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On Exact Solutions of Wind-driven Flow
in Shallow Off-shore Waters with

Nonlinear Bottom Stress

T. Korkiatsakul and S. Koonprasert

Abstract : Complicated numerical models are sometimes used to analyze one-
dimensional wind drift problems that incorporate depth-dependent viscosity, Cori-
olis effects, and quadratic bottom stress. This work describes a method for finding
exact solutions of this type of problem. An exact depth-dependent steady-state
solution should serve as a useful test of the accuracy and convergence of the solu-
tions obtained by numerical methods. The method for obtaining exact solutions
is illustrated with examples.

1 Introduction

In 2000, Bowers, Winter and Lund [1] presented the Sinc-Galerkin method as a new
and potentially useful extension of the spectral method in numerical oceanogra-
phy. They illustrated the technique by using a Sinc-Galerkin procedure to infer the
sensitivity of wind-driven subsurface currents in coastal regions and semi-enclosed
seas when the vertical eddy viscosity coefficient is a continuously differentiable
function of depth [1]. In 2004, Koonprasert and Bowers [2] developed a block
matrix formulation for the Sinc-Galerkin technique and applied their formulation
to the wind-driven ocean current problem. Koonprasert and Bowers [3] also devel-
oped a fully Sinc-Galerkin method for solving a family of complex-valued partial
differential equations with time-dependent boundary conditions. The approach to
constructing an exact solution of a model of the wind-driven ocean-current prob-
lem is based on a complex velocity representation. When general solutions of the
classical differential equations governing the horizontal wind drift current compo-
nents are known, the boundary conditions constitute a nonlinear algebraic system
whose solution provides values of four constants of integration. In the boundary
condition system, one of the two complex integration constants F, is expressed in
polar form. The other complex constant is eliminated in such a way as to preserve
the amplitude and phase of F. The amplitude of F is found as the smallest posi-
tive root r of a quartic polynomial whose coefficients depend on the derivatives of
the fundamental solutions at the boundaries. Once r is determined, all required
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quantities become known and the solution of the original problem is assembled by
substitutions.

2 Problem formulation and nondimensionalization

Figure 1: A picture showing the model and coordinate system

A picture of the model and coordinates used is given in Figure 1. A vertical
coordinate is directed positive downward from the sea surface to the seabed. The
velocities u∗ (z∗, t∗) and v∗ (z∗, t∗) are directed northward and eastward respec-
tively. We assume that the ocean depth D0 and mass density ρ are constant and
that the effect of tides can be neglected. The function ψ (t∗) represents the sea
surface wind stress.

Ocean currents are driven by a time-dependent tangential surface wind stress
of magnitude τwψ (t∗) at surface (z∗ = 0) represented by

τ (0, t∗) = τwψ (t∗)
[

cos (χ (t∗))
sin (χ (t∗))

]

χ (t∗) is the angle between the positive u∗-axis and the wind direction. The hor-
izontal stress at various depths for a depth-dependent eddy viscosity N∗

v (z∗) ,
t∗ ∈ [0,∞) , N0 ≡ N∗

v (0) is:

τ (z∗, t∗) = −ρN∗
v (z∗)

∂

∂z∗

(
u∗ (z∗, t∗)
v∗ (z∗, t∗)

)

By the conservation of linear momentum, there is a balance between the Cori-
olis force and the internal friction associated with turbulence. Thus the wind-drift

current velocity
(

u∗ (z∗, t∗)
v∗ (z∗, t∗)

)
can be determined by solving the initial-boundary-
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value problem

∂

∂t∗

(
u∗ (z∗, t∗)
v∗ (z∗, t∗)

)
− ∂

∂z∗

[
N∗

v (z∗)
∂

∂z∗

(
u∗ (z∗, t∗)
v∗ (z∗, t∗)

)]
= f

(
u∗ (z∗, t∗)
v∗ (z∗, t∗)

)

(2.1)
where 0 < z∗ < D0 , 0 < t∗. The stress condition at the sea surface is equal
to the tangential surface time-dependent wind stress given by:

