3.1. Choose an arbitrary initial guess x1. Given constant {θn} ⊂ [0, θ) where
θ ∈ [0, 1). Compute xn+1 via the formulas

wn = xn + θn(xn − xn−1) (3.5)

yn = wn − τn∇fn(wn) (3.6)

xn+1 = PCn
(yn − φn∇fn(yn)) (3.7)

where Cn is given in (3.1), fn, ∇fn in (3.3) and (3.4) respectively, and

τn =
ρnfn(wn)

∥∇fn(wn)∥2 + βn
and φn =

ρnfn(yn)

∥∇fn(yn)∥2 + βn
, 0 < ρn < 4, 0 < βn < 1.

(3.8)

Theorem 3.2. Assume that infn ρn(4 − ρn) > 0, limn→∞ βn = 0 and
∑∞

n=1 θn∥xn −
xn−1∥2 < ∞. Then the sequence {xn} generated by Algorithm 3.1 converges weakly to a
point in the solution set S.

Proof. Let z ∈ S. Since C ⊆ Cn and Q ⊆ Qn, we have z = PC(z) = PCn(z) and
Az = PQ(Az) = PQn

(Az). It follows that ∇fn(z) = 0. Using Lemma 2.2 (iii), we see
that

∥xn+1 − z∥2 = ∥PCn
(yn − φn∇fn(yn))− z∥2

≤ ∥yn − φn∇fn(yn)− z∥2 − ∥xn+1 − yn + φn∇fn(yn)∥2

= ∥yn − z∥2 + φ2
n∥∇fn(yn)∥2 − 2φn⟨yn − z,∇fn(yn)⟩

−∥xn+1 − yn + φn∇fn(yn)∥2. (3.9)

From (2.9) and ∇fn(z) = 0, we obtain

⟨yn − z,∇fn(yn)⟩ = ⟨yn − z,∇fn(yn)−∇fn(z)⟩
= ⟨yn − z,A∗(I − PQn

)Ayn −A∗(I − PQn
)Az⟩

= ⟨Ayn −Az, (I − PQn
)Ayn − (I − PQn

)Az⟩
≥ ∥(I − PQn

)Ayn∥2

= 2fn(yn). (3.10)

It also follows that

⟨wn − z,∇fn(wn)⟩ ≥ 2fn(wn). (3.11)

Moreover, by (3.11), we see that

∥yn − z∥2 = ∥wn − τn∇fn(wn)− z∥2

= ∥wn − z∥2 + τ2n∥∇fn(wn)∥2 − 2τn⟨wn − z,∇fn(wn)⟩
≤ ∥wn − z∥2 + τ2n∥∇fn(wn)∥2 − 4τnfn(wn). (3.12)

Consider,

∥wn − z∥2 = ∥xn + θn(xn − xn−1)− z∥2

= ∥xn − z∥2 + 2⟨xn − z, θn(xn − xn−1)⟩+ ∥θn(xn − xn−1)∥2

= ∥xn − z∥2 + 2θn⟨xn − z, xn − xn−1⟩+ θ2n∥xn − xn−1∥2. (3.13)

By (2.4), we obtain

⟨xn − z, xn − xn−1⟩ =
1

2
∥xn − z∥2 + 1

2
∥xn − xn−1∥2 −

1

2
∥xn−1 − z∥2. (3.14)
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Combining (3.9)-(3.14), we obtain

∥xn+1 − z∥2 ≤ ∥xn − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥) + 2θn∥xn − xn−1∥2

+τ2n∥∇fn(wn)∥2 − 4τnfn(wn) + φ2
n∥∇fn(yn)∥2 − 4φnfn(yn)

−∥xn+1 − yn + φn∇fn(yn)∥2

= ∥xn − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥) + 2θn∥xn − xn−1∥2

+
ρ2nf

2
n(wn)

(∥∇fn(wn)∥2 + βn)2
∥∇fn(wn)∥2 −

4ρnf
2
n(wn)

∥∇fn(wn)∥2 + βn

+
ρ2nf

2
n(yn)

(∥∇fn(yn)∥2 + βn)2
∥∇fn(yn)∥2 −

4ρnf
2
n(yn)

