Thai Journal of Mathematics (2003) 1: 79-89

Complete Blow-up for a Semilinear Parabolic Equation

P. Nakmahachalasint and P. Sawangtong

Abstract: Let $T \leq \infty$, a and x_0 be constants with a > 0 and $0 < x_0 < a$. We establish the unique solution u for the following semilinear parabolic initial-boundary value problem:

$$u_t(x,t) - u_{xx}(x,t) = f(u(x_0,t))$$
 for $0 < x < a$, $0 < t < T$,
 $u(x,0) = \phi(x) \ge 0$ for $0 \le x \le a$,
 $u(0,t) = u_x(a,t) = 0$ for $0 < t < T$,

where f and ϕ are given functions. We also show that under certain conditions, u blows up in a finite time, and the set of the blow-up points is the entire interval [0, a].

Keywords: Complete blow-up, Semilinear parabolic equations. **2000** Mathematics Subject Classification: 35K05. 35K20

1 Introduction

Let $T \leq \infty$, and a and x_0 be constants with a > 0 and $0 < x_0 < a$. Let $D = (0, a), \Omega = D \times (0, T), \bar{D}, \bar{\Omega}$ be their respective closures, and $Lu = u_t - u_{xx}$. Consider the following semilinear parabolic initial-boundary value problem:

$$Lu(x,t) = f(u(x_0,t)) \text{ in } \Omega,$$

$$u(x,0) = \phi(x) \ge 0 \text{ on } \bar{D},$$

$$u(0,t) = u_x(a,t) = 0 \text{ for } 0 < t < T,$$
(1.1)

where $f \in C^2([0,\infty))$, $f(0) \ge 0$, f'(s) > 0 and $f''(s) \ge 0$ for s > 0, $\int_{z_0}^{\infty} (f(s))^{-1} ds < \infty$ for some $z_0 > 0$, and $\phi(x)$ is nontrivial, nonnegative and continuous such that $\phi(0) = \phi'(a) = 0$ and

$$\phi''(x) + f^2(\phi(x)) \ge 0$$
 in D . (1.2)

A solution u is said to blow up at the point (\tilde{x},T) if there exists a sequence $\{(x_n,t_n)\}$ such that $\lim_{n\to\infty} u(x_n,t_n)\to \infty$ as $(x_n,t_n)\to (\tilde{x},T)$. Furthermore, if u blows up at every point $x\in \bar{D}$ at T, then the complete blow-up occurs. We note that the condition (1.2) is used to show that before u blows up, u is a nondecreasing function of t.

2 Existence and Uniqueness

Green's function $G(x, t; \xi, \tau)$ corresponding to the problem (1.1) is determined by the following system: for x and ξ in D and t and τ in (0, T),

$$LG(x,t;\xi,\tau) = \delta(x-\xi)\delta(t-\tau),$$

$$G(x,t;\xi,\tau) = 0 \quad \text{for } t < \tau,$$

$$G(0,t;\xi,\tau) = G_x(a,t;\xi,\tau) = 0.$$
(2.3)

By the method of eigenfunction expansion,

$$G(x,t;\xi,\tau) = \sum_{k=1}^{\infty} g_k(x)g_k(\xi) \exp(-\lambda_k(t-\tau))$$
 for $t > \tau$,

where $\lambda_k = \left((2k-1)\pi/(2a)\right)^2$ and $g_k(x) = \sqrt{2/a}\sin(\sqrt{\lambda_k}x), \ k=1,2,3,\ldots$ are the eigenvalues and the eigenfunctions of the Sturm-Liouville problem: $g''(x) + \lambda g(x) = 0$, g(0) = g'(a) = 0. Note that $\left|\sum_{k=1}^{\infty} g_k(x)g_k(\xi)\exp[-\lambda_k(t-\tau)]\right| \leq (2/a)\sum_{k=1}^{\infty} \exp[-\lambda_k(t-\tau)]$ for $t > \tau$ which converges uniformly. Thus, the Green's function exists.