− ρN∗
v (0)

∂

∂z∗

(
u∗ (0, t∗)
v∗ (0, t∗)

)
= τwψ (t)

(
cos (χ (t))
sin (χ (t))

)
, 0 < t∗ (2.2)

At the seabed the frictional stress is assumed linearly proportional to the current

− ρN∗
v (D0)

∂

∂z∗

(
u∗ (D0, t

∗)
v∗ (D0, t

∗)

)
= kfρ

(
u∗ (D0, t

∗)
v∗ (D0, t

∗)

)
, 0 < t∗ (2.3)

Initially the sea is assumed to be at rest, so that
(

u∗ (z∗, 0)
v∗ (z∗, 0)

)
= 0 , 0 < z∗ < D0

Nondimensionalization begins by assigning a reference value to the kinematic eddy
viscosity N∗

0

(
m2s−1

)
and defining N∗

v = N∗
0 Nv. The constant N∗

0 may be re-
garded as the viscosity of the laminar sublayer at the seabed. Dimensionless depth
and current are defined by

(
U
V

)
=

1
U0

(
U∗

V ∗

)
, z =

z∗

D0
, U0 =

τwDE

ρN∗
0

(
m · s−1

)
, DE =

√
2N∗

0

f
(m) (2.4)

The following dimensionless parameters are also useful.

κ =
D0

DE
, kf ≈ 0.005 , σf =

N∗
0

kfU0D0
(2.5)

For a steady-state solution we have ∂
∂t∗

(
u∗ (z∗, t∗)
v∗ (z∗, t∗)

)
= 0 , and then the equation

(2.1) leads to

− ∂

∂z∗

[
N∗

v (z∗)
∂

∂z∗

(
u∗ (z)
v∗ (z)

)]
= f

( −v∗ (z)
u∗ (z)

)
.

The nondimensional problem takes the form

− 1
D0

d

dz

[
N∗

0 Nv (z)
d

D0dz
U0

(
U (z)
V (z)

)]
= fU0

( −V (z)
U (z)

)

−N∗
0 U0

D2
0

d

dz

[
Nv (z)

d

dz

(
U (z)
V (z)

)]
= fU0

( −V (z)
U (z)

)
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We can also transform the velocity
(

U (z)
V (z)

)
into the complex velocity surrogate

W (z) = iU (z) + V (z) and −iW (z) = −iV (z) + U (z)

to obtain the complex equation:

−N∗
0

D2
0

d

dz

[
Nv (z)

dW (z)
dz

]
= −ifW (z) .

From equations (2.4) and (2.5), by substitution, we then obtain

−N∗
0

D2
0

d

dz

[
Nv (z)

dW (z)
dz

]
= −2iN∗

0 κ2

D2
0

W (z)

− d

dz

[
Nv (z)

dW (z)
dz

]
= −2iκ2W (z)

Since i = ei
π
2 , we can rewrite this last equation as

d

dz

[
Nv (z)

dW (z)
dz

]
− 2ei

π
2 κ2W (z) = 0 , 0 < z < 1. (2.6)

Then equation (2.2) can be written as

Ns
d

dz
W (0) = −κ

(
cos (χ)
sin (χ)

)

where Nv (0) = Ns , and κ = τwD0
ρN∗

0 U0
. The boundary condition at the sea surface

is then
Ns

d

dz
W (0) = −κei(π

2−χ) (2.7)

Similarly, the boundary condition at the seabed becomes

σfNb
d

dz
W (1) = −r0W (1)

√
W (1) W (1) (2.8)

Equations (2.6), (2.7) and (2.8) then give the boundary value problem to be solved
for wind-driven ocean currents.