∥∇fn(yn)∥2 + βn

−∥xn+1 − yn + φn∇fn(yn)∥2

≤ ∥xn − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥) + 2θn∥xn − xn−1∥2

+
ρ2nf

2
n(wn)

∥∇fn(wn)∥2 + βn
− 4ρnf

2
n(wn)

∥∇fn(wn)∥2 + βn

+
ρ2nf

2
n(yn)

∥∇fn(yn)∥2 + βn
− 4ρnf

2
n(yn)

∥∇fn(yn)∥2 + βn
− ∥xn+1 − yn + φn∇fn(yn)∥2

= ∥xn − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥) + 2θn∥xn − xn−1∥2

−ρn(4− ρn)
f2
n(wn)

∥∇fn(wn)∥2 + βn

−ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + βn
− ∥xn+1 − yn + φn∇fn(yn)∥2. (3.15)

Since 0 < ρn < 4 and using Lemma 2.6, it implies that limn→∞ ∥xn − z∥ exists and {xn}
is bounded.

From (3.15), we have

lim inf
n→∞

ρn(4− ρn)
f2
n(wn)

∥∇fn(wn)∥2 + βn
= 0, (3.16)

which implies by our assumptions that

lim
n→∞

f2
n(wn)

∥∇fn(wn)∥2
= 0. (3.17)

Since {∥∇fn(wn)∥} is bounded by Lemma 2.1. Hence, we obtain limn→∞ fn(wn) =
limn→∞ ∥(I−PQn)Awn∥ = 0. Also, we have limn→∞ fn(yn) = limn→∞ ∥(I−PQn)Ayn∥ =
0

From (3.17), we obtain

lim
n→∞

∥xn+1 − yn + φn∇fn(yn)∥ = 0. (3.18)

Consider,

φn∥∇fn(yn)∥ =
ρnfn(yn)

∥∇fn(yn)∥2 + θn
∥∇fn(yn)∥ → 0, as n → ∞. (3.19)

By (3.18) and (3.19), we get limn→∞ ∥xn+1 − yn∥ = 0. From (3.5) we obtain

lim
n→∞

∥wn − xn∥ = 0. (3.20)
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From (3.6) and since τn∥∇fn(wn)∥ → 0 as n → ∞, we get

lim
n→∞

∥yn − wn∥ = 0. (3.21)

Consider,

∥xn − xn+1∥ ≤ ∥xn − wn∥+ ∥wn − yn∥+ ∥yn − xn+1∥
→ 0 as n → ∞. (3.22)

Since {xn} is bounded, the set ω∗(xn) is nonempty. Let x∗ ∈ ω∗(xn). Then there
exists a subsequence {xnk

} of {xn} such that xnk
⇀ x∗ ∈ H1.

Next, we show that x∗ is in S. Since xnk+1 ∈ Cnk
, by the definition of Cnk

and
boundedness of ∂c, it follows that

c(xnk
) ≤ ⟨ξnk

, xnk
− xnk+1⟩

≤ ∥ξnk
∥∥xnk

− xnk+1∥
→ 0 as k → ∞. (3.23)

where ξnk
∈ ∂c(xnk

). By the w-lsc of c, xnk
⇀ x∗ and (3.23), we conclude that

c(x∗) ≤ lim inf
k→∞

c(xnk
) ≤ 0. (3.24)

Thus x∗ ∈ C.
Next, we prove that Ax∗ ∈ Q. Since PQnk

(Axnk
) ∈ Qnk

, we have

q(Axnk
) ≤ ⟨ηnk

, Axnk
− PQnk

(Axnk
)⟩

≤ ∥ηnk
∥∥Axnk

− PQnk
(Axnk

)∥
→ 0, as k → ∞. (3.25)

where ηnk
∈ ∂q(Axnk

). By the w-lsc of q and (3.19) imply that

q(Ax∗) ≤ lim inf
k→∞

q(Axnk
) ≤ 0. (3.26)

Thus, Ax∗ ∈ Q. Using Lemma 2.3, we conclude that the sequence {xn} converges weakly
to a point in S.

4. Strong convergence theorem

In this section, we present algorithm involving Halpern iteration for strong con-
vergence theorem.