Consider the adjoint operator L^* given by $L^*u = -u_t - u_{xx}$. Using Green's second identity, we obtain an integral equation equivalent to the problem (1.1):

$$u(x,t) = \int_0^t \int_0^a G(x,t;\xi,\tau) f(u(x_0,\tau)) \, d\xi \, d\tau + \int_0^a G(x,t;\xi,0) \phi(\xi) \, d\xi. \tag{2.4}$$

Similar to Lemma 4 of Chan and Wong [3] and Lemma 2.2(d) of Chan and Tian [2], we have the following properties of the Green's function.

Lemma 1 G is positive in the set $D_1 = \{(x, t; \xi, \tau) : x \text{ and } \xi \text{ are in } D, \ 0 \leqslant \tau < t \leqslant T\}.$

Proof. Suppose that there exists a point $(x_1, t_1; \xi_1, \tau_1)$ in D_1 such that G < 0. Since G converges uniformly in D_1 , G is continuous and we may assume $\tau > 0$. Hence, there exists $\varepsilon > 0$ such that G < 0 in

$$W = (x_1 - \varepsilon, x_1 + \varepsilon) \times (t_1 - \varepsilon, t_1 + \varepsilon) \times (\xi_1 - \varepsilon, \xi_1 + \varepsilon) \times (\tau_1 - \varepsilon, \tau_1 + \varepsilon) \subset D_1.$$

Define $h(x,t)=\exp\left\{-1/\left[\left(\varepsilon^2-(x-x_1)^2\right)\left(\varepsilon^2-(t-t_1)^2\right)\right]\right\}$ in Ω_ε and h(x,t)=0 outside Ω_ε , where $\Omega_\varepsilon=(\xi_1-\varepsilon,\xi_1+\varepsilon)\times(\tau_1-\varepsilon,\tau_1+\varepsilon)$. The solution of the problem Lu=h in $D\times(0,\alpha),\,\alpha>\tau_1+\varepsilon$ with u satisfying zero initial condition and the boundary conditions u(0)=u'(a)=0 is given by

$$u(x,t) = \int_{\tau_1 - \varepsilon}^{\tau_1 + \varepsilon} \int_{\xi_1 - \varepsilon}^{\xi_1 + \varepsilon} G(x,t;\xi,\tau) h(\xi,\tau) \, d\xi \, d\tau.$$

Since G < 0 in W, h > 0 in Ω_{ε} , it follows that u < 0 in Ω_{ε} . On the other hand, $h \ge 0$ in $D \times (0, \alpha)$ implies $u \ge 0$ by the weak maximum principle and Hopf's Lemma. This leads to a contradiction. Therefore, $G \ge 0$ in D_1 .

We shall show that $G \neq 0$ in D_1 . Suppose that there exists a point $(x_2, t_2; \xi_2, \tau_2)$ in D_1 such that G = 0. Using the strong maximum principle, we have G = 0 in $D_1 \cap \{(x, t; \xi_2, \tau_2) : 0 < x < a, t \leq t_2\}$. On the other hand,

$$G(\xi_2, t_2; \xi_2, \tau_2) = \frac{2}{a} \sum_{k=1}^{\infty} \sin^2(\sqrt{\lambda_k} \xi_2) \exp[-\lambda_k (t_2 - \tau_2)] > 0.$$

We have a contradiction. This shows that G is positive in D_1 .

Lemma 2 For any function $\gamma \in C([0,T])$, $\int_0^t \int_0^a G(x,t;\xi,\tau)\gamma(\tau) d\xi d\tau$ is continuous on $\bar{\Omega}$.