3 The boundary condition system

When a fundamental solution set of equation (2.6) is found for a given Nv (z),
it will generally be the result of a transformation W (z) = Y (x) , x = x (z), that
carries equation (2.6) into integrable form on x ∈ (x0, x1) , where x0 = x (0) and
x1 = x (1) . The transformed conditions constitute a nonlinear algebraic system
for complex constants C and D in the solution

W (z) = CY1 (x) + DY2 (x) (3.1)
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Figure 2: The transformation

It is shown by the following Figure 2
At z = 0 (sea surface)→ x0 = x (0), we get

Ns

(
dx

dz

)

x=x0

[CY ′
1 (x) + DY ′

2 (x)] = −κei(π
2−χ) (3.2)

At z = 1 (seabed) → x1 = x (1)

σfNb

(
dx

dz

)

x=x1

[CY ′
1 (x) + DY ′

2 (x)] = −r0 [CY1 (x) + DY2 (x)] |CY1 (x) + DY2 (x)|
(3.3)

Since our goal is an expression for the amplitude of one of the constants, a re-
duction of equations (3.2), (3.3) is in order. To that end, we switch to a linearly
independent combination w1 (x) and w2 (x) of Y1 (x) and Y2 (x) with the properties
w1 (x1) = 1 and w2 (x1) = 0. For example, the definitions

w1 (x) =
1
2

{
Y1 (x)
Y1 (x1)

+
Y2 (x)
Y2 (x1)

}
(3.4)

and

w2 (x) =
1
2

{
Y1 (x)
Y1 (x1)

− Y2 (x)
Y2 (x1)

}
(3.5)

accomplish the desired simplification. The general solution is in the form

W (z) = CY1 (x1) [w1 (x) + w2 (x)] + DY2 (x1) [w1 (x)− w2 (x)]
= Fw1 (x) + Gw2 (x) .

where F = CY1 (x1) + DY2 (x1) and G = CY1 (x1)−DY2 (x1) .
The sea surface condition reduces to

Ns

(
dx

dz

)

x=x0

[Fw′1 (x0) + Gw′2 (x0)] = −κ (3.6)

and the seabed condition reduces to

σfNb

(
dx

dz

)

x=x1

[Fw′1 (x1) + Gw′2 (x1)] = −r0F
√

F · F̄ (3.7)
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4 The solution

There is an advantage to expressing F in polar form,

F = reiθ

and to using this representation of throughout the development. In terms of
transformed boundary conditions the equations are

Ns

(
dx

dz

)

x=x0

[
w′1 (x0) reiθ + w′2 (x0) G

]
= −κ (4.1)

σfNb

(
dx

dz

)

x=x1

[
w′1 (x1) reiθ + w′2 (x1) G

]
= r0r

2eiθ (4.2)

It is easy to show that, since w2 (x1) = 0 by design, w′2 (x1) must be nonzero;
otherwise, there is no solution. Then, multiplying each of (4.1) and (4.2) by e−iθ

and eliminating Ge−iθ we obtain the key relation

r0r
2

σf
+ rA = Be−iθ or r

(
r0r

σf
+ A

)
= Be−iθ (4.3)

where

A = Nb

(
dx

dz

)

x=x1

[
w′1 (x1)− w′1 (x0)w′2 (x1)

w′2 (x0)

]
(4.4)

and

B = κ
Nb

Ns

(
dx
dz

)
x=x1(

dx
dz

)
x=x0

[
w′2 (x1)
w′2 (x0)

]
(4.5)

Next, we eliminate θ by multiplying by the complex conjugate of equation (4.2)
to obtain a quartic polynomial in r.
Since r0r

2 + σfAr = σfBe−iθ and conjugate r0r
2 + σfAr = σfBeiθ , we get

(
r0r

2 + σfAr
) (

r0r
2 + σfAr

)
= σfBe−iθσfBeiθ

r2
(
r2
0r

2 + σfr0r
(
A + A

)
+ σ2

fAA
)− σ2

f

(
BB

)
= 0 (4.6)

The smallest positive real root of equation (4.6) is the amplitude of With estab-
lished, is determined from a modified form of equation (4.5). For F in polar form

F = reiθ

and

r
(

r0r
σf

+ A
)