Algorithm 4.1. Choose an arbitrary initial guess x1. Given constant {θn} ⊂ [0, θ) where
θ ∈ [0, 1). Compute xn+1 via the formulas

wn = xn + θn(xn − xn−1) (4.1)

yn = wn − τn∇fn(wn) (4.2)

xn+1 = αnu+ (1− αn)PCn(yn − φn∇fn(yn)) (4.3)

where {αn} ⊂ (0, 1), Cn is given in (3.1), fn, ∇fn in (3.3) and (3.4) respectively, and

τn =
ρnfn(wn)

∥∇fn(wn)∥2 + βn
and φn =

ρnfn(yn)

∥∇fn(yn)∥2 + βn
, 0 < ρn < 4, 0 < βn < 1.

(4.4)
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Theorem 4.2. Assume that {αn}, {ρn} and {θn} satisfy the assumptions:
(a1) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(a2) inf
n

ρn(4− ρn) > 0;

(a3) lim
n→∞

βn = 0.

(a4) lim θn
αn

∥xn − xn−1∥ = 0.

Then the sequence {xn} generated by Algorithm 4.1 converges strongly to a point PSu in
the solution set S.

Proof. We set z = PSu. Using the proof line as in Theorem 1, we obtain

∥PCn(yn − φn∇fn(yn))− z∥2

≤ ∥xn − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥2) + 2θn∥xn − xn−1∥2

−ρn(4− ρn)
f2
n(wn)

∥∇fn(wn)∥2 + βn
− ρn(4− ρn)

f2
n(yn)

∥∇fn(yn)∥2 + βn

−∥PCn(yn − φn∇fn(yn))− yn + φn∇fn(yn)∥2 (4.5)

On the other hand, we have

∥xn+1 − z∥2 = ∥αn(u− z) + (1− αn)(PCn
(yn − φn∇fn(yn))− z)∥2 (4.6)

≤ (1− αn)∥PCn
(yn − φn∇fn(yn))− z∥2 + 2αn⟨u− z, xn+1 − z⟩.

Combining (4.5)-(4.6), we obtain

∥xn+1 − z∥2 ≤ (1− αn)∥xn − z∥2 + (1− αn)θn(∥xn − z∥2 − ∥xn−1 − z∥2)

+2(1− αn)θn∥xn − xn−1∥2 − (1− αn)ρn(4− ρn)
f2
n(wn)

∥∇fn(wn)∥2 + βn

−(1− αn)ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + βn

−(1− αn)∥PCn(yn − φn∇fn(yn))− yn + φn∇fn(yn)∥2

+2αn⟨u− z, xn+1 − z⟩. (4.7)

From (4.5) and ρn ∈ (0, 4), we have

∥PCn(yn − φn∇fn(yn))− z∥ ≤ ∥wn − z∥. (4.8)

On the other hand, we have

∥wn − z∥ = ∥xn + θn(xn − xn−1)− z∥
≤ ∥xn − z∥+ θn∥xn − xn−1∥ (4.9)

Combining (4.8) and (4.9), we get

∥xn+1 − z∥ = ∥αnu+ (1− αn)PCn
(yn − φn∇fn(yn))− z∥

≤ αn∥u− z∥+ (1− αn)∥wn − z∥
≤ αn∥u− z∥+ (1− αn)∥xn − z∥+ (1− αn)θn∥xn − xn−1∥. (4.10)

By (a4), we see that ϕ = (1−αn)θn∥xn−xn−1∥
αn

→ 0. Hence it is bounded. Set

M = max{∥u− z∥, sup
n≥1

ϕ}. (4.11)

So, (4.10) be comes

∥xn+1 − z∥ ≤ (1− αn)∥xn − z∥+ αnM (4.12)
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By Lemma 2.4(i), we can conclude that {xn} is bounded. Using Lemma 2.5 and 2.6, from
(4.7), we have

sn = ∥xn − z∥2;
γn = (1− αn)θn(∥xn − z∥2 − ∥xn−1 − z∥2) + 2(1− αn)θn∥xn − xn−1∥2

+2αn⟨u− z, xn+1 − z⟩;
δn = 2⟨u− z, xn+1 − z⟩;

λn = (1− αn)ρn(4− ρn)
f2
n(wn)

∥∇fn(wn)∥2 + βn

+(1− αn)ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + βn

+(1− αn)∥PCn(yn − φn∇fn(yn))− yn + φn∇fn(yn)∥2. (4.13)