Proof. For $x \in \bar{D}$, $\tau \in [0, t - \varepsilon]$, and $0 < \varepsilon < t$,

$$\sum_{k=1}^{\infty} g_k(x)g_k(\xi) \exp\left[-\lambda_k(t-\tau)\right] \gamma(\tau) \leqslant \frac{2}{a} \left(\max_{0 \leqslant \tau \leqslant T} \gamma(\tau)\right) \sum_{k=1}^{\infty} \exp\left[-\lambda_k(t-\tau)\right]$$

converges uniformly. It follows that

$$\begin{split} \int_0^{t-\varepsilon} \int_0^a G(x,t;\xi,\tau) \gamma(\tau) \, d\xi \, d\tau &= \sum_{k=1}^\infty \int_0^{t-\varepsilon} \int_0^a g_k(x) g_k(\xi) \exp\left[-\lambda_k(t-\tau)\right] \gamma(\tau) \, d\xi \, d\tau \\ &\leqslant \frac{2}{a} \left(\max_{0\leqslant \tau\leqslant T} \gamma(\tau)\right) \sum_{k=1}^\infty \int_0^{t-\varepsilon} \int_0^a \exp\left[-\lambda_k(t-\tau)\right] \, d\xi d\tau \\ &\leqslant \frac{2}{a} \left(\max_{0\leqslant \tau\leqslant T} \gamma(\tau)\right) \sum_{k=1}^\infty \lambda_k^{-1} \end{split}$$

converges uniformly with respect to x,t and ε . Since the uniform convergence also holds for $\varepsilon=0, \sum\limits_{k=1}^{\infty}\int_{0}^{t-\varepsilon}\int_{0}^{1}g_{k}(x)g_{k}(\xi)\exp\left[-\lambda_{k}(t-\tau)\right]\gamma(\tau)\,d\xi\,d\tau$ is a continuous function of x,t and $\varepsilon\geqslant0$. Therefore,

$$\int_0^t \int_0^a G(x,t;\xi,\tau) \gamma(\tau) \, d\xi \, d\tau = \lim_{\varepsilon \to 0} \sum_{k=1}^\infty \int_0^{t-\varepsilon} \int_0^a g_k(x) g_k(\xi) \exp\left[-\lambda_k(t-\tau)\right] \gamma(\tau) \, d\xi \, d\tau$$

is a continuous function of x and t.

Based on Theorem 2.4 of Chan and Tian [2], we prove the following theorem.

Theorem 3 There exists some t_0 such that for $0 \le t \le t_0$, the integral equation (2.4) has the unique continuous solution $u \ge \phi(x)$ and u is a nondecreasing function of t. Let t_b be the supremum of the interval for which the integral equation (2.4) has the unique continuous solution. If t_b is finite, then $u(x_0, t)$ is unbounded in $[0, t_b)$.

Proof. Construct a sequence $\{u_n\}$ in Ω by $u_0(x,t) = \phi(x)$, and for $n = 0, 1, 2, \ldots$,

$$\begin{split} Lu_{n+1}(x,t) &= f(u_n(x_0,t)) & \text{ in } \Omega, \\ u_{n+1}(x,0) &= \phi(x) & \text{ on } \bar{D}, \\ u_{n+1}(0,t) &= (u_{n+1})_x(a,t) = 0 & \text{ for } 0 < t < T. \end{split}$$

We have

$$L(u_1 - u_0)(x, t) = f(u_0(x_0, t)) + \phi''(x) \geqslant 0 \text{ in } \Omega,$$

$$(u_1 - u_0)(x, 0) = 0 \text{ on } \bar{D},$$

$$(u_1 - u_0)(0, t) = (u_1 - u_0)_x(a, t) = 0 \text{ for } 0 < t < T.$$

It follows from (2.4) and Lemma 1 that $u_1 \geqslant u_0$ in Ω . Assume that for a positive integer m

$$\phi \leqslant u_1 \leqslant u_2 \leqslant \ldots \leqslant u_{m-1} \leqslant u_m$$
 in Ω .

