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Abstract: Let T < o0, @ and zg be constants with a > 0 and 0 < zy < a.
We establish the unique solution w for the following semilinear parabolic initial-
boundary value problem:

u(x,t) — ugy(z,t) = flulzo,t)) for0<z<a, 0<t<T,
w(z,0)=¢(z) 20 for 0<z < a,
u(0,t) = uz(a,t) =0 for0<t<T,

where f and ¢ are given functions. We also show that under certain conditions, u
blows up in a finite time, and the set of the blow-up points is the entire interval

[0, al.
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1 Introduction

Let T < oo, and a and xp be constants with a > 0 and 0 < wp < a. Let
D=1(0,a),2=Dx(0,T), D,Q be their respective closures, and Lu = u; — Ugzs.
Consider the following semilinear parabolic initial-boundary value problem:

Lu(z,t) = f(u(zp,t)) in £,
u(z,0) = ¢(z) >0 on D, (1.1)
w(0,t) = ugy(a,t) =0 for0<t < T,

where f € C?([0,00)), f(0) > 0, f'(s) > 0and f"(s) > 0for s > 0, f;o(f(s))_1 ds <
oo for some zg > 0, and ¢(x) is nontrivial, nonnegative and continuous such that
$(0) = ¢'(a) = 0 and

¢"(z) + f(¢(x)) >0 in D. (1.2)
A solution u is said to blow up at the point (%,7) if there exists a sequence
{(zy,,t,)} such that nlLII;O w(Tp,tn) = o as (xn,t,) = (Z,T). Furthermore, if u

blows up at every point € D at T, then the complete blow-up occurs. We note
that the condition (1.2) is used to show that before u blows up, u is a nondecreasing
function of ¢.
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2 Existence and Uniqueness

Green’s function G(z,t; &, 1) corresponding to the problem (1.1) is determined by
the following system: for z and £ in D and ¢ and 7 in (0,7,

LG(x,t:;&,7) = 0(x — £)6(t — 7),
Gz, t;€,7) =0 fort <, (2.3)
G(0,t:¢,17) = Gpla,t;€,7) = 0.

By the method of eigenfunction expansion,
G(z,t€,7) ng Hexp(—Ax(t —71)) fort >,

where Ay = ((2k — 1)7/(2a))” and gi(z) = /2/asin(vAzz), k = 1,2,3,... are

the eigenvalues and the eigenfunctions of the Sturm-Liouville problem. g ( ) +

a) = 0. 9(0) = (a) = 0. Note that | £ gu(ola(©expl-n(t )] <

(2/a) Z exp[—Ag(t—7)] for ¢+ > 7 which converges uniformly. Thus, the Green’s
B=1

function exists.
Consider the adjoint operator .* given by L*u = —u; — ug,. Using Green’s
second identity, we obtain an integral equation equivalent to the problem (1.1):

uw)= [ ] " Gla,t,6,7) f(ulzo, 7)) dE dr + / G, 66,0006 de. (2.4)

Similar to Lemma 4 of Chan and Wong [3] and Lemma 2.2(d) of Chan and
Tian [2], we have the following properties of the Green’s function.

Lemma 1 (G is positive in the set Dy = {(z,;&,7) 1z and £ are in D, 0 <7 <t < T}

Proof. Suppose that there exists a point (x1,t1;&1,71) in Dy such that G < 0.
Since G converges uniformly in Dy, G is continuous and we may assume 7 > 0.
Hence, there exists £ > 0 such that (G < 0 in

W:(l’l —£,71 +8) X (tl —&,11 +8) X (fl —6,51-*-8) X (7'1 —&,T1 +8) C D.
Define h(z,t) = exp {—1/ [(e? — (x — 21)?) (¢? — (t — t1)?)] } in Q. and h(z,t) =
0 outside ()., where Q. = (& —¢,& +¢) x (11 —&,71 + ). The solution of the

problem Lu = h in D x (0,«), o > 7 + € with w satislying zero initial condition
and the boundary conditions u(0) = u'(a) = 0 is given by

T14€ §1+E
£) t &, T)h(E, T) dE dr.
ulz, 1 / /6 G, €, T)h(E, 7) dE dr
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Since G < 0in W, A > 0 in €., it follows that v < 0 in .. On the other hand,
h > 0in D x (0,«) implies u > 0 by the weak maximum principle and Hopf’s
Lemma. This leads to a contradiction. Therefore, G > 0 in D;.