So (4.7) reduces to the inequalities

sn+1 ≤ (1− αn)sn + αnδn, n ≥ 1 (4.14)

sn+1 ≤ sn − λn + γn. (4.15)

Let {nk} be a subsequence of {n} and suppose that

lim
k→∞

λnk
= 0. (4.16)

Then we have

lim
k→∞

(1− αnk
)ρnk

(4− ρnk
)

f2
nk
(wnk

)

∥∇fnk
(wnk

)∥2 + βnk

+(1− αnk
)ρnk

(4− ρnk
)

f2
nk
(ynk

)

∥∇fnk
(ynk

)∥2 + βnk

(4.17)

+(1− αnk
)∥PCnk

(ynk
− φnk

∇fnk
(ynk

))− ynk
+ φnk

∇fnk
(ynk

)∥2 = 0

which implies, by our assumptions

f2
nk
(wnk

)

∥∇fnk
(wnk

)∥2
→ 0,

f2
nk
(ynk

)

∥∇fnk
(ynk

)∥2
→ 0 and

∥PCnk
(ynk

− φnk
∇fnk

(ynk
))− ynk

+ φnk
∇fnk

(ynk
)∥ → 0

as k → ∞. Since {∥∇fnk
(wnk

)∥} and {∥∇fnk
(ynk

)∥} are bounded, it follows that
fnk

(wnk
) → 0 and fnk

(ynk
) → 0 as k → ∞. So we get lim

k→∞
∥(I − PQnk

)Awnk
∥ = 0

and lim
k→∞

∥(I − PQnk
)Aynk

∥ = 0.

As the same proof in Theorem 1, we can show that ω∗(xnk
) ⊂ S. Hence there exists a

subsequence {xnki
} of {xnk

} such that xnki
⇀ x∗ ∈ S.

From Lemma 2.2 (i), we obtain

lim sup
k→∞

⟨u− z, xnk
− z⟩ = lim

i→∞
⟨u− z, xnki

− z⟩

= ⟨u− z, x∗ − z⟩
≤ 0. (4.18)
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On the other hand, we see that

∥xnk+1 − ynk
∥

= ∥αnk
u+ (1− αnk

)PCnk
(ynk

− φnk
∇fnk

(ynk
))− ynk

∥
≤ αnk

∥u− ynk
∥+ (1− αnk

)∥PCnk
(ynk

− φnk
∇fnk

(ynk
))− ynk

∥
≤ αnk

∥u− ynk
∥+ (1− αnk

)∥PCnk
(ynk

− φnk
∇fnk

(ynk
))− ynk

+ φnk
∇fnk

(ynk
)∥

+(1− αnk
)φnk

∥∇fnk
(ynk

)∥
→ 0 as k → ∞. (4.19)

So, we have

∥xnk+1 − xnk
∥ ≤ ∥xnk+1 − ynk

∥+ ∥ynk
− wnk

∥+ ∥wnk
− xnk

∥
→ 0 as k → ∞. (4.20)

From (4.18) and (4.20) we obtain

lim sup
k→∞

⟨u− z, xnk+1 − z⟩ ≤ 0. (4.21)

Hence, we get

lim sup
k→∞

δnk
≤ 0. (4.22)

Using Lemma 2.5, we conclude that the sequence {xn} converges strongly to z = PSu.

5. Numerical Experiments

In this section, we provide some numerical experiments in compressed sensing. In
signal recovery, compressed sensing can be modeled as the following under determinated
linear equation system:

y = Ax+ ε, (5.1)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the
observed or measured data with noisy ε, and A : RN → RM (M < N) is a bounded linear
observation operator. It is known that problem (5.1) can be seen as solving the following
LASSO problem [20]

min
x∈RN

1

2
∥y −Ax∥22 subject to ∥x∥1 ≤ t, (5.2)

where t > 0 is a given constant. In particular, if C = {x ∈ RN : ∥x∥1 ≤ t} and Q = {y},
then the LASSO problem (5.2) can be considered as the SFP (1.1).