Since f is increasing and $u_m \ge u_{m-1}$, we have

$$L(u_{m+1} - u_m)(x, t) = f(u_m(x_0, t)) - f(u_{m-1}(x_0, t)) \ge 0 \quad \text{in } \Omega,$$

$$(u_{m+1} - u_m)(x, 0) = 0 \quad \text{on } \bar{D},$$

$$(u_{m+1} - u_m)(0, t) = (u_{m+1} - u_m)_x(a, t) = 0 \quad \text{for } 0 < t < T.$$

By (2.4) and Lemma 1, $u_{m+1} \geqslant u_m$. By the principle of mathematical induction,

$$\phi \leqslant u_1 \leqslant u_2 \leqslant \ldots \leqslant u_{n-1} \leqslant u_n \quad \text{in } \Omega \text{ for all positive integer } n.$$
 (2.5)

We shall also show that the sequence $\{u_n\}$ is a nondecreasing function of t. Let $w_n(x,t) = u_n(x,t+h) - u_n(x,t)$ for $n = 0, 1, 2, \ldots$, where 0 < h < T - t. Then $w_0(x,t) = 0$, and

$$Lw_1(x,t) = f(u_0(x_0,t+h)) - f(u_0(x_0,t)) = 0 \text{ in } D \times (0,T-h),$$

$$w_1(x,0) = u_1(x,h) - \phi(x) \geqslant 0 \text{ on } \bar{D},$$

$$w_1(0,t) = (w_1)_x(a,t) = 0 \text{ for } 0 < t < T-h.$$

By (2.4) and Lemma 1, $w_1 \ge 0$. Let us assume that $w_m \ge 0$ for a positive integer m. Using the Mean Value Theorem, we have

$$Lw_{m+1} = f(u_m(x_0, t+h)) - f(u_m(x_0, t)) = f'(\zeta_m)w_m(x, t) \ge 0$$

for some ζ_m between $u_m(x_0, t+h)$ and $u_m(x_0, t)$. Also,

$$w_{m+1}(x,0) \ge 0$$
 on \bar{D}
 $w_{m+1}(0,t) = (w_{m+1})_x(a,t) = 0$ for $0 < t < T - h$.

It follows that $w_{m+1} \ge 0$ in Ω . By the principle of mathematical induction, $w_n \ge 0$ for all positive integer n. This shows that u_n is a nondecreasing function of t.

Consider the problem:

$$Lv(x,t) = 0$$
 in Ω ,
 $v(x,0) = \phi(x) \geqslant 0$ on \bar{D} ,
 $v(0,t) = v_x(a,t) = 0$ for $0 < t < T$.

By (2.4) and Lemma 1, $v \ge 0$ in Ω . By the strong maximum principle, v attains its maximum somewhere on $(D \times \{0\}) \cup (\{a\} \times (0,T))$. By Hopf's Lemma, v attains its maximum $k_0 = \max_{\bar{D}} \phi(x)$ on $D \times \{0\}$. For a given positive constant $M > k_0$, consider

$$u_n(x,t) = \int_0^t \int_0^a G(x,t;\xi,\tau) f(u_{n-1}(x_0,\tau)) \, d\xi \, d\tau + \int_0^a G(x,t;\xi,0) \phi(\xi) \, d\xi. \quad (2.6)$$

By Lemma 2, as $t \to 0$, we see that

$$\lim_{t \to 0} u_n(x,t) = \int_0^a \lim_{t \to 0} G(x,t;\xi,0)\phi(\xi) \, d\xi = \phi(x) < M.$$

This shows that there exists t_2 such that $u_n(x,t) \leq M$ for $0 \leq t \leq t_2$. In fact, if we choose t_2 satisfying

$$f(M) \int_0^{t_2} \int_0^a G(x, t_2; \xi, \tau) \, d\xi \, d\tau + \int_0^a G(x, t_2; \xi, 0) \phi(\xi) \, d\xi \leqslant M,$$

then the inequality holds.

Let u denote $\lim_{n\to\infty} u_n$. From (2.6) and the Monotone Convergence Theorem, we have (2.4) for $0 \le t \le t_2$.