= Be−iθ ⇒ eiθ = B

r
�

r0r
σf

+A
�

F =
B(

r0r
σf

+ A
) (4.7)

and therefore either equation (3.7) or (4.1) provides in terms of From (4.1)
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σfNb

(
dx
dz

)
x=x1

[
w′1 (x1) reiθ + w′2 (x1)G

]
= −r0r

2eiθ

G = −F
1

w′2 (x1)

[
r0r

σfNb

(
dx
dz

)
x=x1

+ w′1 (x1)

]
(4.8)

When the direction factor is restored, the solution W of equation (2.6) is assembled
as

W (z) = (Fw1 (x) + Gw2 (x)) ei(π
2−χ)

=
(

F
1
2

{
Y1 (x)
Y1 (x1)

+
Y2 (x)
Y2 (x1)

}
+ G

1
2

{
Y1 (x)
Y1 (x1)

− Y2 (x)
Y2 (x1)

})
ei(π

2−χ)

=
1
2

{
Y1 (x)
Y1 (x1)

(F + G) +
Y2 (x)
Y2 (x1)

(F −G)
}

ei(π
2−χ) (4.9)

Where F is in equation (4.7) and G is in equation (4.8).

5 Examples

The functional representations of eddy viscosity used in this study were Nv (z) = 1
and Nv (z) = (Ns + kz) (1− z) + Nbz

5.1 Constant eddy viscosity

Nv (z) = Ns = Nb = 1

The extension of Ekmans problem from the classical bottom no-slip to quadratic
stress at the seabed serves as a simple illustration of the method. With 0 < z < 1
and constant eddy viscosity Nv (z) = 1 , the governing equation (2.6) becomes

d2W (z)
dz2

− w2W (z) = 0

where w = κ (1 + i). Then the transformation x = w (1− z) , z = 0 ⇒ x0 ,
z = 1 ⇒ x1 , x0 = w (1− 0) = w , x1 = w (1− 1) = 0 ,

(
dx
dz

)
x=x1

= −w ,(
dx
dz

)
x=x0

= w. Given w1 (x) = cosh (x) and w2 (x) = sinh (x) it is obvious that
the properties w1 (x1) = 1 and w2(x1) = 0 are satisfied. Equations (4.4) and (4.5)
provide the constants A and B for substitution into equation (4.3). From equation
(4.4)

A = Nb

(
dx

dz

)

x=x1

[
w′1 (x1)− w′1 (x0) w′2 (x1)

w′2 (x0)

]

= w tanh (w)
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From equation (4.5) w′2 (x1) = cosh (1) = 1, w′2 (x0) = cosh (w)

B = κ
Nb

Ns

(
dx
dz

)
x=x1(

dx
dz

)
x=x0

[
w′2 (x1)
w′2 (x0)

]

= κ
−w

w

[
1

cosh (w)

]

= κ sech (w)

After the quartic obtained from equation (4.3) is solved for r the coefficients F
and G follow from (4.4) and (4.5) :

F = κ sech(w)�
r

σf
+w tanh(w)

� and G = F
(

r
σf w

)
.

The solution of the original problem then reads

W (z) = (Fw1 (x) + Gw2 (x)) ei(π
2−χ)

= F

(
w1 (x) +

r

σfw
w2 (x)

)
ei(π

2−χ)

=
κ sech (w)(

r
σf

+ w tanh (w)
)

[
cosh (w (1− z)) +

r

σfw
sinh (w (1− z))

]
ei(π

2−χ)

where w = κ (1 + i).