We shall show that G # 0in D;. Suppose that there exists a point (x2, ta; &2, T2)
in Dy such that G = 0. Using the strong maximum principle, we have G = 0 in
Din{(x,t;&,m) : 0 <z <a, t <tz}. On the other hand,

[e o]

2 .
G(&2,12: 62, m2) = p Zsmz(v Ar€a) exp[=Ax(t2 — 72)] > 0.
k=1
We have a contradiction. This shows that (7 is positive in D;. |

Lemma 2 For any function v € C(]0,T]) fn Jo Gz, t;&,7)v(7) dé dr is contin-
wous on (1.

Proof. Forz € D, 7€ [0,t—¢],and 0 < e < t,

a \o<r<T

ng &) exp [ Ault — 7] 4(7) < 2(max v<r>)2exp[—xk<t—fﬂ

converges uniformly. It follows that

/Ots /Oa Gz, t;&,7)y(r) dédr = g:l/ote /0“ gr(x)gr(§) exp [ A (t — 7)) v(7) dE dr
S % (oglrasxTV(T)) i/ts /0“ exp [~ (t — 7)] dédr
<7 (oot ) 2N

converges uniformly with respect to z, ¢t and €. Since the uniform convergence also

holds for £ = 0, Z f fo 9i(2) g (&) exp [— A (t — 7)) v(7) d€ d7 is a continuous

function of z, t and € > 0. Therefore,

/Ot/oaG(“?ﬁT) (7) dde—hmZ/t / 91 (2) g1 (&) exp [= At — 7)] 7 (7) d€ dr

is a continuous function of 2 and £. O

Based on Theorem 2.4 of Chan and Tian [2], we prove the following theorem.

Theorem 3 There exists some tg such that for 0 < t < tg, the integral equation
(2.4) has the unique continuous solution u > ¢(x) anr] u is a nondecreasing func-
tion of t. Let ty be the supremum of the interval for which the integral equation
(2.4) has the unique continuous solution. If &, is finite, then u(zg,t) is unbounded
in [0,t).
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Proof. Construct a sequence {u,} in Q by ug(x,t) = ¢(z), and for n = 0,1,2,. .,
Lupir(z,t) = f(un(zo,t)) in €,

Un+1(z,0) = ¢(z) on D,
Unt1(0,8) = (Upy1)e(a,t) =0 for 0 <t < T.

We have

L(u1 — uo)(z,t) = f(uo(zo,t)) +¢"(z) >0 inQ,
(ul _UO)('Z7O) =0 on D:
(ur —u0)(0,t) = (uy —ug)e(a,t) =0 for0<t<T.
It follows from (2.4) and Lemma 1 that u; > ug in . Assume that for a positive

integer mn
¢<ur Sup <o KU1 KUy i €

Since f is increasing and u,, > tg,_1, we have

L{umyr — um)(2,t) = fum(zo,t)) — f(um-1(20,¢)) 20 in €,
(Umt1 — um)(2,0) =0 on D,
(Uma1 — um)(0,8) = (Uma1 — Um)e(a,t) =0 for 0 <t < T.

By (2.4) and Lemma 1, t,11 > 4m. By the principle of mathematical induction,
o<u Sus ... <up 1 Lu, in Q for all positive integer n. (2.5)

We shall also show that the sequence {u,} is a nondecreasing function of #.
Let wy(z,t) = up(z,t+h) —uy(z,t) forn =0,1,2,..., where 0 < h < T'—t. Then
wo(z,t) =0, and

Lwy(z,t) = flug(xg,t + h)) — flug(ze,t)) =0 in D x (0,T — h),
wl(x70) = ul(x7h) - (b(l‘) =20 on D:
w1(0,t) = (w1)z(a,t) =0 for0<t< T —h.