We proceed to show that $\{u_n\}$ converges uniformly to u for $0 \leq t \leq t_2$. Consider

$$u_{n+1}(x,t) - u_n(x,t) = \int_0^t \int_0^a G(x,t;\xi,\tau) \left[f(u_n(x_0,\tau)) - f(u_{n-1}(x_0,\tau)) \right] d\xi d\tau.$$

Let $S_n = \max_{\bar{D} \times [0,t_2]} (u_n - u_{n-1})$. Using the Mean Value Theorem and f''(s) > 0 for s > 0,

$$f(u_n(x_0,\tau)) - f(u_{n-1}(x_0,\tau)) \leqslant f'(M)S_n.$$

Thus.

$$S_{n+1} \leqslant \frac{2}{a} f'(M) S_n \sum_{k=1}^{\infty} \int_0^t \int_0^a \exp\left[-\lambda_k (t-\tau)\right] d\xi d\tau = 2f'(M) S_n \sum_{k=1}^{\infty} \lambda_k^{-1} [1 - \exp(-\lambda_k t)].$$

Since $\sum\limits_{k=1}^{\infty}\lambda_k^{-1}[1-\exp(-\lambda_k t)]$ converges uniformly, we have $\lim\limits_{t\to 0}\sum\limits_{k=1}^{\infty}\lambda_k^{-1}(1-\exp(-\lambda_k t))=0$ 0. Hence, there exists some $\sigma_1 > 0$ such that

$$2f'(M)\sum_{k=1}^{\infty} \lambda_k^{-1} (1 - \exp(-\lambda_k t)) < 1 \text{ for } t \in [0, \sigma_1].$$

Thus, $S_{n+1} < S_n$ and the sequence $\{u_n\}$ converges uniformly to u for $0 \le t \le \sigma_1$. Similarly for $\sigma_1 \le t \le t_2$, we replace $\phi(\xi)$ in (2.4) by $u(\xi, \sigma_1)$ to obtain

$$u_n(x,t) = \int_{\sigma_1}^t \int_0^a G(x,t;\xi,\tau) f(u_{n-1}(x_0,\tau)) \, d\xi \, d\tau + \int_0^a G(x,t;\xi,0) u(\xi,\sigma_1) \, d\xi$$

and

$$S_{n+1} \leqslant \frac{2}{a} f'(M) S_n \sum_{k=1}^{\infty} \int_{\sigma_1}^{t} \int_{0}^{a} \exp\left[-\lambda_k (t - \tau)\right] d\xi d\tau$$
$$= 2f'(M) S_n \sum_{k=1}^{\infty} \lambda_k^{-1} (1 - \exp(-\lambda_k (t - \sigma_1))).$$

Thus, there exists $\sigma_2 = \min \{\sigma_1, t_2 - \sigma_1\} > 0$ such that

$$2f'(M)\sum_{k=1}^{\infty} \lambda_k^{-1} (1 - \exp(-\lambda_k(t - \sigma_1))) < 1 \quad \text{for } t \in [\sigma_1, \min\{2\sigma_1, t_2\}].$$

Hence, the sequence $\{u_n\}$ converges uniformly to u for $t \in [\sigma_1, \min\{2\sigma_1, t_2\}]$.

By proceeding in this way, the sequence $\{u_n\}$ converges uniformly to u for $0 \le t \le t_2$. Therefore, the integral equation (2.4) has a continuous solution u for $0 \le t \le t_2$.

To show that the solution is unique, let us suppose that the integral equation (2.4) has two distinct solutions u and \tilde{u} on the interval $[0,t_2]$. Also, let $\Phi = \max_{\bar{D} \times [0,t_2]} |u - \tilde{u}| > 0$. We have

$$u(x,t) - \tilde{u}(x,t) = \int_0^t \int_0^a G(x,t;\xi,\tau) \left[f(u(x_0,\tau)) - f(\tilde{u}(x_0,\tau)) \right] d\xi d\tau.$$

Then

$$\Phi \leqslant 2f'(M) \left[\sum_{k=1}^{\infty} \lambda_k^{-1} (1 - \exp(-\lambda_k t)) \right] \Phi \quad \text{for } t \in [0, \sigma_1],$$

which implies that

$$2f'(M)\left[\sum_{k=1}^{\infty} \lambda_k^{-1} (1 - \exp(-\lambda_k t))\right] \geqslant 1 \quad \text{for } t \in [0, \sigma_1].$$

We have a contradiction. Hence, the solution is unique for $0 \le t \le \sigma_1$.