5.2 Parabolic Profiles

The quadratic form selected here is more general than the forms used by Fjeld-
sted[1929], John[1966] and Noye and Stevens[1987] :

Nv (z) = (Ns + kz) (1− z) + Nbz

Let Ns = 1 + ka and k −Ns + Nb = kb

Nv (z) = 1 + k
(
a + bz − z2

)

Solutions were studied for parabolic profiles with critical points at 0, 1
3 and 1

2 .
Although the critical point of choice is 1

3 , when Nb = 1 , and Ns is larger than
1 (we use the example Ns = 2). The analysis is the same for each profile, and
the general form of the final solution is similar for each instance. A suitable
transformation is

z =
1
2

(kx + b) , K =

√
4
k

+ (b2 + 4a)

Nv (z) = 2 + (k − 1) z − kz2
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N ′
v (z) = k − 1− 2kz , z =

k − 1
2k

At z = 1
3 , k = 3 we obtain from Nv (z) = 2 + 2z− 3z2 = 1 + 3

(
1
3 + 2

3z − z2
)

that

∴ a = 2
3 , b = 1

3 and k = 3. Then , from K =
√

28
9 , Nv (z) = 7

3 − 7
3x2 and from

d

dz

(
Nv (z)

d

dz
W (z)

)
− i

6K2

k
W (z) = 0

3
[(

1− x2
) d2Y (x)

dx
+ 2x

dY (x)
dx

]
− i

6K2

k
Y (x) = 0

∴
(
1− x2

) d2Y (x)
dx

+ 2x
dY (x)

dx
− i

2K2

k
Y (x) = 0.

The linearly independent solutions of the differential equation are the Legende
functions of the first and second kind of order zero and complex degree υ, where

υ = −1
2

+
1
2

√
1− i

8κ2

k

and

a1 = −1
2
υ =

1
4
− 1

4

√
1− i

8κ2

k
, b1 =

1
2

+
1
2
υ =

1
4

+
1
4

√
1− i

8κ2

k

a2 =
1
2
− 1

2
υ =

3
4
− 1

4

√
1− i

8κ2

k
, b2 = 1 +

1
2
υ =

3
4

+
1
4

√
1− i

8κ2

k

The Legende functions can be computed as combinations of hypergeometric func-
tions,

Pυ (x) =
√

π

[
F

(
a1, b1; 1

2 ; x2
)

Γ (a2) Γ (b2)
− 2x

F
(
a2, b2; 3

2 ; x2
)

Γ (a1) Γ (b1)

]
.

where

F
(
a1, b1; 1

2 ; x2
)

=
Γ

(
1
2

)

Γ (a1) Γ (b1)

∞∑
n=0

Γ (n + a1) Γ (n + b1)
Γ

(
n + 1

2

)
n!

x2n

F
(
a2, b2; 3

2 ; x2
)

=
Γ

(
3
2

)

Γ (a2) Γ (b2)

∞∑
n=0

Γ (n + a2) Γ (n + b2)
Γ

(
n + 3

2

)
n!

x2n

and

Qυ (x) = π
3
2

[
−1

2
tan

(πυ

2

) F
(
a1, b1; 1

2 ;x2
)

Γ (a2) Γ (b2)
+ cot

(πυ

2

) F
(
a2, b2; 3

2 ; x2
)

Γ (a1) Γ (b1)

]
.

The constructions of w1 (x) and w2 (x) are

w1 (x) =
1
2

[
Pυ (x)
Pυ (x1)

+
Qυ (x)
Qυ (x1)

]
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and

w2 (x) =
1
2

[
Pυ (x)
Pυ (x1)

− Qυ (x)
Qυ (x1)

]

The complex velocity as a function of x = 2z−b
K is

Y (x) = (Fw1 (x) + Gw2 (x)) ei(π
2−χ)

=
1
2

[
Pυ (x)
Pυ (x1)

(F + G)− Qυ (x)
Qυ (x1)

(F −G)
]

ei(π
2−χ)

∴ W (z) =
1
2

[
Pυ

(
2z−b

K

)

Pυ

(
2−b
K

) (F + G)− Qυ

(
2z−b

K

)

Qυ

(
2−b
K

) (F −G)

]
ei(π

2−χ).

where F is in equation (4.7) and G is in equation (4.8).

6 Conclusion

In this paper, it may be worth emphasizing that the present development was
designed to handle problems in fairly shallow water with nonlinear bottom stress
together with depth-dependent eddy viscosity and rotation effects. The use of
a linearized bottom stress is well established. The linearized conditions can be
estimated following the illustrations in this work.
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