By (2.4) and Lemma 1, wy > 0. Let us assume that w,, > 0 for a positive integer
m. Using the Mean Value Theorem, we have

Lwmir = f(um(@o,t +h)) — flum(zo,t)) = f'(Cn)wm(z,t) 2 0
for some (,, between u,, (zo,t + h) and wu,,(ze,t). Also,

Wnt1(2,0) >0 on D
Wint1(0,8) = (Wma1)e(a,t) =0 for0<t < T — h.

It follows that w,, 11 = 0in Q. By the principle of mathematical induction, w,, > 0
for all positive integer n. This shows that u,, is a nondecreasing function of ¢.
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Consider the problem:
Lv(z,t) =0 in Q,
v(z,0) = ¢(z) 20 on D,
v(0,t) =vy(a,t) =0 for0<t<T.
By (2.4) and Lemma 1, v > 0 in . By the strong maximum principle, v attains its

maximum somewhere on (D x {0}) U ({a} x (0,7)). By Hopf’s Lemma, v attains
its maximum kg = max ¢(z) on D x {0}.
D

For a given positive constant M > kg, consider

n(x, 1) :/0 /OGG(x,t;f,T)f(un1(m0,7))d§d7+/OGG(x,t;f,O)gzﬁ(f)dé (2.6)

By Lemma 2, as t — 0, we see that
lim u, (z,£) = / lim Gz, :€,0)6(6) de = 6(x) < M

This shows that there exists £5 such that u,(x,t) < M for 0 < ¢ < t2. Tn fact, if
we choose ty satisfying

tz ra “
M)/O /0 G(x,tz;f,T)dde—f—/O Gz, t2;€,0)p(&)dé < M

then the inequality holds.
Let u denote lim w,. From (2.6) and the Monotone Convergence Theorem,

n— oo

we have (2.4) for 0 <t < £s.
We proceed to ShOW that {u,} converges uniformly to u for 0 < ¢ < to.
Consider

U1 (1) — un (2, 1) = / / "G, t6,7) [ (un (20, 7)) — Flun1(z0,7))] de dir.

Let S, = max (un — tp—1). Using the Mean Value Theorem and f"(s) > 0 for

D x[0,t2]
s >0,
f(un(@o,7)) = flun-1(20,7)) < f'(M)Sp.
Thus,
snﬂ\g M)S,, Z/ / exp [~ e (t — 7)] dédr = 2f'(M)S,, Z/\ [1—exp(—At)].

Since 3 A; '[1—exp(—Axt)] converges uniformly, we have tliné S A (1—exp(=Agt)) =
k=1 —U =1
0. Hence, there exists some oy > 0 such that

Z A (L —exp(=Agt)) < 1 for t € [0,04].
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Thus, Sy,4+1 < Sy, and the sequence {u,,} converges uniformly to « for 0 < ¢ < oy.
Similarly for o1 <t < €2, we replace ¢(€) in (2.4) by u(&, 01) to obtain

wn(a,t) = / / G, 156,7) fun 1 (w0, 7)) dE dr + / Gl 1€, 0)ulé, 00) dé

and

Q\l\')

Sn+l ~

M)S, Z/ / exp [—Ax(t — 7)] dédr
1]
M)S,, Z A (L= exp(=Ax(t = 01))).
k=1
Thus, there exists o2 = min {a1,%2 — 01} > 0 such that

"(M) Z/\Izl(l —exp(—Ag(t —01))) <1 fort € oy, min{20¢,t2}].
k=1

Hence, the sequence {u,} converges uniformly to u for ¢ € [o1, min{201,2}].