We can show in a similar fashion that the solution u_n is unique for $\sigma_1 \leq t \leq \min\{2\sigma_1, t_2\}$. Continuing in this way, the integral (2.4) has the unique continuous solution u for $0 \leq t \leq t_2$.

Let t_b be the supremum of the interval for which the integral equation (2.4) has the unique continuous solution u. We would like to show that if t_b is finite,

then $u(x_0, t)$ is unbounded in $[0, t_b)$. Suppose that $u(x_0, t)$ is bounded in $[0, t_b)$. Consider (2.4) for $t \in [t_b, T)$ with the initial condition u(x, 0) replaced by $u(x, t_b)$:

$$u(x_0,t) = \int_{t_b}^t \int_0^a G(x_0,t,\xi,\tau) f(u(x_0,\tau)) d\xi d\tau + \int_0^a G(x_0,t,\xi,t_b) u(\xi,t_b) d\xi.$$

For any positive constant $N > u(x_0, t_b)$, an argument as before shows that there exists t_3 such that the integral equation (2.4) has the unique continuous solution u on $[t_b, t_3]$. This contradicts the definition of t_b . Hence, if t_b is finite, then $u(x_0, t)$ is unbounded in $[0, t_b)$. Moreover, u is a nondecreasing function of t since u_n is a nondecreasing function of t.

3 A Sufficient Condition for Blow-Up in a Finite Time

Based on Lemma 1 of Chan and Yang [4], we prove the following lemma.

Lemma 4 Let u be a solution of the following problem:

$$\begin{split} Lu(x,t) &= b(x,t)u(x_0,t) \quad \text{in } \Omega, \\ u(x,0) &\geqslant 0 \quad \text{on } \bar{D}, \\ u(0,t) &= u_x(a,t) = 0 \quad \text{for } 0 < t < T, \end{split}$$

where b(x,t) is nonnegative and bounded, then $u(x,t) \ge 0$ in Ω .

Proof. If $b(x,t) \equiv 0$, the strong maximum principle can be applied to obtain the conclusion immediately. If b(x,t) is nontrivial, let η be a positive constant, and

$$V(x,t) = u(x,t) + \eta(1 + \sqrt{x})e^{ct},$$

where c is a constant. Then V(x,t) > 0 in $(\{0\} \times (0,T)) \cup ([0,a] \times \{0\})$, and

$$\begin{split} LV(x,t) - b(x,t)V(x_0,t) \geqslant L[\eta(1+\sqrt{x})e^{ct}] - b(x,t)\eta(1+\sqrt{x_0})e^{ct} \\ &= \eta e^{ct} \left[c(1+\sqrt{x}) - b(x,t)(1+\sqrt{x_0}) + \frac{1}{4x\sqrt{x}} \right]. \end{split}$$

Choose a constant $c\geqslant (1+\sqrt{x_0})\max_{x\in\Omega}b(x,t)$, then $LV(x,t)-b(x,t)V(x_0,t)>0$ in Ω . Suppose V(x,t)<0 somewhere in Ω , we let $\bar t=\inf\{t:V(x,t)\leqslant 0 \text{ for some } x\in D\}$. Since V(x,0)>0 and $V_x(a,t)=\eta e^{ct}/(2\sqrt a)>0$, we have $0<\bar t< T$ and there exists $x_1\in D$ such that $V(x_1,\bar t)=0$ and $V_t(x_1,\bar t)\leqslant 0$. On the other hand, since V(x,t) attains its local minimum at $(x_1,\bar t)$, we have $V_{xx}(x_1,\bar t)\geqslant 0$. Since $V(x_0,\bar t)\geqslant 0$, we have

$$0 < LV(x_1, \bar{t}) - b(x_1, \bar{t})V(x_0, \bar{t}) \le V_t(x_1, \bar{t}) \le 0.$$

This contradiction shows that V(x,t) > 0 in Ω . It follows that $V(a,t) \ge 0$ for $0 \le t < T$. As $\eta \to 0^+$, we conclude that $u(x,t) \ge 0$ in Ω .