The sparse vector x ∈ RN is generated from uniform distribution in the interval [−2, 2]
with m nonzero elements. The matrix A ∈ RM×N is generated from a normal distribution
with mean zero and variance one. The observation y is generated by white Gaussian noise
with signal-to-noise ratio SNR=40. The process is started with t = m and let x1 and x0

be randomly.
The restoration accuracy is measured by the mean squared error as follows:

MSE =
1

N
∥xn − x∥22 < 10−4,

where xn is an estimated signal of x.
Let τn = 1

∥A∥2 in an iteration of Yang [8] and τn as (1.6) in an iteration of Gibali et

al. [10]. We choose the parameters ρn = 3.5, l = µ = 0.5. and
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θn =

min

{
1

n1.1∥xn−xn−1∥2 , θ

}
if xn ̸= xn−1,

θ otherwise.
The programme is implemented in MATLAB 2018b. We consider two cases as follows:
Case 1: M = 256, N = 512, m = 10
Case 2: M = 2048, N = 4096, m = 100.

Then the numerical results are reported as follows:

Table 1. Computational results for weak convergence theorem

Method Case1 Case2
CPU Iter CPU Iter

Algorithm of Yang [8] 1.0991 69 535.6640 76
Algorithm of Gibali et al. [10] 1.7102 84 953.0753 94

Algorithm of Kesornprom et al. [11] 0.0314 43 1.8135 42
Algorithm 3.1 0.0302 32 1.6537 37

Next, we present the comparison of Algorithm 4.1 and Algorithm of Kesornprom et al.
[11]. We set the parameter αn = 1

n+1 , x1, x0 and u are generated randomly. Then we
have the results as follow:

Table 2. Computational results for strong convergence theorem

Method Case1 Case2
CPU Iter CPU Iter

Algorithm of Kesornprom et al. [11] 0.0088 39 1.7686 48
Algorithm 4.1 0.0086 30 1.3352 36

We plot the graphs of original signal and recovered signal.
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Original signal (N=512, M=256, 10 spikes)
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Recovered signal by algorithm of Gibali et al. (84 iterations, CPU=1.7102)
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Recovered signal by algorithm of Kesornprom et al. (43 iterations, CPU=0.0320)
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Figure 1. From top to bottom: original signal, observation data, re-
covered signal by Algorithm of Yang [8], Algorithm of Gibali et al. [10],
Algorithm of Kesornprom et al. [11] and Algorithm 3.1 in Case 1
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Original signal (N=4096, M=2048, 100 spikes)
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Recovered signal by algorithm of Gibali et al. (94 iterations, CPU=953.0753)
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Recovered signal by algorithm of Kesornprom et al. (42 iterations, CPU=1.8135)
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Recovered signal by algorithm1 (37 iterations, CPU=1.6537)
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Figure 2. From top to bottom: original signal, observation data, re-
covered signal by Algorithm of Yang [8], Algorithm of Gibali et al. [10],
Algorithm of Kesornprom et al. [11] and Algorithm 3.1 in Case 2
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The error plotting of Algorithm of Yang [8], Algorithm of Gibali et al. [10], Algorithm
of Kesornprom et al. [11] and Algorithm 3.1 is shown as follows:
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Figure 3. MSE versus number of iterations in case 1
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Figure 4. MSE versus number of iterations in case 2
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Original signal (N=512, M=256, 10 spikes)
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Figure 5. From top to bottom: original signal, observation data, recov-
ered signal by Algorithm of Kesornprom et al. [11] and Algorithm 4.1 in
Case 1
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Original signal (N=4096, M=2048, 100 spikes)
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Figure 6. From top to bottom: original signal, observation data, recov-
ered signal by [11] and Algorithm 4.1 in Case 2
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The error plotting of Algorithm of Kesornprom et al. [11] and Algorithm 4.1 is shown
as follows:
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Figure 7. MSE versus number of iterations in case 1
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Figure 8. MSE versus number of iterations in case 2

6. Conclusions

In Table 1 and 2, we see that the convergence of the sequence generated by Algo-
rithm 3.1 and Algorithm 4.1 have number of iterations and CPU time less than Algorithm
of Yang [8], Algorithm of Gibali et al. [10], Algorithm of Kesornprom et al. [11] , it shows
that our algorithms have a better convergence than other algorithms. From Figure 1-8,
we can apply our methods to recover the original signal.
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