By proceeding in this way, the sequence {u,} converges uniformly to u for
0 < t < t2. Therefore, the integral equation (2.4) has a continuous solution u for
0<t< b

To show that the solution is unique, let us suppose that the integral equation
(2.4) has two distinct solutions u and @ on the interval [0,ts]. Also, let & =

max |u— 4| > 0. We have
DX[O t2]

u(z, ) — iz, 1) = / / "G t56.7) f(uleo, 7)) — flia(zo, 7)) dédr

Then
® forte [0,0q],

lz A (1 —exp(—Agt))

which implies that

[Z)\ (1 —exp( /\kt))] 21 forte [0,0q].

We have a contradiction. Hence, the solution is unique for 0 < ¢t < o3.

We can show in a similar fashion that the solution w,, is unique for oy < t <
min{2o1,t2}. Continuing in this way, the integral (2.4) has the unique continuous
solution u for 0 < ¢t < to.

Let t, be the supremum of the interval for which the integral equation (2.4)
has the unique continuous solution u. We would like to show that if ¢, is finite,
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then u(zo,t) is unbounded in [0,%;). Suppose that u(zg,t) is bounded in [0, ;).
Consider (2.4) for ¢ € [t,, T') with the initial condition u(z, 0) replaced by u(z,s):

t a é
w(o, ) = / / G (20, t,€,7) f(ulo, 7)) dE dr + / G0, . €, to)ulé, 1) dé.

For any positive constant N > u(zg, ), an argument as before shows that there
exists t3 such that the integral equation (2.4) has the unique continuous solution «
on [tp, t3]. This contradicts the definition of ¢;. Hence, if t; is finite, then u(xzo, )
is unbounded in [0, ;). Moreover, u is a nondecreasing function of ¢ since u,, is a
nondecreasing function of ¢. O

3 A Sufficient Condition for Blow-Up in a Finite
Time
Based on Lemma 1 of Chan and Yang [4], we prove the following lemma.

Lemma 4 Let u be a solution of the following problem:

Lu(z,t) = b(z, t)u(zo,t) in £,

where b(x,t) is nonnegative and bounded, then u(x,t) > 0 in Q.

Proof. If b(x,t) = 0, the strong maximum principle can be applied to obtain the
conclusion immediately. If b(z,t) is nontrivial, let n be a positive constant, and

V(z,t) = u(@,t) + (1 + V),
where ¢ is a constant. Then V{(z,¢) > 0in ({0} x (0,7)) U ([0, a] x {0}), and
LV (x,t) = bz, )V (xo, 1) > LIn(1 + Va)e'] = b(z, hn(1 + /zo)e!
1

_ ct _

= e |e(1 4+ V) e )(1 + V) +
Choose a constant ¢ > (14 /o) max b(x,t), then LV (z,t) — b(x, )V (x9,t) > 0 in

TE

Q. Suppose V(z,t) < 0 somewherein Q, welet £ = inf {t : V(x,t) < 0 for some z € D}.
Since V(z,0) > 0 and V,(a,t) = ne’/(2y/a) > 0, we have 0 < ¥ < T and there
exists 1 € D such that V(z,t) = 0 and Vi(z1,%) < 0. On the other hand,
since V(x,t) attains its local minimum at (z1,%), we have V. (x1,7) > 0. Since
V{(zo,t) > 0, we have

0< LV(Z‘l,E) — b(xl,f)V(xo,f) < W(wl,f) < 0.
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This contradiction shows that V(z,t) > 0 in Q. It follows that V{a,t) > 0 for
0<t<T. Asnp— 0%, we conclude that u(z,t) > 0in Q. O

Similar to Theorem 8 of Chan and Yang [4], we state a sufficient condition for
blow-up in a finite time in the following theorem.

Theorem 5 If ¢(z) is sufficiently large in o neighborhood of xo. then u blows up
in a finite time.