Similar to Theorem 8 of Chan and Yang [4], we state a sufficient condition for blow-up in a finite time in the following theorem.

Theorem 5 If $\phi(x)$ is sufficiently large in a neighborhood of x_0 , then u blows up in a finite time.

Proof. Let us consider the following problem,

$$\begin{split} Lv(x,t) &= f(v(x_0,t)) & \text{ in } (x_0 - \delta, x_0) \times (0,T), \\ v(x,0) &= v_0(x) \geqslant 0 & \text{ on } [x_0 - \delta, x_0], \\ v(x_0 - \delta, t) &= v_x(x_0, t) = 0 & \text{ for } 0 < t < T. \end{split}$$

where $v_0(x)$ is nondecreasing and $v_0'(x_0) = 0$. If $\lim_{x \to \infty} (f(x)/x) < \infty$, then there exists a positive constant N such that $\lim_{x \to \infty} (f(x)/x) \leq N$, which contradicts $\int_{z_0}^{\infty} (f(s))^{-1} ds < \infty$. Thus, $\lim_{x \to \infty} (f(x)/x) = \infty$.

Since $\lambda_1 > 0$, there exists a positive constant $k_1 > z_0$ such that

$$\frac{f(x)}{x} \geqslant \max\{2\lambda_1, \frac{2}{\delta^2}\}$$
 for $x \geqslant k_1$.

Therefore, $f(x) > f(x) - \lambda_1 x \ge f(x)/2$ for $x \ge k_1$, which gives $\int_{k_1}^{\infty} (f(x) - \lambda_1 x)^{-1} dx < \infty$. ¿From Samarskii, Galaktionov, Kurdyumov and Mikhailov [8], v blows up in a finite time at $x = x_0$ provided that $v_0(x)$ is large enough. Choose a positive constant $k_2 \ge k_1/\delta^2$ big enough such that

$$w_0(x) = k_2[x - (x_0 - \delta)][(x_0 + \delta) - x] \geqslant v_0(x)$$
 in $[x_0 - \delta, x_0]$.

Then $w_0(x_0 - \delta) = w_0'(x_0) = 0$. Let us consider the following problem:

$$Lw(x,t) = f(w(x_0,t)) \quad \text{in } (x_0 - \delta, x_0) \times (0,T),$$

$$w(x,0) = w_0(x) \quad \text{on } [x_0 - \delta, x_0],$$

$$w(x_0 - \delta, t) = w_x(x_0,t) = 0 \quad \text{for } 0 < t < T.$$

By Lemma 4, $w \ge v$ in $[x_0 - \delta, x_0] \times [0, T)$, and w blows up in a finite time. If we choose $\phi \ge w_0$ in $[x_0 - \delta, x_0] \times [0, T)$, then $u \ge w$. Therefore, u blows up in a finite time, provided that $\phi(x)$ is sufficiently large in some neighborhood of x_0 . \square

4 Complete Blow-Up

We state additional properties of the Green's function in the following lemma.

Lemma 6 Given any $x \in D$ and any finite T, there exists positive constants C_1 and C_2 such that

$$C_1 < \int_0^a G(x, t; \xi, 0) d\xi < C_2 \quad \text{for } 0 \le t \le T.$$

Proof. Let us consider the following auxiliary problem:

$$\begin{split} Lv(x,t) &= 1 \quad \text{in } \Omega, \\ v(x,0) &= 0 \quad \text{on } \bar{D}, \\ v(0,t) &= v_x(1,t) = 0 \quad \text{for } 0 < t < T, \end{split}$$

which has the unique solution v given by

$$v(x,t) = \int_0^t \int_0^a G(x,t- au;\xi,0) \,d\xi \,d au = \int_0^t \int_0^a G(x, au;\xi,0) \,d\xi \,d au.$$

It follows that

$$v_t(x,t) = \int_0^a G(x,t;\xi,0) d\xi > 0.$$

Since

$$v_t(x,0) = \int_0^a G(x,0;\xi,0) \, d\xi = \int_0^a \sum_{k=1}^\infty g_k(x) g_k(\xi) \, d\xi = 1,$$

there exists a positive C_1 such that

$$C_1 < \int_0^a G(x, t; \xi, 0) d\xi$$
 for $0 \leqslant t \leqslant T$.

Furthermore, since $v_t(x,t)$ is continuous in $D \times [0,T]$, there exists a positive C_2 such that

$$\int_0^a G(x,t;\xi,0) \, d\xi < C_2 \quad \text{for } 0 \leqslant t \leqslant T.$$

We finally state the incidence of complete blow-up in the following theorem.

Theorem 7 If the solution of the problem (1.1) blows up in a finite time T, then the blow-up set is \bar{D} .

Proof. For any t < T.

$$u(x,t) = \int_0^t \int_0^a G(x,t-\tau;\xi,0) f(u(x_0,\tau)) d\xi d\tau + \int_0^a G(x,t;\xi,0) \phi(\xi) d\xi.$$

If u blows up in a finite time T, then we know by Theorem 3 that u blows up at least at $x = x_0$. By Lemma 6,

$$u(x_0, t) = \int_0^t \int_0^a G(x_0, \tau; \xi, 0) f(u(x_0, t - \tau)) d\xi d\tau + \int_0^a G(x_0, t; \xi, 0) \phi(\xi) d\xi$$

$$\leq C_2 \int_0^t f(u(x_0, t - \tau)) d\tau + C_2 \max_{x \in \bar{D}} \phi(x).$$

Since $u(x_0, t) \to \infty$ as $t \to T$, we have $\int_0^T f(u(x_0, T - \tau)) d\tau = \infty$. On the other hand,

$$u(x,t) \geqslant C_1 \int_0^t f(u(x_0,t-\tau)) d\tau + \int_0^a G(x,t;\xi,0)\phi(\xi) d\xi \geqslant C_1 \int_0^t f(u(x_0,t-\tau)) d\tau.$$

As t approaches T^- , it follows from $\int_0^T f(u(x_0, T-\tau)) d\tau \to \infty$ that u(x,t) tends to infinity. Thus, the blow-up set is D. For $\tilde{x} \in \{0, a\}$, we can always find a sequence $\{(x_n, t_n)\}$ such that $(x_n, t_n) \to (\tilde{x}, T)$ and $\lim_{n \to \infty} u(x_n, t_n) \to \infty$. Therefore, the blow-up set is \bar{D} .

Acknowledgments

The authors would like to express their gratitude to Professor Chiu Yeung Chan for bringing the topic into their interest and for all invaluable help and critical comments thereafter.

References

- [1] P. Baras and L. Cohen, Complete blow-up after T_{max} for the solution of a semilinear heat equation, *J. Funct. Anal.* **71** (1987), 142-174.
- [2] C. Y. Chan and H. Y. Tian, Single-point blow-up for a degenerate semilinear parabolic problem with a nonlinear source of local and nonlocal features, *Appl. Math. Comput.*, in press.
- [3] C. Y. Chan and B. M. Wong, Existence of classical solutions for singular parabolic problems. *Quart. Appl. Math.* **53** (1995), 201-213.
- [4] C. Y. Chan and J. Yang, Complete blow-up for degenerate semilinear parabolic equations, *Appl. Math. Comput.* **113** (2000), 353-364.
- [5] D. G. Duffy, *Green's Function with Applications*, Chapman & Hall/CRC Press, Boca Raton. FL. 2001.
- [6] A. Friedman, Partial Differential Equation of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- [7] A. A. Lacey and D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition, *IMA J. Appl. Math.* 41 (1988), 207-215.
- [8] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations (translated from Russian by M. Grinfeld), Walter de Gruyter, New York, NY, 1995.

(Received 28 July 2003; Revised 5 August 2003)

P. Nakmahachalasint , P. Sawangtong Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand E-mail: Paisan.N@Chula.ac.th