Proof. Let us consider the following problem,
Lov(x,t) = f(v(ze,t)) in (xp —d,x0) x (0,T),
v(x,0) =wvo(x) 20 on [zg — 9§, z0],

v(zg — 0,t) = vp(x0,t) =0 for 0<t<T,

where vo(z) is nondecreasing and vj(zo) = 0. T lim (f(z)/z) < oo, then there
T—>00

exists a positive constant N such that lim (f(z)/z) < N, which contradicts
T—>00

f;o(f(s))—l ds < oo. Thus, lim (f(x)/z) = oco.
T—>00
Since Ay > 0, there exists a positive constant ky > zg such that

T 2 .
% > max{2Aq, 6—2} for x > k.

Therefore, f(z) > f(z) — Mz > f(z)/2 for x > ki, which gives f,:f(f(m) -
Mz)~tdr < 0o. jFrom Samarskii, Galaktionov, Kurdyumov and Mikhailov [8], v
blows up in a finite time at = o provided that vo(xz) is large enough. Choose a
positive constant ks > ki /02 big enough such that

wo(x) = ke[z — (zo — 0)][(x0 + 6) — 2] 2 vo(x) in [z — 6, z0].
Then wo(zg — §) = wh(xe) = 0. Let us consider the following problem:

Lw(z,t) = f(w(zg,t)) in (xg — 8, x0) x (0,7T),
w(z,0) = wo(x) on [zg — b, z0],
w(zg — 8,t) = wy(xo,t) =0 for 0<t<T.
By Lemma 4, w > v in [zg — §,20] % [0,T), and w blows up in a finite time. Tf

we choose ¢ 2> wg in [zg — 9, z0] x [0,7), then u > w. Therefore, u blows up in a
finite time, provided that ¢(x) is sufficiently large in some neighborhood of xg. O

4 Complete Blow-Up

We state additional properties of the Green’s function in the following lemma.
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Lemma 6 Given any « € D and any finite T, there exists positive constants Cy
and Co such that

C1</ G(.’L’,t;g,@)d£<02 for0<t T
0

Proof. Let us consider the following auxiliary problem:
Lo(z,t) =1 1in Q,
v(z,0) =0 on D,
v(0,t) = v, (1,t) =0 for0<it<T,

which has the unique solution v given by

v(x,t):/Ot/oaG(a:,t—T;f,O)dng:/Ot/oaG(a:,T;f,O)dde.

It follows that .
wiet) = [ Glatig0)de >0
0
Since

+(z,0) /Gz050d£ ng &) de =1,
0 k=1
there exists a positive C7 such that

C’1</ G(x,1;£,0)de for 0t LT
0

Furthermore, since vi(x,t) is continuous in D x [0, 77, there exists a positive Co
such that

/ G(z,t:£,00d6 < Cy for 0Kt T
0
O

We finally state the incidence of complete blow-up in the following theorem.

Theorem 7 If the solution of the problem (1.1) blows up in a finite time T, then
the blow-up set is D.

Proof. For any t < T,

u(e,t) = / / " Ga,t — 7,0)f(ulzo, 7)) dé dr + / " G, t56,00(¢) de.

If w blows up in a finite time T, then we know by Theorem 3 that u blows up at
least at © = x¢. By Lemma 6,

w(o, t / / G0, 73, 0)f (u (wo,t—T))dédTJr/O G(zo, ; €,0)$(¢) dé

ng/ f(u(mo,t—T))dT—f—C’gmaqu( ).
0

zcD
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Since u(xo,t) = oo as t > T, we have fOT ful(zo, T — 7)) dr = o0.
On the other hand,

u(z,t) > 01/0 flu(zg,t—7)) dT—I—/Oa Gz, t;£,0)p(8) dE > C; /0 fu(xzo, t—7)) dr.

As t approaches 7', it follows from fOT fu(zo, T—7))dr — o0 that u(x,t) tends to

infinity. Thus, the blow-up set is D. For & € {0,a}, we can always find a sequence

{(Zn,tn)} such that (z,,t,) = (Z,7) and lim u(z,,t,) — oco. Therefore, the
n—o0

blow-up set is D. O
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